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Image dataset for benchmarking 
automated fish detection and 
classification algorithms
Marco Francescangeli  1 ✉, Simone Marini  2,3 ✉, Enoc Martínez4 ✉, Joaquín Del Río  1 ✉, 
Daniel M. toma1 ✉, Marc Nogueras1 ✉ & Jacopo aguzzi  3,5 ✉

Multiparametric video-cabled marine observatories are becoming strategic to monitor remotely and 
in real-time the marine ecosystem. those platforms can achieve continuous, high-frequency and 
long-lasting image data sets that require automation in order to extract biological time series. the 
OBSEA, located at 4 km from Vilanova i la Geltrú at 20 m depth, was used to produce coastal fish time 
series continuously over the 24-h during 2013–2014. The image content of the photos was extracted 
via tagging, resulting in 69917 fish tags of 30 taxa identified. We also provided a meteorological and 
oceanographic dataset filtered by a quality control procedure to define real-world conditions affecting 
image quality. The tagged fish dataset can be of great importance to develop Artificial Intelligence 
routines for the automated identification and classification of fishes in extensive time-lapse image sets.

Background & Summary
In a context of global climate change and increasing human impact in coastal marine areas, the monitoring of 
changes in fish behaviour and population abundances is becoming strategic to provide data on ecosystem pro-
ductivity, functioning and derived services (e.g., the status of already overexploited stocks)1–3. For this reason, 
monitoring the temporal dynamics of fish communities is of pivotal importance to distinguish the variability in 
species composition, due to diel and seasonal activity rhythms, from more long-lasting trends of change4,5. The 
temporal trend of fish presence and abundance, obtained from the analysis of imagery data, is produced by the 
rhythmic migration of populations into the marine 3D space seabed and water column scenario6–8. The informa-
tion derived from such dynamics coupled with environmental (oceanographic and meteorological) data provide 
useful information regarding species ecological niche9–11, and allow understanding and forecasting the impact of 
anthropic activities (e.g., commercial fishing, urban and port expansion) and the consequent mitigation actions 
(e.g., establishment of marine protected areas)7,12,13.

Cabled video-observatory monitoring technology is considered as the core of growing in situ and robotized marine 
ecological laboratories in coastal and deep-sea areas14,15. International initiatives about marine observatories infra-
structures, like for example the European Multidisciplinary Seafloor and water column Observatory (EMSO-ERIC), 
the Joint European Research Infrastructure of Coastal Observatories (JERICO-RI), or the Ocean Network Canada 
(ONC) are becoming widespread all over the world16, and increasingly install multiparametric sensors that, beside the 
imaging depicting biological information, also acquire oceanographic and geo-chemical data13,17.

Unlike other types of data, the scientific content of videos and images is not immediately usable. To overcome 
this problem, the image content is often inspected by trained operators in order to manually extract relevant 
biological information, such as the number of individuals and the corresponding classification into species18–20. 
This manual process requires a considerable human effort, and it is really time demanding. For this reason, 
automated image analysis methodologies for the extraction and coding of the image content need to be urgently 
defined and developed in order to transform imaging devices into actual biological tools for the underwater 
observing systems21,22.
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This article describes a dataset of underwater images suitable for studying, developing and testing meth-
odologies for automated image analysis. The images were acquired at the seafloor cabled multiparametric 
video-platform “Observatory of the Sea” (OBSEA; www.obsea.es), located in a fishing protected area, 20 m 
depth, 4 km off the Vilanova i la Geltrú coast, near Barcelona (Spain)23,24. The image dataset consists of 33805 
images containing 69917 manually tagged fish specimens, acquired every 30 minutes over day and night, dur-
ing two consecutive years (i.e., from 1st January 2013 to 31st December 2014). The dataset encompasses and 
replicates the most relevant seasonal dynamics of environmental change affecting fish species abundance and 
assemblage at the study site25. In fact, coastal fish physiology and behaviour are highly responsive to changes in 
photo-period (i.e., light intensity and photophase duration)26, nutrients and pollutants27,28 and oceanographic 
regimes (i.e., currents, temperature, and salinity)29–31. Thus, OBSEA monitoring area represents a real-world 
operational context common to many other temperate coastal underwater observing systems.

