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High resolution synthetic 
residential energy use profiles for 
the United States
Swapna thorve  1,2 ✉, Young Yun Baek1, Samarth Swarup1, Henning Mortveit1,3, 
Achla Marathe1, Anil Vullikanti1,2 & Madhav Marathe1,2 ✉

Efficient energy consumption is crucial for achieving sustainable energy goals in the era of climate 
change and grid modernization. Thus, it is vital to understand how energy is consumed at finer 
resolutions such as household in order to plan demand-response events or analyze impacts of weather, 
electricity prices, electric vehicles, solar, and occupancy schedules on energy consumption. However, 
availability and access to detailed energy-use data, which would enable detailed studies, has been 
rare. In this paper, we release a unique, large-scale, digital-twin of residential energy-use dataset for 
the residential sector across the contiguous United States covering millions of households. The data 
comprise of hourly energy use profiles for synthetic households, disaggregated into Thermostatically 
Controlled Loads (TCL) and appliance use. The underlying framework is constructed using a bottom-up 
approach. Diverse open-source surveys and first principles models are used for end-use modeling. 
Extensive validation of the synthetic dataset has been conducted through comparisons with reported 
energy-use data. We present a detailed, open, high resolution, residential energy-use dataset for the 
United States.

Background & Summary
Modernization of the U.S. electric grid is occurring at a noteworthy rate due to the installation of new technol-
ogies within the grid such as smart meters. They enable two-way communication between the customer and 
utilities, providing information and granular control of power usage for individual households1,2. The grid is 
also witnessing rapid transformations due to increasing penetration of electric vehicles (EV) and distributed 
energy resources (DER) such as rooftop photovoltaics (PV), community solar, and wind energy. While this wave 
of modernization is beneficial, the electric grid is simultaneously facing a sharp increase in crisis situations as 
a result of climate change phenomena3,4 such as extreme weather events and global warming. One example of 
extreme weather is the February 2021 North American cold wave that caused a tremendous strain on the power 
grid especially in Texas where millions lost power for days5. Another example is where global warming impacts 
household HVAC energy use. Although the rise of 1° to 2 °C in winter temperatures is expected to decrease 
heating requirements, a similar rise in summer temperatures is expected to increase cooling needs significantly6.

In the face of these challenges, achieving sustainable energy goals has become paramount for maintaining a 
healthy grid. To this end, the research community is faced with important questions regarding reduction of car-
bon footprints7–11, incentivizing DER adoption12, studying benefits of building energy retrofit9,13,14, integration 
of electric vehicles15 and consumer behavior16 in the grid, and mechanisms for designing electricity pricing17,18 
to create efficient residential consumption patterns. Answering many of these questions requires comprehensive 
knowledge of energy-use patterns, building stock, the structure of distribution networks, consumer behaviors, 
and so on. However, such exhaustive datasets are rarely freely available (or available at all) for research use, 
making it hard for the research community to pursue these endeavours19. Reasons for unavailability of such data 
range from privacy concerns to the lack of a system for making data available to researchers.

Most of the published energy use data are metered data, a result of longitudinal studies conducted by 
researchers (Table 1) with relatively small samples of households that may not be representative of the wider 
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geographical region and demographics. Some of these studies monitor households over a longer period of 
time (e.g. two years), however, the downside of such experiments is that it takes a considerable amount of time  
(e.g. participant consent, equipment setup, monitoring) and manual effort (e.g., data cleaning, imputing miss-
ing values) before such data is usable. Although these studies release energy data for free use, many of them 
limit publishing participant details (e.g. building characteristics and location, household level demographics). 
Participant details are usually withheld due to privacy reasons/participant consent, lack of information, or una-
vailability of these attributes in the free version of the data. Literature has attempted to address some of these 
issues by creating appropriate data structures for releasing appliance metadata information for households 
alongwith their energy use data20,21. However, we observe that many of the issues still persist in the U.S. con-
text. One such example is the Pecan Street Dataport22. Pecan Street Inc23. is the largest publisher of energy-use 
data in the U.S. through their portal – Dataport. They collect energy-use data in California (CA), Texas (TX), 
New York (NY), and Colorado (CO). This is a potentially very useful data set. However, only a small sample  
(~25 households in CA and TX) of energy-use data is freely available for public use and do not contain sufficient 
(or any) demographic or building information.

A dataset synthesized over a larger spatial scope offers the opportunity to study regional and temporal dif-
ferences in energy use while a smaller region dataset offers studying energy use patterns that may be particular 
to the region. Irrespective of spatial scope, small sample size makes it difficult to get a good representation of 
the population variation in the region (e.g. explaining/exploiting role of household demographics, behavior, 
and building characteristics in energy use). In addition to the spatial scope and number of samples, many of 
the datasets do not release sufficient (or any) participant details. Such limited data restricts the usage of these 
energy-use data for detailed practical analyses or studying scenario interventions and equity questions in the 
grid (e.g., which type of demographic and building stock is best suited for EV adoption, or how much carbon 
footprint can be reduced by retrofitting buildings). Thus, we observe that there is a general sparsity of large 
scale high resolution energy use datasets along with detailed metadata information at household level such as  
appliance ownership, building data, important demographic features.

We summarize key drawbacks of energy datasets for the U.S. as follows – limited spatial scope, small sample 
size, lack of sufficient household, appliance, & building metadata. Given these wide array of problems with the 
state-of-art energy-use data availability, we introduce synthetic energy use datasets that are able to address many 
of these issues. Synthetic data is defined as data generated by models that provide accurate statistical representa-
tions of the real world. Examples of such data for the smart grid are synthetic power distribution networks24, 
energy consumption profiles for offices and commercial buildings25 and for residential buildings26–29. Our work 
specifically addresses the data scarcity gap in energy use research for the U.S. residential sector. We propose a 
synthetic framework for modeling large-scale high resolution energy use data by integrating diverse datasets and 
end-use models for bottom-up dis-aggregate energy modeling. This results in a novel synthetic energy use data-
set (i.e., a digital twin of household level energy demand) comprising hourly electrical energy demand profiles 

Authors/Dataset Description

Klemanjak et al.26,75
A synthetic energy demand dataset was released for 21 appliances in Austria in 2020. Data collected from two 
households was used to train models and then appropriate noise was added for appliance start times and durations to 
mimic variations in actual consumption patterns.

Kolter et al.76,77 The Reference Energy Disaggregation Data Set (REDD) is published by MIT. The dataset contains high-frequency 
current/voltage waveform data of the power mains in households along with labeled circuits in the house.

Makonin et al.78 The Rainforest Automation Energy (RAE) dataset was published by Harvard in 2017. The dataset contains 1 Hz data 
(mains and sub-meters) from two residential houses.

Murray et al.79,80 Load measurements from 20 households of UK from a two year longitudinal study.

Pecan Street22,23 Labeled circuit data for households across major cities in the U.S. This is said to be the most comprehensive dis-
aggregate energy data available for the U.S.

Rashid et al.81,82 The I-blend dataset has recorded minute-level consumption of all the buildings at an academic institute in India over a 
period of 52 months

Paige et al.83,84 The flEECe dataset provides energy data at a 1 Hz sampling rate for four circuits for six net-zero energy senior housing 
units in Virginia, USA for nine months

Shin et al.85,86 The first Korean dataset measuring appliance-level energy data was released in 2019 for 22 houses in Korea.

Kelly et al.20,87 Power demand is recorded from five houses UK houses at two levels – whole house and individual appliances. This 
dataset is referred to as the UK-Dale dataset. Two versions of this dataset have been released.

Anderson et al.88,89
Building-Level fUlly-labeled dataset for Electricity Disaggregation (BLUED) for one household in Pittsburg U.S. for 
one week. State transition of appliances are labeled and time-stamped, providing the necessary ground truth for the 
evaluation of NILM algorithms.

Barker et al.90,91 Electricity usage data is monitored every minute from nearly every plug load from 400 anonymous homes.

Beckel et al.92 Electricity consumption is monitored via smart plugs for six households in Switzerland over a period of 8 months.

Pereira et al.93–95
Power usage for 44 apartments and 6 homes in Portugal is collected for 264 days at 30 minute intervals. The advanced 
version of this dataset ‘SustDataED2’ dataset contains 96 days of aggregated and individual appliance consumption 
from one household in Portugal.

Monacchi et al.96,97 Common household devices are monitored for power consumption in Austria and Italy (GREEND dataset).

Pullinger et al.98,99 1-second electricity data is gathered over a period of 23 months from 255 UK homes (IDEAL household energy 
dataset).

Ruhnau et al.100,101 Synthetic national time series of heat demand that covers over 16 countries in the EU from 2008 to 2018.

Table 1. Energy-use datasets published in the residential sector.
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for U.S. households. The total electrical energy use is published as a composition of eight primary end-uses in 
a household – heating/air-conditioning (HVAC), lighting, dishwashing, cooking, laundry (clothes washer and 
clothes dryer), refrigeration, hot water, and miscellaneous plug load (vacuuming, computer use, TV). A detailed 
data-intensive bottom-up framework is developed to generate synthetic energy-use profiles by integrating mul-
tiple open-source surveys and a synthetic population for the U.S30. A mixture of methods (stochastic, machine 
learning, physics-based engineering methods) is used to model different end-uses in all households that con-
sume electricity as a primary fuel across the 48 contiguous states and Washington, D.C. in North America. To 
the best of our knowledge, this synthetic energy-use dataset is the first detailed, large-scale, freely available 
household-level electricity consumption behaviors dataset for the U.S. Our synthetic energy-use infrastructure 
is well-suited to solve the newer smart grid problems mentioned earlier. We publish the dis-aggregated energy 
use timeseries for all the synthetic households. The published data is representative of the U.S. households, 
provide household level metadata, and are a good representation of the real world energy use. Fig. 1 provides 
a graphic illustration of the synthesized residential energy demand digital twin.

Methods
This section describes the datasets and models employed to generate synthetic energy use time series at the 
household level, see Table 2. All notations used in the paper are described in Table 3.

The presented framework is composed of a synthetic representation of the U.S. population, regression mod-
els for surveys, and bottom-up energy use models. A synthetic population is composed of households and peo-
ple in households. The synthetic households are generated using census surveys and statistical methods such 
that the synthetic population is statistically similar to the original population. An open-source version of the U.S. 
synthetic population – Synthetic Populations and Ecosystems of the World (SPEW)30,31 is used in our frame-
work. The SPEW synthetic population is comprised of demographic characteristics of synthetic households and 
synthetic individuals. The synthetic population is created using U.S. census data such as PUMS (Table 2) and 
statistical methods such as sampling and the Iterative Proportional Fitting (IPF) method32.

The SPEW households are made of basic demographic (e.g., income, age) and locality information. Although 
the SPEW population is representative of the U.S. population on a finer spatial resolution, it is not equipped 
with energy and activity related information (e.g., building characteristics, time spent at home, number of cook-
ing activities) necessary for estimating energy use at household level or person level. Building stock, energy 
and activity related information is collected by national surveys in the U.S. – Residential Energy Consumption 
Survey RECS33 and American Time Use Survey ATUS34 respectively. The basic synthetic population is aug-
mented with energy and activity related attributes by building machine learning models. This augmentation is 
called as the enrichment step. The enriched synthetic population along with other freely available data sources 
can be used together as inputs to the energy use modeling framework. The energy use modeling framework has 

Fig. 1 Data overview. This figure shows examples of the spatio-temporal resolutions of multiple facets of the 
dis-aggregated synthetic energy demand data. The figure shows sample data at state, county, and household level 
at different temporal granularities. The data is generated for all households in the U.S.
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six models for representing nine energy uses – HVAC, lighting, domestic hot-water, refrigerator, dishwasher, 
cooking, clothes washer, clothes dryer, and miscellaneous plug load such as TV, computer use, cleaning activities 
(e.g., vacuuming). The first subsection describes the modeling details of the enrichment step and the following 
subsection describes energy demand models.

Enrichment models. The enrichment models support creating comprehensive synthetic structures for cal-
culating residential energy usage. This step is called as the enrichment step. Refer to Fig. 2 for a pictorial rep-
resentation of the overview of the framework. Datasets used in this workflow are described in Table 2. Since the 
demographic features available in the synthetic population are not sufficient for computing energy usage, it is 
made richer by adding layers of information related to building stock and energy consumption from the RECS 
survey such as building characteristics, appliance ownership, and thermostat set-point behaviors. This mapping 
of features is made by building inference tree models. Activity schedules for a normative day of an ATUS survey 
respondent are attached to synthetic individual by building a multivariate random forest regression model. These 
models are described below.

The ATUS model. The ATUS data provides nationally representative surveys of people’s activities in different 
location types such as childcare in or outside the house, time spent at work, laundry time at home, waiting 
times in hospital, and so on, see Table 2 for a description. The time-use diaries of the survey individuals can be 
attached to synthetic individuals by matching an appropriate survey individual to a synthetic individual. In our 
work, we consider appropriate matching based on amount of time a person spends in different location types 
such as home, work, school, shopping, and other miscellaneous locations. This seems a reasonable approach 
because we are interested in learning how an individual spends 24 hours of the day by categorizing the amount 
of time spent at important location types – for e.g., the time spent in different location types for a person works 
full-time is quite different than a house bound senior citizen or a college student. This rationale of assigning 
survey respondents to synthetic individuals is also presented in prior work by Lum et al.35.

Random forest regression method is used to build a model that predicts the amount of time a person spends 
in locations types such as home, work, shopping, other, school, and trip counts during the day. Thus, six depend-
ent variables are modeled – trip count during the day and time spent at each location type - home, work, shop-
ping, other, school. Independent variables used to build the model are as follows – number of members in the 
household (hsize), number of children (nchild), age (age), working hours (wrkhrs), gender (gender), income 
modeled as a categorical variable (hinc2, hinc3), and binary variables such as an American citizen or not (nativ-
ity), worker or not (worker), owns home or not (ownhome), has a phone or not (tel), and race related variables 
such as if person is white, Hispanic, black, or Asian (white, hispanic, black, asian). Figure 3 shows example of 
feature importance for two dependent variables.

Once the model is trained on ATUS respondents, a synthetic person Pi, j is randomly assigned a survey indi-
vidual from the leaf nodes in the trained ensemble model. Thus, the result gives every synthetic individual a 

Dataset Description

American Time Use Survey 
(ATUS 2015)

ATUS provides nationally representative estimates of how, where, and with whom people in the U.S. spend 
their time, and is the only federal survey providing data on the full range of activities, from childcare to 
volunteering. This survey provides demographic information as well as information on energy-related 
activities34. 24-hour data is recorded for 5115 participants.

Synthetic Populations and 
Ecosystems of the World 
(SPEW)

SPEW30,31 is a framework that produces synthetic populations for various countries. We used the open-
sourced version of the synthetic population available for the U.S. constructed for the year 2013. The sampled 
base population is the byproduct of American Community Survey (ACS) Public Use Microdata Sample 
(PUMS) data. Statistical methods such as Simple Random Sampling (SRS) and Iterative Proportional 
Fitting (IPF)102,103 are used to estimate joint distributions of population characteristics given their marginal 
distributions at a small geographic level (e.g. PUMA-level for the U.S.). Data records are available at 
household level for all of U.S. Descriptors are available for mapping records from PUMS data onto the base 
synthetic population.

Public Use Microdata Sample 
(PUMS 2013)

PUMS is a 5% representative sample for a larger region than block group referred to as a Public Use 
Microdata Area (PUMA)104. PUMAs are described by the Census as “a collection of counties or tracts 
within counties with more than 100,000 people”. These statistical areas are defined for the circulation of 
PUMS data. PUMS contains individual records of the characteristics for a 5% sample of people and their 
households. One PUMS record is a complete Census record.

North American Land Data 
Assimilation System (NLDAS) Hourly temperature data for North America. Data resolution is at 1/8th-degree grid over North America105.

Residential Energy 
Consumption Survey (RECS 
2015)

U.S. Energy Information Administration (EIA) Residential Energy Consumption Survey (RECS)33 data is 
a national sample survey that collects energy-related data for housing units. For 2015, data was collected 
from 5,686 households to represent 118.2 million U.S. households. We use this dataset to obtain housing 
unit-specific information such as floor area, main heating fuel, fuel equipment, indoor temperature setting, 
presence of air conditioner, dishwasher, washer, dryer, refrigerator, water heater fuel, water heater size, water 
heater age, number of lighting units, etc,.

National Solar Radiation 
Database (NSRDB)

NREL provides solar radiation data for the U.S. We use hourly data that comes from the physics-based 
approach called the Physical Solar Model (PSM). Data is available for the U.S. for 1998–2014106. The GHI 
variable is used as an indicator of irradiance level in the lighting model. GHI is modeled solar radiation on a 
horizontal surface received from the sky. This is measured in watt

meter2 .

Miscellaneous Appliance power and efficiencies, gallons of hot water required for activities, and any other input data 
required for models is drawn from surveys and data collected from ground and/or testing50,51,62,64

Table 2. List of primary datasets used for constructing the residential demand models.
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time-use diary. The energy-use models will extract home activities from a time-diary and also build a 
household-level occupancy schedule over the 24-hour duration, denoted as O O O, , ,i i i,0 ,1 ,23… . These are used 
as an input to the energy use models. Synthetic household member activity scheduling conflicts are handled in 
the activity model.

The RECS mapping model. The baseline synthetic population does not have any building structural char-
acteristics and appliance ownership information. These salient features are important for modeling different 
categories of energy use and are available in the RECS survey. We overlay RECS household attributes onto a 
synthetic household by building multivariate conditional inference trees36,37. Conditional inference tree is a 
non-parametric class of regression trees that uses recursive partitioning of dependent variables based on the 
value of correlations. Four dependent variables are modeled – square footage of the dwelling, presence of laun-
dry appliances, presence of air conditioner, presence of dishwasher. The independent variables are year in which 
the house was built, occupancy time of the current tenants, own or rent the residence, total number of rooms, 
income, number of refrigerators, number of members in the household, dwelling type, dwelling is located in 
urban or rural area, primary heating fuel type. The independent variables are common attributes between RECS 
survey records and synthetic household records. Conditional inference trees are trained on different census 
regions in the U.S. to tease out regional differences. A RECS household Si is randomly selected from the appro-
priate leaf nodes of the conditional inference tree and assigned to the synthetic household Hi every time a new 
simulation is run. This dynamic assignment introduces stochasticity when the simulation is executed for same 
and/or different days.

Energy use modeling. The enriched synthetic population (i.e., the output of the enrichment step) enables 
encoding of behaviors (time spent in different energy related activities at home), normative attributes (e.g., square 
footage, age, income, gender), declarative attributes (e.g., individual activities as a sequence) and procedural 
attributes (e.g., behaviors capturing dependencies, interactions, frequency of performing activities) into the 
knowledge required for building energy use profiles38. The synthetic infrastructure is leveraged to build six energy 
use models (Fig. 2). Nine end-uses are synthesized for each household. These end-uses are divided into two parts 
– Thermostatically Controlled Loads (TCL) and appliance use. For a household i, nine end-uses published in the 
data are –

 1. HVAC (Ehvac). This category includes heating and cooling electric load from central air conditioning dur-
ing hot days and electric furnace/heater used during cold days. This is a TCL load.

 2. Domestic hot water use (Eh2o). Energy consumed for heating water that is needed for personal grooming 
activities such as shower/bath, laundry activities such as using clothes washer, and dishwasher. This is a 
TCL load.

 3. Dishwasher (Edwasher). Energy used by dishwashers.

Notation Description

Hi Household i drawn from the synthetic population

Pi, j Synthetic household member j of household Hi

Ak Respondent k from ATUS survey

Sl Household l from RECS survey

Irri Irradiance threshold for Hi. Drawn from a Normal distribution Normal(60,10)

O O O, , , ,i i t i,0 , ,23… … Occupancy time series of synthetic household i over 24 hours, t {0, 1, , 23}∈ …

Irr , , Irr , , Irrt0 23… … Hourly irradiance time series of a census tract for a given day in the year 2014

T T T, , , ,t0
out out

23
out… … Hourly temperature series of the outside environment for a given day (°F)

… …T T T, , , ,t0
in in

23
in Thermostat setpoint (°F)

η Efficiency of the HVAC equipment and water heaters

Rroof, Rwall Thermal resistance coefficient for roof and wall for different climate zones

Tv
hot Temperature (°F) of hot water end-point category v,

where v {shower, bath, cwasher, dishwasher}∈    

Tm z,
cold Mains water temperature (°F) for month m and climate zone z

∈d D End-use d D∈  where D {hvac, h2o, light, refr, dwasher, cook, cwasher, cdryer, TV, computer, cleaning}=

E E E, , ,i
d

i t
d

i
d

,0 , ,23… Hourly energy use profile of Hi for a end-use d and t {0, , 23}∈ …

Ei
d Daily energy consumed over 24 hours by end-use d in household Hi. = ∑ =E Ei

d
t i t

d
0

23
,  and ∈d D and 

∈ …t {0, 1, , 23}

G G G, , ,i i t i,0
h2o

,
h2o

,23
h2o…

Hourly profile of hot-water use (gallons per hour) of Hi for a end-use h2o and t {0, , 23}∈ … . 
G Gi t v i t v,

h2o
V , ,

h2o= ∑ ∈  where =V {shower, bath, dishwasher, clotheswasher}

Gi
h2o Daily amount of hot water consumed (in gallons) by a household Hi in a day. = ∑ =G Gi t i t

h2o
0

23
,
h2o

Gi v,
h2o Daily amount of water consumed (in gallons) by a household Hi in a day by an event v. = ∑ =G Gi v t i t v,

h2o
0

23
, ,
h2o

Table 3. Notations.
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 4. Clothes Washer (Ecwasher). Energy used by electric clothes washers.
 5. Clothes Dryer (Ecdyer). Energy consumed by dryer.
 6. Cooking (Ecook). Energy consumed by electric cooking range, oven, and other kitchen appliances such as 

coffee maker, microwave, toaster, etc.
 7. Miscellaneous plug load (Emisc). This type of energy indicates plug load attributed to cleaning activities 

and electronic devices such as TV, computers, other smaller electronic gadgets.

Fig. 2 Overview of the energy modeling infrastructure. Many different types of input data are used in the 
proposed modeling framework. These are shown at the top. For complete description of input datasets refer to 
Table 2. These datasets are input to different modeling components of the framework. Some datasets support 
augmentation of the synthetic population while others are input to the energy-use models. All the models are 
described in the Methodology section. The bottom rectangle describes the recorded data/smart meter data from 
different climate zones of the U.S. These datasets are used for validation of the synthetic energy-use timeseries. 
The validation block (yellow backdrop) describes three components of V&V - regional, magnitude, and 
structural/shape comparisons. This line of validation covers (a) different temporal aspects (hourly and daily), 
(b) spatial aspects in terms of regions and seasons, (c) diversity aspect of the large-scale synthetic data. The blue 
text refers to the V’s of big data. Each colored block possesses the given V characteristic.
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 8. Refrigeration (Erefr). Energy consumed by refrigerators.
 9. Lighting (Elight). Energy consumed by lighting units.

Table 3 describe the notations used in the methodology sections. The total energy summed over 24 hours 
(Ei

total) of a household i is given by the equations below –

= +E E E (1a)i i i
total TCL appliances

= +E E E (1b)i i i
TCL hvac h2o

E E E E E E E E (1c)i i i i i i i i
appliances dwahser cook cwasher cdryer light refr misc= + + + + + +

= + +E E E E (1d)i i i i
misc tv computer cleaning

HVAC model Ehvac. According to the U.S. Energy Information Administration (EIA)39, HVAC is responsible 
for the highest proportion of energy consumption in households. The HVAC model calculates how much energy 
is required to maintain ambient/comfort temperature indoors. This is dependent on factors ranging from the area 
of the house, outdoor temperature, efficiency of HVAC equipment, and so on. Occupant behaviour of thermostat 
settings in different seasons and household occupancy during the day play an important role in understanding 
thermal comfort levels and how its effect on electricity consumption. Engineering and statistical approaches40 are 
presented in the literature to simulate energy consumption of heaters/furnace and air conditioners41–44. We adopt 
the engineering based approach from Subbiah et al.44 where the function of heating/cooling a household Hi at 
hourly intervals is defined as:

E T FloorArea
R

WallArea
R (2)

i t
i i

,
hvac

roof wallη
= Δ ×






+





Here Ei t,
hvac is the energy consumed by household Hi at the end of hour t in kWh by heating/cooling equip-

ment to maintain thermal comfort. FloorAreai is the floor area and WallAreai is the wall area (extrapolated from 
floor area44) of Hi. The quantities Rroof and Rwall are R-values (insulation level) for households in different climate 
zones, while η is defined in Table 3. Next, ΔT is the absolute difference between Tt

in and Tt
out, and Tt

in is indoor 
thermostat temperature at hour t. The hourly outside temperature (Tt

out) is obtained from NOAA NLDAS data 
mentioned in Table 2. Efficiency and insulation data is obtained from guidelines published by EIA. All other 
household attributes are obtained from the enriched synthetic population. Depending upon occupancy patterns 
throughout the day, changes in thermostat behaviors are assigned to each household. Heating and cooling 
threshold temperatures for appliance on/off times are taken from the thermostat study published by NREL in 
201745.

Fig. 3 Impurity-based feature importance and correlation. Each plot shows Gini importance of features for two 
dependent variables – home and work. The x-axis shows independent variables in order of importance based on 
IncNodePurity. The selection of the parameters for ‘ntree’ (number of decision trees) and ‘node size’ (minimum 
size of terminal nodes). Eight conditions are tested for the combination of the two parameters: ntree = 500, 
1000, 1500, and 2000; node size = 5, and 10. The plots show robust results across the different conditions. 
According to the plots, the following five independent variables - wrkhrs; worker; age; hinc3; hsize mostly 
affect all the dependent variables. The right-hand y-axis shows the absolute Pearson Correlation Coefficient. 
The positive and negative coefficients are distinguished by blue dots and squares, respectively. Except wrkhrs; 
worker, all other independent variables weakly correlated with the dependent variables.
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Domestic Water Heating Model Eh2o. The EIA shows that 17%–32% of the household energy use is attrib-
uted to domestic hot water use (DHW). Literature shows models used for estimating hot water demand at mul-
tiple temporal resolutions – annual, daily, hourly, and minute intervals. One of the initial models for estimating 
load profiles of hot water demand was developed in 2001 by Jordan et al.46 for a period of one year for temporal 
resolutions of 1 min, 6 min, and 1 hour. However, this work does not consider historical nor factual flow rates to 
determine how much hot water (gallons/day) is used by a household. A follow-up paper was developed for syn-
thesizing water demand profiles for Switzerland47 by calibrating this model using field data. A model to simulate 
yearly DHW event schedule for a single-family household was developed by Hendron et al.48 from the National 
Renewable Energy Laboratory (NREL) in 2010. The simulator used two surveys that collected information about 
water demand in U.S. households for five categories: sink, bath, shower, clothes washer, and dishwasher. This 
model has been widely accepted in the literature. One recent example of the adaptation of Hendron’s model is 
for simulating hot water demand in Canadian households49. The model is calibrated for survey data collected for 
Canada and appropriate adjustments are made with respect to Canadian lifestyles.

For our model, we use the distributions of duration and flow rates of activities involving hot water usage such 
as bath/shower, clothes washer, and dishwasher from Hendron et al. Note that duration and flow rates can take 
negative values (Table 4). The flow rate is capped to 0.05gpm and the duration is capped to 1 minute for any neg-
ative value48. Table 4 characterizes the average count of daily events, duration, and flow rates. The values of hot 
water temperature for different uses and the cold water inlet temperature are obtained from studies conducted 
by NREL in different regions of U.S50–52. An engineering based approach is used to estimate hot water usage44,50 
in household i for event v at time t

η
=

× Δ
× .

= × Δ = − .

E
G T

G T T T

0 00189, where

duration flow_rate , and (3)

v
v i t

v i t v v m z v

hot , ,
hot
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hot

,
cold hot

The gallons of hot water Gv i t, ,
hot  consumed by event v is computed as a product of flow_rate (gpm) and duration 

(minutes). Both these characteristics are drawn from distributions in Table 4. Ev
hot is the energy consumed by the 

event v to heat Gv
hot gallons of water. Last four entries in the Table 3 shows summation of multiple events occur-

ring across the time horizon. Here η is the efficiency of the electric water heaters. Surveys conducted by NREL 
have shown that η is a complex function of storage capacity of water heater, type of water heater, age of water 
heater. No distributions are available for η in the current studies. Field data collected from NREL surveys50–52 
show that the efficiency varies anywhere between 80%–99%. Here 0.00189 �( )kWh

gal F
 is a conversion constant 

obtained from Subbiah et al.44, and ΔT is the temperature difference (°F) between mains (inlet) water tempera-
ture Tm z,

cold for a given month m in a climate zone z and the water temperature required for a particular end-point. 
The values for Tm z,

cold and Tv
hot are obtained from NREL surveys50,51. Whenever the activity model detects the 

presence of an event v, we calculate the energy used by hot-water for the event using Eq. 3. Note that we compute 
hot water energy usage only for synthetic households having electric water heaters.

Lighting Elight. Lighting accounts for 5–10%39 of the consumption with lighting usage in residential setting 
mainly characterized by outdoor lighting conditions and occupancy schedules in households53. A Markov-chain 
approach is adopted by Widen et al.54 for modeling lighting demand in Swedish households using time use data 
in Sweden. A stochastic model is developed for residential lighting estimation for the city of Cordova in Spain by 
Palacios-Garcia55 based on a model developed by Stokes et al.56 using measured lighting data for 100 UK homes. 
Another stochastic model is developed by Richardson et al.57 for UK households using time-use data and lighting 
data from the Energy Information Administration(EIA).

We build a stochastic model for lighting demand in U.S. dwellings by building on design concepts from work 
done by Richardson et al.57, Stokes et al.56, and Paatero & Lund et al.58. Richardson’s model is particularly inter-
esting since it supports important characteristics of light usage such as ‘co-use’ and ‘relative weights’. The model 
uses the concept of ‘co-use’ of lighting, i.e., lighting in a dwelling is often shared by household members in the 
same space of the dwelling at the same time. The model also considers that all lighting units are not used at the 
same frequency (e.g. frequently occupied rooms such as kitchen space and living area will use more lighting than 
other rooms) and employs a weighting scheme to indicate relative usage.

Outdoor lighting conditions are modeled using irradiance time series. It is obtained from NSRDB described 
in Table 2. Hourly irradiance data is collected using the NSRDB API for the 365 days of the year 2014 at census 
tract resolution for the U.S. Thus, all synthetic households in a census tract use the same irradiance time series 
for a given day. The household level hourly occupancy profile …O O O, , ,i i i,0 ,1 ,23⟨ ⟩  is developed by examining 

Event v Range of Tv
hot (F) Flow rate (gpm) μ, σ, distribution Duration (minutes) μ, σ, distribution

Shower [105, 116] 2.25, 0.68, Normal 7.81, 3.52, Normal

Bath [105, 116] 4.40, 1.17, Normal 5.65, 2.09, Normal

Dishwasher [120, 140] 1.39, 0.20, Normal 1.53, 0.41, LogNormal

Clothes washer [60, 130] 2.20, 0.62, Normal 3.05, 1.62, Normal

Table 4. Hot water model characteristics.
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activities of awake synthetic household members of Hi at home. Presence of awake occupants in the dwelling 
support the decision making of light switch-on event. The distribution of lighting units in households are derived 
from the RECS survey. In general, distribution of lighting units of a Hi is taken from the matching Si. Three types 
of lighting units are considered: incandescent, CFL, and LED. Power ratings of lighting unit categories are taken 
from a study conducted by the Bonneville Power Administration (U.S.) where lighting fixtures were analyzed for 
a sample of 161 Northwest residences59. For a given simulation day, we define an irradiance threshold (Irri) for a 
household Hi. It indicates that occupants may consider switching on lights when outdoor lighting is less than Irri. 
Irri is sampled from a normal distribution57 Normal(60, 10). All notations used in the model are described in 
Table 3. Annual lighting data for the U.S. is summarized for different household sizes from the RECS survey.

Literature shows that lighting usage increases by number of occupants in the household, however, the light-
ing usage does not double for every occupant added in the house. In order to simulate shared lighting usage, the 
concept of effective occupancy57 of a household …O O O, , ,i i t i,0 , ,23

� � �⟨ ⟩  is introduced. Effective occupancy (�Oi t, ) 
is defined as a function of active occupancy (Oi, t). The values for effective occupancy are derived by scaling the 
annual lighting demand by household size such that the effective occupancy of a dwelling with one active occu-
pant is one. The next step is to obtain the details of lighting units in a household. The proportion of lighting unit 
types are obtained from a RECS household Sl that matches Hi (RECS Model). Power ratings are attached to each 
lighting unit. In general, not all lighting units are used at the same frequency. This is observed in literature sur-
veys such as DECADE report60. The frequency of usage of lighting units in households can be roughly modeled 
as a natural log curve57, however, no formal methods have been presented in the literature due to lack of quanti-
tative data. We use the natural log curve presented in Richardson et al.57 to model the relative usage of a lighting 
unit. Once weights are assigned to lighting units, the probability of a switch-on event for every lighting unit is 
calculated at a regular time interval (in our case 1 hour). The probability of a switch-on event Pb

on of lighting unit 
b at hour t is calculated as

�



P b O

b t

, where

1 irradiance threshold conditionis True for bulb at time if Irr Irr ,
0 otherwise (4)

b b i t

b
t

on weight
,

i
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Here bweight is sampled from a natural logarithmic curve, γ is a calibration constant used to achieve the appro-
priate annual lighting consumption for the U.S., and �Oi t,  is the effective occupancy of Hi at time t. If a switch-on 
event occurs, then energy consumption is calculated for the respective lighting unit b. The lighting duration is 
picked randomly from the distribution described in Stokes et al.56.

refrigeration Erefr. The energy consumed by a refrigerator depends upon its size, age, ambient temperature, 
and several other factors as described in literature. They consume 3%–5% of the total residential energy usage. 
Shimoda et al.42 show that the daily refrigerator consumption is affected by outside temperature, while Tsuji et al.43 
show a linear relationship between outside temperature and annual refrigerator demand. Both these work are done 
in context of refrigerators in Japan. The Lawrence Berkeley National Laboratory in California uses field metered 
energy use data from ~1500 refrigerators and freezers to develop a model that predicts annual usage of different 
freezer and refrigerator categories61. All of the above models collected relevant data from the field or utilized 
detailed surveys on refrigeration.

Our approach is to develop a regression model for predicting daily refrigerator usage (kWh/day) of a house-
hold (Ei

refr) as a function of outside environment temperature. The model is trained with the metered refrigerator 
usage data from Pecan Street Inc, where 30% of the total metered data is used for training and testing the model. 
The 30% data is obtained by conducting stratified sampling based on climate zones and daily average temperature 
bins. The dependent variable is the daily refrigerator usage Ei

refr in kWh/day for Hi. The independent variables are 
daily average temperature �T

out
 (°F) and categorical attributes indicating three major climate zones. The 24 hour 

load profile of a refrigerator ⟨ ⟩…E E E, , ,i i i,0
refr

,1
refr

,23
refr  is constructed from the daily usage, and the variation in the 

hourly usage of the refrigerator is modeled using a Guassian distribution. The refrigerator operates in an auto-
mated/standby mode, that is, occupant presence does not influence the energy consumption of this activity43,44. 
Thus, computing the 24 hour profile of the refrigerator by adding a small Gaussian noise to the hourly load can be 
considered acceptable. The validation section shows that addition of this noise creates good match to real data.

Activity model Eappliances. The energy consumption in a households that is attributed to appliance usage and 
plug load is 20%–26%. This energy is a result of the occupants’ desires to perform activities such as taking baths, 
making hot meals, using the dishwasher, doing laundry, charging electronics such as TVs and computers, or using 
any other appliances that consume electricity. Equation 1b,c are used in this model. Based on the aforementioned 
end-uses, appliance usage behavior is characterized by43 through operational mode of appliances, duration of 
operation, power consumption, limit on daily event occurrence, and saturation rate. Operational mode of appli-
ances describes the functioning appliances and related behavior that can be categorized into three types: auto-
matic (appliance use is independent of person), semi-automatic (appliance turned on by household member but 
turned off automatically), and manual (appliance turned off and on manually). The saturation rate can be used to 
determine the presence and/or penetration of certain appliances in households. Generally, the operational mode 
of appliances and saturation rate are deterministic in nature. However, parameters such as probability of activity 
occurrence, start time, duration, power consumption, and maximum occurrences vary from household to house-
hold and day to day. In general, some appliance usages can overlap and/or occur in parallel.
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Table 6 outlines all the modeled activities and related appliances, their modes of operation, maximum 
allowed daily occurrences, activity duration, and power consumption. The distributions marked with an aster-
isk (*) denote that they are modeled by engineering judgement and/or other sources such as Energy Calculator 
(energyusecalculator.com). Power rating distributions for dishwashers are obtained from a survey conducted by 
NIST62,63. Power ratings and duration distributions for laundry appliances are derived from literature27,44 and 
surveys63; power ratings for appliances in cook activity include electric ovens, microwaves, and electric cooktops 
(small- and large burners.) Power rating distributions for these appliances are derived from the NIST efficiency 
study64, and durations of appliance usage are obtained from ATUS data, where the maximum limit for cooking 
activities is capped to three. Sample power ratings for TVs are observed from EnergyStar reports65 and modeled 
using a normal distribution. The tv activity duration is modeled as a log-normal distribution after examin-
ing the ATUS survey data. Power ratings for computer use activity are derived from a small study conducted 
by EnergyStar66. Standard values for charging duration are used from reputed laptop manufacturers. Vacuum 
related data are obtained from EnergyStar vacuum report and a survey conducted by Electrolux covering 28,000 
consumers from 23 countries including U.S.67,68. We assume that all households have vacuum cleaners. The 
usage frequency of vacuuming is 1–5 times per week68 and the maximum number of daily occurrences is 1. 
Assuming Normal distribution for power ratings and duration of appliance usage is reasonable after examining 
rudimentary results from surveys/reports. The results of the hot water usage study conducted by NREL48,52 as 
summarized in Table 4 show that most of the processes can be modeled as a Normal distribution.

The activity model simulates appliance usage based on activity indicators provided by ATUS when the occu-
pant is present in the house. Considering the presence of appliance in each household (from matching RECS 
household) The time use diaries of adults in the synthetic population and frequency of occurrence of appliance 
usage such as dishwasher and laundry, and activities such as cooking are taken from RECS household. The activ-
ity model focuses on activities performed by an individual when at home. Similar to lighting, activities such as 
cooking, vacuuming, and leisure activities such as watching TV are shared by household members. A procedure 
is outlined below for generating household level activity sequence ActSeqi. Let M be the number of adult mem-
bers in the synthetic household. Then each household member Pi, j has an activity sequence ActSeqi, j. The goal 
is to find one household level activity sequence ActSeqi composed of n activities (individual + shared appliance 
usage related activities) such that the sequence satisfies following constraints:

 1. Each activity is performed when at least one occupant is home.
 2. The limit on repeated usage is respected for each activity type.
 3. Presence of appliance is considered for activities such as dishwasher, and laundry appliances.

Once the above constraints are satisfied, a start time is randomly selected for each activity from the activity 
duration reported by ATUS. The actual duration and power ratings for appliances used in different activities is 
chosen from Table 6. Table 5 provides an overview of all the energy (end-use) models in the framework.

End-use Relevant models Our approach

HVAC Muratori et.al.41, Subbiah et.al.44, 
Thorve et.al.27, Tsuji et.al.43

Our model is based on the approach adopted in Subbiah et.al.44 and Thorve et.al.27. These 
models were specific to Virginia state. The method employed in these works as well as ours 
is a physics model. This model is also documented in NREL Technical Reports. Additional 
details about thermostat settings, building characteristics such as insulation are obtained 
from RECS survey, EIA website, and NREL Technical Reports.

DHW Maguire et.al.50, Hendron et.al.48, 
Thorve et.al.27

Hendron et.al.48 and Maguire et.al.50 present a general stochastic method to reproduce 
sample hot water draws based on two water usage surveys conducted in the U.S. The 
analyses concludes by reporting distributions related to hot water usage events such 
as showering, using dishwasher, and using clothes washer. Some of these results are 
summarized in Table 4 and used in our model. Hot and cold water temperatures for 
specific end-uses are obtained from NREL surveys. The above model does not consider 
the setting of specific household schedules. This context of household occupancy and 
occurrence of events is added to an existing model in literature presented in Thorve et.al.27 
in order to schedule these hot water usage events.

light Richardson et.al.57, Stokes et.al.56, 
Paatero & Lund et.al.58

We mainly improve upon the stochastic lighting model developed for U.K. household by 
Richardson et.al. by adding context of U.S. households such as household size, household 
occupancy, annual lighting consumption in the U.S. for different household sizes, 
calibration of γ for U.S. households, and proportion of light bulbs in the U.S. households 
and their power ratings. The probability of switch-on event is modeled from Paatero & 
Lund et.al.58 and Richardson et.al.57. Duration of switch-on event is taken from Stokes et.al.56.  
Power ratings for different categories of lighting units in U.S. is obtained from a study 
conducted by Bonneville Power Administration59. Proportion of lighting units in U.S. 
households and annual lighting consumption by household size is derived from RECS 
survey. Irradiance data for the U.S. is obtained from NREL.

refr — A linear regression model is developed to predict daily refrigerator usage for a household 
based on outside temperature and climate zones.

misc, act Subbiah et.al.44, Thorve et.al.27, 
Tsuji et.al.43

All the three referenced models have inspired the design of activity models involving use 
of appliances. The actual activity occurrence is obtained from the individual/household 
occupancy schedule. Duration and power usage distributions of appliances is modeled 
from NIST datasets62–64 and other datasets65–68. The start time is chosen randomly within 
the duration reported by ATUS individuals and the power ratings and duration of the 
activity/appliance is selected from the above mentioned distributions.

Table 5. Summary of referenced end-use modeling methods, including how these models are extended in this 
paper.
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Data Records
The dataset for the entire year of 2014 for U.S. households is publicly available for download from the net.sci-
ence repository through University of Virginia Dataverse69. The dataset is available in the form of csv files. It is 
organized in folders according to date and state. Figure 4 shows the hierarchy of data organization and file name 
templates. Each file corresponds to a U.S. county identifier and date. A county identifier is a FIPS code. FIPS 
codes are numbers which uniquely identify geographic areas by the U.S. census. A record in the file corresponds 
to a synthetic household. The record includes synthetic household metadata and energy data for that particular 
date. Attributes of the data record are shown in Fig. 5. All energy related data is in kWh. All the energy data is 
timestamped by local timezones in the country. A data header codebook is also included in the downloads. Note 
that, this work was reviewed by the University of Virginia’s Institutional Review Board (IRB) and was deter-
mined to be exempt from board IRB approval, as this research project did not involve human subject research.

Activity Appliance Mode
Max 
occ. Duration (minutes) Power (W)

Hot 
Water

dwasher dishwasher Semi-automatic 2 Normal (90, 30)* Normal (900, 100) Yes

cwasher clothes washer Semi-automatic 2 Normal (45, 20)* Normal (400, 50)* Yes

cdryer clothes dryer Semi-automatic 2 Normal (45, 20)* Normal (2500, 200)* No

cook oven microwave cooktop 
(large) cooktop (small) Manual/Semi-automatic 3 LogNormal (3, 0.96)

Normal (1426, 13.3) Normal 
(880, 14) Normal (213, 1.2) 
Normal (393, 3.1)

No

tv television Manual — LogNormal (4.24, 0.79) Normal (120, 20)* No

computer desktop notebooks Manual — Normal (90, 30)* Normal (191.5, 32.7) 
Normal (60.5, 20.5) No

cleaning vacuum Manual 1 Normal (30, 15) Normal (1200, 300) No

Table 6. Modeled activity and appliance usage behaviors.

Fig. 4 Data organization. Dataset is available in the form of csv files. The files are organized by dates (temporal) and 
states (spatial). The blue text indicates the type (e.g. folder, file, record). The text within angular brackets denotes 
nomenclature templates of folders and files. A record csv file contains energy use data and metadata for a synthetic 
household in the SPEW population. There will be one file per county and date. One day generates several GBs of data.

Fig. 5 Data Attributes. 24-hour dis-aggregated hourly household energy demand profiles are made available. 
1–24 indicates the hour starting midnight. Eight end-use profiles are described (lines 3–10).
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Technical Validation
Three studies are presented for validating the synthetic energy profiles. The first study quantifies the similarity 
between the real and synthetic energy use probability distributions using Jensen-Shannon and Hellinger dis-
tance. Comparisons are performed by end-use for real and synthetic data in all representative locations of the 
U.S. Strong similarities are observed for appliance use distributions between real and synthetic data as well as 
across spatial locations. TCL loads show differences in distributions across locations. The second study examines 
variations in the 24-hour energy use timeseries in real and synthetic data in all representative locations in the 
U.S. We uncover unique energy use patterns in the real and synthetic datasets and study similarities in patterns 
using unsupervised learning. We introduce two metrics in the process – coverage and closeness. The synthetic 
data has patterns similar to that of real data. The last study is focused on observing trends in the synthetic energy 
use in different representative locations in the U.S. We notice that the synthetic data is able to incorporate the 
effects of mixture of variables such as weather, irradiance, building attributes and demographic characteris-
tics on household level energy usage. The study is a quick demonstration of energy use variability at multiple 
spatio-temporal levels in different end-uses.

The remaining V&V section is outlined as follows. First, we describe challenges in validating a large synthetic 
dataset for energy use. Then, we highlight the temporal and spatial resolutions of the data that are considered 
in the validation experiments. Next, ground truth datasets (real/recorded/actual data) used for evaluation are 
briefly described. This is followed by description of the experimental setup and results.

Validating the quality of the large-scale synthetic timeseries data for a sizeable region such as the U.S. is 
challenging, owing to the vast extent, diversity, and contrasting climates in the country. One of the challenges 
of validating an energy consumption timeseries at household level is the large variety and variability of the 
load patterns within and between households. In addition to external elements such as weather and building 
characteristics, consumer lifestyles and affordances play a vital role in shaping the demand such as a curve with 
morning peak, or a curve with a small afternoon peak and sharp evening peak. This leads to a big spectrum of 
variations and patterns in energy use. Thus, in-depth comparative analyses of synthetic data to actual data is 
required. However, it is conditioned on the availability of a reasonable amount of representative real data. Here, 
we employ real/recorded data such as load research data, end-use metering data, and smart meter data from 
ten locations in the country that are representative of the U.S. climate zones (Table 7). The availability of public 
smart meter data in the U.S. is limited, which may cause a potential skew towards the selected sample of house-
holds and may not be spatially representative. Thus, framing our understanding of validation in this context is 
important.

We address the quality of the synthetic energy consumption data on two intrinsic qualities of energy use data: 
magnitude (usage over 24 hours) and load shape (pattern of consumption). Magnitude and load shape can be 
examined across the temporal (hour/day/month/year) and spatial (household/census tract/city/county/state/
climate zones) axes. Thus, the verification and validation (V&V) process covers:

•	 Spatial representativeness and resolutions. Due to limited availability of real data, we define spatial representa-
tiveness by choosing atleast one location in each climate zone in the U.S. to carry out validation experiments. 
The major climate zones70 in the contiguous United States are as follows: (i) marine, (ii) hot-dry/mixed-dry, 
(iii) hot-humid, (iv) mixed-humid, and (v) cold/very-cold. Comparisons are then performed at household 
and city/county resolutions.

•	 Temporal representativeness and resolutions. Temporal representativeness is studied by observing similarities 
between real and synthetic hourly demand profiles. Furthermore, daily and seasonal energy usage is studied 
for different locations.

Climate Location Source Year
Sample 
size Area type Resolution

Is open-
source

Is data 
complete?

Is data dis-
aggregated?

Hot-Humid Austin,TX Pecan Street 2018 25 Urban 15-min Yes Yes Yes

Hot-Humid Horry,SC NRECA 2017 56000 Rural Semi-urban Hourly No Yes No

Mixed-Humid Rappaha-
nnock in VA NRECA 2016 100 Rural Hourly No Yes No

Cold Tompkins 
Cayuga in NY Pecan Street 2019 25 Urban 15-min Yes No Yes

Cold Los Alamos in 
NM

Open data Dryad 
repository 2014 1600 Semi-urban Hourly No Yes No

Cold MT NEEA 2019 9 — Hourly Yes No Yes

Cold ID NEEA 2019 19 — Hourly Yes No Yes

Cold Marine OR NEEA 2019 102 — Hourly Yes No Yes

Cold Marine WA NEEA 2019 78 — 15-min Yes No Yes

Hot-Dry/Mixed-Dry San Diego 
in CA Pecan Street

2014 
2015 
2016

25 Urban 15-min Yes No Yes

Table 7. Datasets used for validation.

https://doi.org/10.1038/s41597-022-01914-1


13Scientific Data |           (2023) 10:76  | https://doi.org/10.1038/s41597-022-01914-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

•	 Dis-aggregate energy use. Note that we publish dis-aggregated energy use data at household level. Thus, a finer 
level of evaluation such as an energy use sub-type (e.g. HVAC, cooking, etc,.) is possible at various temporal 
and spatial levels.

All the real datasets used in the V&V process are listed in Table 7. Recorded datasets are obtained from 
Pecan Street Dataport23, Northwest Energy Efficiency Alliance (NEEA)71, National Rural Electric Cooperative 
Association (NRECA). The Los Alamos dataset is obtained from a public data sharing repository Dryad72. 
Unfortunately, we do not have any metadata about households (e.g. household size, dwelling type, etc) in these 
datasets. The datasets only have energy use timeseries.

Three studies are presented to cover temporal, spatial, and dis-aggregate nature of the synthetic time-series:
I. Comparing real and synthetic end-use energy usage (magnitude)

II. Comparing real and synthetic energy use patterns (shape/structure)
III. Observing differences and similarities in synthetic energy use data in spatially representative locations

I. Comparing real and synthetic end-use energy usage (magnitude). In this experiment, distribu-
tions of synthetic and real daily end-use data are compared using statistical metrics. One way of comparing these 
distributions is by measuring distance between the real and synthetic end-use distributions. Many metrics can be 
used to perform this task (e.g., Kullback–Leibler divergence (KL), the Hellinger distance, total variation distance 
(TVD), the Wasserstein metric, the Jensen-Shannon divergence (JS), and the Kolmogorov–Smirnov statistic 
(KS)). Klemenjak et al.26 use JS distance and Hellinger distance as examples to compare distributions of appliance 
energy use between different datasets. A similar method is implemented in this section using the JS distance and 
the Hellinger distance metric. In our case, computing the distances between daily end use distributions allows us 
to perform regional comparisons as well as comparisons between real and synthetic datasets.

The Jensen-Shannon distance is the square root of the Jensen-Shannon divergence73. The range of this metric 
ranges between [0, 1] where 0 implies the distributions are similar. We prefer JS divergence over KL divergence 
since it is a symmetric measure. If P and Q are two probability vectors, then the JS distance JS(P, Q) is given by

=
+

P Q
P M Q M

JS( , )
KL( ) KL( )

2
,

(5)

where M is the pointwise mean of P and Q and KL is the Kullback-Leibler divergence. To supplement our study, 
we use Hellinger distance as a second metric to quantify the similarity between two probability distributions. 
Hellinger distance is also a symmetric measure. Its range of values is [0, 1] with 0 encoding that the distributions 
are similar. The Hellinger distance of two probability vectors P and Q is denoted by H(P, Q) and defined as
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where k is the length of the vectors, and pi, qi are the ith elements of the vectors P and Q, respectively.
Daily end-use energy usage (e.g. Ei

hvac) at household level are compared in the real and synthetic data for 
every location specified in Fig. 6. Vectors P and Q denote values in a single end-use for two datasets. Figure 6a–c 
list JS distances and Fig. 6d–f list Hellinger distances for selected end-uses (HVAC, refrigerator, cooking appli-
ances). Each matrix represents distances between two energy usage distributions for an end-use. The row and 
column headers represent different data-sources and different regions and each cell represents the probability 
distribution similarity/distance value in the form of heatmap where the bar shows the range of the values on a 
continuous scale.

The JS and Hellinger distance tables for end-uses show strong similarities (the distance is close to zero). 
Furthermore, within each matrix three types of comparisons are performed. We compute similarity between 
end-use distributions for different regions within synthetic data, different regions within real data, and different 
regions in different data sources (namely real and synthetic data). For appliance usage (e.g. cooking), the distri-
butions are quite similar across regions and data-sources. This supports findings from Fig. 11 that there exists 
significant similarities between different regions for synthetic daily energy consumption of different appliances. 
For HVAC end-use, it is observed that the distributions grow apart between regions for both – synthetic and real 
data sources. This is particularly true due to the strong association of HVAC with outdoor/environment temper-
ature conditions and the time span for which these temperature conditions prevail (e.g., warmer temperatures 
are observed for a longer time in Texas (TX)).

II. Comparing energy use patterns (load shape/structural similarity). In this section, the synthetic 
energy use timeseries are evaluated using the concepts of diversity, coverage, and closeness. The diversity in 
energy use patterns is captured by segmenting the normalized timeseries ⟨ ⟩…e e, ,0 23  using unsupervised learn-
ing techniques such as clustering. This is followed by studying coverage in terms of what percentage of synthetic 
timeseries population is represented in the real timeseries population and vice versa. Thus, coverage is used to 
measure diversity. However, learning only coverage is not sufficient. It is necessary to measure the accuracy of the 
matches found. Hence, we introduce the closeness metric. It studies how close (e.g. dist(i, j) are the synthetic and 
real data points.
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Let R and S  be the set of load shapes of real and synthetic energy use timeseries. Let RK  be the number of 
unique load shapes (segments/patterns/clusters) found in set R. Then, we define the coverage( )S  as a ratio

coverage

K
b j

( )
Number of unique shapes in that contain atleast one data point from

Number of unique shapes in
1 where

1 if cluster contains atleast one time series
0 otherwise

,
(7)

b
K

b

b

1

S
R S

R

S
R

R 



∑

=

= ×

=





∈
.

=

Fig. 6 Left column: Jensen-Shannon distance matrices, Right column: Hellinger distance matrices. Each of 
the column shows Jensen-Shannon distance and Hellinger distance matrices between end-use probability 
distributions. Each matrix represents distances between two energy usage distributions for a particular enduse 
(e.g. HVAC, refrigerator, cooking). The row and column headers of the matrix represent different data-sources 
and different regions and each cell represents the probability distribution similarity/distance value in the form 
of heatmap, where the bar shows the range of the values on a continuous scale.
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Thus, coverage( )S  reflects the degree to which samples from set S  cover the patterns in set R. Similarly, if KS 
is the number of unique segments in set S , then, Rcoverage( ) reflects the the percentage of unique patterns in set 
S  covered by data points in set R. Coverage is bounded between 0 and 1. Figure 13b shows coverage( )S  and 
coverage( )R  as K varies.

To measure closeness we calculate distance of individual timeseries to it’s respective cluster center/represent-
ative. If KR is the number of clusters in set R, then, the closeness(S , R) of set S  to set R is measured by compar-
ing the distributions of distances of individual timeseries ∈ Ri  and ∈j S  in each cluster ∈c KR to the 
respective center/representative timeseries of the cluster. Figure 13b illustrates the schematic of building the 
distance distributions. Let PR and PS denote the probability vectors of distances of sets R and S  respectively. To 
measure the degree of closeness, we compare the two probability distributions using Hellinger distance 

R SP PH( , ) (Eq. 6). If distributions RP  and RP  are similar, then we say that set S  is close to set R.

S R R S=closeness P P( , ) H( , ) (8)

Closeness is bounded between 0 and 1. 0 implies that the two sets are close. Note that closeness is not a sym-
metric metric i.e. closeness closeness( , ) ( , )S R R S≠ . Figure 13b describes the variation in similarity score of 
the probability with different number of segments K.

Now, we briefly describe the experimental setup. Two cases are considered to examine coverage, closeness 
and robustness of cluster groupings (k). For each case the energy use timeseries is normalized resulting in a load 
shape e e, ,0 23… . We choose normalization by total consumption (Eq. 9) in order to consider pronounced 
effects of peak-load in the profile. Household preferences or lifestyles can be typically captured by one or more 
load shapes74, hence we choose this representation for uncovering patterns in the data. Thus, every ∈i R and 

∈ Sj  are normalized energy use vectors of length 24.

e
e

E
E e, where

(9)
t

t

t
ttotal

total

0

23

∑= =
=

In the first case (Case 1), we generate RK  patterns from set R by clustering the real normalized energy use 
vectors using k-means clustering algorithm with Euclidean distance. This is followed by assigning a cluster label 
k KR∈  to each synthetic energy use timeseries ∈j S . Let ck be the center/representation vector of group k. 
Then, ∈ Sj  is assigned to the cluster whose cluster center distance is minimum from j and is given by 

…
R( )( )min dist j c dist j c( , ), , , K0 . Then, we calculate the coverage of synthetic data Scoverage( ) and closeness 

of synthetic data to real data among all clusters as closeness( , )S R . In Case 2, we generate KS clusters from set S  
(synthetic data) by segmenting the normalized energy use vectors using k-means clustering algorithm with 
Euclidean distance. This is followed by assigning a cluster label ∈k KS to each real energy use timeseries i ∈ R. 
i is assigned to the cluster whose cluster center distance is minimum from i and is given by 

S∀ ∈min dist i c( , )k K k . 
Then, we calculate the coverage of real data in synthetic groups coverage( )R  and closeness of real data and syn-
thetic data among all synthetic clusters as R Scloseness( , ).

Results of both the cases are summarized in Fig. 8. A 100% coverage is observed in both the cases for different 
values of k. Observations for closeness metric are interesting. The Hellinger distance is close to zero in all the 
scenarios, however there is a slight uptake in the value as k increases. We inspect this further in Fig. 7. Figure 7 
shows histograms of distances of real data points and synthetic data points from their assigned cluster center. In 
case 1, the distribution of distances of synthetic data points is slightly broader than the distribution of distances 
of real data points for all k. Thus, we see a distance for closeness( ,R S) in Fig. 8c. As k increases it is observed that 
some individual clusters have a broad and/or bimodal distance distribution indicating that there are data points 
that are very close to the cluster center while a few are far away. This difference is apparent as the number of 
clusters increases.

The goal of this V&V exercise was to verify if the diversity and trends of the real energy use profiles are rep-
licated in the synthetic energy use profiles. Due to a biased and skewed sample of the real energy use data, it is 
challenging to perform validation of synthetic data. Some of the characteristics of the real datasets that hinder 
the implementation of using existing evaluation metrics as is are mentioned below. No supporting information 
of the real households is available (e.g. household size, dwelling type, square footage, indoor thermostat setting). 
We have shown that all of these factors are extremely important in the generation of household demand at a 
given time. Some of households in the real data may also be participants in demand-response programs result-
ing in unique load shapes due to shifting demand/reducing peak demand that may not be found in households 
not participating in DR programs (e.g. synthetic data). The real datasets are collected for different years for each 
region. The data are incomplete for some regions (e.g. San Diego samples do not have lighting data). The sample 
size (number of households) is highly skewed. It varies from 9 households in Montana to 56000 households for 
Horry,SC. Thus, it is important to note that R S< <  (e.g. the number of households simulated in our frame-
work for Washington state is far greater than that of 78 households in real data for Washington state.) All of these 
observations are summarized in Table 7.

III. observing differences and similarities in synthetic energy use data in spatially repre-
sentative locations. This empirical study uses only the synthetic data to conduct a comparative regional 
analyses to examine similarities and dissimilarities between energy use for different end-uses. We observe the 
spatio-temporal patterns and variations in different end-uses with respect to environmental elements such as 
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irradiance and temperature as well as demographic and structural characteristics of the households. The selected 
target locations are spatially representative of different climate zones of the U.S.:

Arlington, VA; Cook County, IL; Houston County, TX; Maricopa County, AZ; King County, WA

Fig. 7 Example of closeness in different cases with varying k. Figures show the distances of data points from sets 
R and S  to their respective cluster center. (a) demonstrates histograms of distances for different k. The plot on 
left is for real data points and on right is for synthetic data points. Then, we calculate closeness( , )R S  using 
Hellinger distance (corresponds blue line in Fig. 8c). For k = 5 a bimodal pattern is observed in distances for 
synthetic data points which tends to diminish as the number of clusters k increases. Figure b shows histograms 
of distances for different k for case 2. The plot on left is for synthetic data points and on right is for real data 
points. S Rcloseness( , ) is calculated using Hellinger distance (corresponds to orange line in Fig. 8c).

Fig. 8 Summary of the two case scenarios. Orange color is denoted for findings of case 1 where we cluster real 
data set R and assign a cluster label to synthetic data set S . Blue color is denoted for findings of case 1 where we 
cluster synthetic data set S  and assign a cluster label to real data set R. (a) illustrates 100% coverage in both 
cases even as k varies. This means that, in each case at least one data point belongs to every cluster for a given k. 
(b) shows the closeness between the two distance vectors: distance of real data points in a cluster to its respective 
centroid and distance of synthetic data points in a cluster to its respective centroid. Closeness is given by the 
Hellinger distance which suggests that a value of 0 signifies that the two distributions are similar. The value of 
distances is close to 0 for all values of k in both the cases. However, an upward trend is observed as k increases. 
Overall we see the robustness of results w.r.t. k.
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The composition of electric consumption by end-uses is shown in the form of pie diagrams in Fig. 9. EIA 
reports the shares of the major end-uses as follows: DHW 17–32%, lighting 5–10%, refrigerator 3–5%, activities/
appliances 20–26%, space heating 25–47%, and air conditioning 5–10%. In general, the percentages of major 
end-use categories lie in the ranges similar to those reported by EIA. HVAC has a dominant share in the energy 
consumption in households as compared to usage of appliances and/or other activities.

Seasonal energy use variations for HVAC, refrigerator, and hot water is captured in Fig. 10. The plot shows 
variation in daily average energy use of the four end-uses on a monthly basis alongwith temperature across the 
year 2014. Refrigerator energy use increases slightly with temperature while energy used to heat water decreases 
with increase in temperature.

Electricity usage for heating water is the lowest during summer months for all locations (Fig. 10c). In particu-
lar, regions from hot-humid and hot-dry climate zones consume the least amount of energy. This observation 
stems from the relation between Eh2o,v and Tm z,

cold described in Eq. 3. The water inlet temperature (Tm z,
cold) differs 

across temporal as well as spatial scale and is dependent on outside environment temperatures50 (Details in 
Appendix). Figure 13 shows plots describing relation between household size and the number of gallons of hot 
water consumed and energy required to heat water. Note that, we consider only electric water heaters in this 
work.

Figure 10a shows that the HVAC consumption varies significantly throughout the year. HVAC use is higher 
in hot-dry areas in summer as compared to other regions possibly due to higher temperatures. Structural char-
acteristics such as dwelling size (square footage), insulation quality, age and efficiency of HVAC equipment also 
affect household HVAC consumption. Another important variable that drives HVAC consumption is indoor 
thermostat behavior which is related to household occupants’ behavior/actions. In this work, indoor thermostat 
temperatures are set constant throughout the day. Insulation quality is not monitored in households (due to lack 
of data). We assume that the dwelling is well-insulated and the insulation values are implemented according to 
the DOE standards for the respective climate zones. In Fig. 12a we show effect of square footage (conditioned 
space) of a dwelling on hvac energy use. In general, we observe that as the conditioned space in the dwelling 
increases, the HVAC consumption increases.

Lighting energy-use varies by seasons in all regions as irradiance levels change with weather events and sea-
sons. Figure 14b shows average irradiance time series for the target locations. The corresponding lighting usage 
is shown in Fig. 14a. As an example, we look at monthly irrandiance profiles across 24 hours in Virginia for the 
year 2014 (Fig. 14d). The corresponding monthly lighting energy use time series is shown in Fig. 14c. Example 
of lighting consumption w.r.t. household size is explored in Fig. 12b.

Fig. 9 Composition of synthetic electric consumption in the representative target locations. Heating and 
cooling constitute the majority part of the residential electric consumption. Refrigerators consume slightly 
higher energy in hotter regions such as Maricopa and Houston. Activities such as dishwashing, laundry, 
and cooking represents between 8–17% for different regions. Lighting and water heating have a consistent 
proportion of consumption across all locations. The proportions bear similarities with data published by EIA.

Fig. 10 Monthly synthetic energy use changes in end-uses such as HVAC, refrigerator, domestic hot water 
w.r.t. temperature. The above line charts monthly energy use changes in end-uses such as HVAC, refrigerator, 
domestic hot water w.r.t. outside temperature. The line chart shows average daily consumption over all 
households in the target regions. The scatter plot in the background describes average daily consumption for an 
end-use for sampled days color coded by location. The size of the markers denotes the standard deviation of the 
end-use consumption. Legend: Arlington, VA (green); Cook County, IL (blue); Houston County, TX (yellow); 
Maricopa County, AZ (brown); King County, WA (cyan).
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Figure 11 shows the breakdown of appliance usage for different appliances and electronic devices. Both fig-
ures show a line chart indicating average daily consumption for the month. The scatter plot in the background 
describes average daily consumption for an end-use for sampled days color coded by location, where the size 
of the markers denotes the standard deviation of the end-use consumption. It is observed that appliance usage 
in activities such as cooking, dishwashing, performing laundry, watching TV, using computer, and cleaning are 
fairly similar in different regions. The above comment is intuitively true since appliance use duration and their 
ratings may not vary across regions. However, the occurrence timing throughout the day may vary from house 
to house depending upon occupant schedules irrespective of which geographic regions they belong to.

Usage Notes
In order to analyze the dataset, researchers can use any programming languages such as Python, Java, Matlab, 
or R. As described in the ‘Data Records’ section, the files are stored in csv format, so most of the file reading 
functions in the above languages can support reading/accessing the dataset. Next, we discuss the potential appli-
cations of the released synthetic data. We also highlight important challenges and limitations of this work.

Applicability and benefits of the dataset. We are releasing a comprehensive household level dataset 
for energy use. In addition to the household level disaggregated energy use data, household composition is also 
included from census data. This work was reviewed by the University of Virginia’s Institutional Review Board 
(IRB) and was determined to be exempt from board IRB approval, as this research project did not involve human 

Fig. 11 Synthetic appliance energy use variation in target locations throughout the year. The line charts show 
variation in daily energy consumption for different appliance energy use throughout the year averaged by 
month. The lines depict average daily consumption over all households in the target region. The scatter plot in 
the background describes average daily consumption for an end-use for sampled days color coded by location. 
The size of the markers denotes the standard deviation of the end-use consumption. There are noticeable 
similarities in appliance-usage throughout all locations indicating that people in different parts of the country 
use appliances in a similar style. This is a reasonable observation since day-to-day activities such as cooking 
and cleaning will occur in all households. Their usage pattern may change during the day, but the total energy 
consumed by the appliance at the end of the day is similar. Arlington, VA (green); Cook County, IL (blue); 
Houston County, TX (yellow); Maricopa County, AZ (brown); King County, WA (cyan).

Fig. 12 (a) Synthetic HVAC use and house area (i.e. floor area). Boxplot comparing daily HVAC consumption in 
a winter day for the selected target locations by house area (i.e. floor area). The x-axis groups floor area of houses 
in five bins denoted in two units sq. ft (ft2) and sq m (m2). The bins are as follows: ≤1000 ft2, 1000 - 1500 ft2, 1500 
- 2000 ft2, 2000 - 3000 ft2, ≥3000 ft2. It is observed that as floor area of the house increases HVAC consumption 
increases in all regions. Winter temperatures are relatively moderate in AZ and TX, thus, the HVAC consumption 
is less as compared to other regions. (b) Synthetic lighting use and household size. Lighting consumption 
increases as household size increases. Household size indicates number of members in a household.
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subject research. The dataset can be effectively employed in various applications such as NILM (non-intrusive 
load monitoring), load profile analyses for observing similarities/differences between end use consumption of 
different regions and seasons, evaluating effects of retrofits in buildings, studying effects of temperature rise in dif-
ferent regions, and so on. In addition, this data can also be used for energy model calibration, occupant behavior 
evaluation, implementing demand response strategies and policy interventions. The dataset can be especially lev-
eraged in training deep learning models where massive amount data is appreciated. Such models can be used for 
real-time residential demand forecasting. The dataset released are essentially time-series along with categorical 
and numerical attributes. Thus, any statistical tool or programming language can be used to analyze them. Study 
III in the ‘Technical Validation’ study illustrates examples of the possible uses of the dataset.

Challenges and limitations. The use of synthetic residential energy demand data has its pros and cons. 
National scale hourly synthetic data can be used to carry out national and even potentially international policy 
analysis. The spatio-temporal variability allows one to access important emerging questions related to energy 
equity, fairness and accessibility at a fine scale. A systems level approach can be taken to vexing questions outlined 
in the 2030 Intergovernmental Panel on Climate Change (IPCC) goals. On the other hand, synthetic data sets 
have their limitations as well. For instance, the fine-scale variability (minutes level as well as weekly variation) of 
usage amongst households cannot be captured easily in such synthetic data sets. Additionally, the behavior exhib-
ited by any single synthetic family might be biased by the data used for synthesis. Thus, any insight generated 
from high resolution analyses should be considered carefully.

Fig. 13 Synthetic hot water usage and energy vs. synthetic household size. Household size indicates number of 
household members. The clustered bar charts show the amount of hot water consumed (in gallons in (a)) and 
corresponding energy usage in (b) according to household size in a winter day. The vertical black line on each 
bar shows the variation. Water usage and its variation increases with household size. The amount of energy for 
hot water end-use increases with household size and differs by region.

Fig. 14 Heatmap depicting relation between hourly synthetic lighting usage and hourly irradiance. (a) shows 
average annual 24-hour lighting profiles of representative target locations. (b) shows average annual 24-
hour irradiance profile of representative target locations. (c) and (d) present the variation in lighting usage 
and corresponding irradiance profiles at monthly level for Arlington, VA. (c) presents lighting consumption 
variation throughout the day in different months across the year. (d) shows variation in monthly irradiance 
profile. The units of measurements for energy usage is kWh and irradiance is Watts/m2. The lighting energy 
use is inversely proportional to the irradiance. The energy usage is higher in evening and night hours when 
the occupant is active in the dwelling. The average lighting and irradiance profiles show regional differences in 
irradiance availability and subsequent lighting energy usage. The VA profiles show that the day light is available 
for longer durations leading to lower lighting energy consumption as compared to winter.
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An important challenge in developing the realistic synthetic residential load profiles at a national scale and 
at a high spatio-temporal resolution is to find appropriate datasets for representing different types of climates, 
demographics, appliances, and activity patterns. Accessibility and availability of all the above information from 
legitimate sources is crucial to maintain trustworthiness in the resulting models. A robust and extensible infra-
structure is developed to synthesize diverse data sources into detailed information structure at various spatial 
resolutions (e.g. combining household level data with climate zone related data such as insulation values). The 
infrastructure consists of methods to compose multiple models and data sets. The overall time to generate the 
synthetic data was reduced by using high performance computing capabilities.

Some of the limitations of our work are discussed. The current synthetic data does not include power con-
sumption by electric vehicles and energy generation via renewable generation (e.g. solar panel, wind). The ATUS 
data is available for a normative day for individuals. Thus, activity and appliance related demands are generated 
for a normative day with minor variations coming from the activity model. Hence, our synthetic data might not 
be able to capture daily activity variation appropriately (e.g. as observed in real-time smart metering). This can 
be challenging to work with especially when studying demand response scenarios. The building envelop con-
sidered for a synthetic household is simplified due to lack of information needed to represent a large population 
group, thus limiting our ability to employ state-of-the-art and sophisticated building modeling techniques. (e.g. 
we use a simple HVAC physics based model to generate heating and cooling related energy demand).

Concluding remarks. The paper describes a bottom up approach to generate large-scale digital twin data of 
dis-aggregated residential energy use hourly timeseries for the residential sector at household resolution across 
the contiguous United States for millions of households. The approach integrates diverse open-source surveys 
and datasets, where the end-use models are developed by either extending well-established methods or by build-
ing new models. Extensive validation of the synthetic datasets is conducted using real/recorded energy-use data 
across spatial and temporal resolutions.

Code availability
Programming languages such as Python 3 and Java 8 are used for modeling, analyzing, and developing the 
framework. The code is deposited in the repository69 alongwith the dataset.
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