Together with the image dataset, we also provided oceanographic and meteorological time series, whose 
readings have been averaged and recorded synchronously with time-lapse images. Those data are for water 
temperature, change in depth, salinity, air temperature, wind speed and direction, solar irradiance and water 
precipitation. We added those environmental time series as contemporarily acquired, in order to provide a 
quality aspect to the real-time world context of image acquisition, to be used as metrics for image processing 
efficiency32. Moreover, the use of those data has been of relevance to provide hints in cause-effect studies linking 
fish presence and behaviour upon changing environmental conditions, being already successfully exploited for 
automated fish recognition32, and for studying the temporal modulation of the species niches33,34.

The manually tagged fish individuals for each image make the dataset a valuable benchmark for the multi-
disciplinary marine science community consisting of biologists, oceanographers, and a growing community of 
computer scientists and mathematicians skilled in Artificial Intelligence and data science. Methodological com-
parison could be not only specifically conceived for fish detection and classification, such as Fish4Knowledge35, 
but also for the emerging approaches for active and incremental learning36–38, or for techniques aimed at mitigat-
ing the “Concept Drift” phenomenon, when the classification performance drop for varying species assemblages 
at changing environmental conditions and training need to be updated39–42.

Finally, the reported dataset of labelled images is worthwhile for global image repositories that aim to reduce 
annotation effort, such as Fathomnet43, and, thanks to the tags and the bounding boxes associated to each indi-
vidual, it can be easily split into training, validation, and test subsets (e.g., K-fold Cross-validation) in order to fit 
the needs of the specific image analysis algorithm used on the image dataset32,42,44–47.

Methods
OBSEA video-image underwater platform and routine. The OBSEA seafloor cabled observatory was 
deployed in 2009 within a Natura 2000 marine reserve, named “Colls i Miralpeix”, at 20 m depth and at 4 km 
off Vilanova i la Gertrú harbour (i.e., the Catalan coast of the NW Mediterranean, Spain: 41°10′54.87″N and 
1°45′8.43″E) (Fig. 1). The cable observatory is located on a mixed sand and seagrass meadows (Posidonia oce-
anica) bed, being surrounded by artificial concrete reefs, deployed to protect the area from illegal trawling23,24.

The OBSEA node structure has a size in terms of width, height, and length of 1x2x1 m, respectively, with an 
overall weight of 5 tons. The observatory is equipped with a camera approximately at 3.5 m distance from one of 

Fig. 1 Location of the OBSEA video platform in the North-Western (NW) Mediterranean. The figure indicates 
the “Development Centre of Remote Acquisition and Information Processing” (SARTI) and the Sant Pere de 
Ribes Meteorological Station (Sant Pere Met.) positions relative to the Catalan coasts (a), indicating also the 
OBSEA position off the harbour of Vilanova i la Geltrú (b). Power and broadband Ethernet communications are 
provided to OBSEA through an underwater cable from the SARTI building (green and red tracks). The OBSEA 
platform is surrounded by three biotopes (c) and focusing on one of them (Biotope 1, c).

https://doi.org/10.1038/s41597-022-01906-1
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these artificial reefs, with a Field of View (FOV) area of about 3 × 3 m, resulting in a 10.5 m3 of imaged volume 
(Fig. 2).

The image monitoring was performed in a 30 min time-lapse mode, by synchronising illumination at night-
time at the moment of shooting. To shoot photos at night, the camera was associated with two illuminators 
located beside the camera at 1 m distance from each other, each one consisting of 13 high-luminosity white 
LEDs. The lights were emitting 2900 lumens, with a colour temperature of 2700 kelvin and an illumination angle 
of 120°. An automated protocol, controlled by a LabView application, switched on-and-off the lights before and 
after the camera shooting, resulting in a 30 s light-on period, to allow the lights to warm up and attain the max-
imum amount of homogeneous illumination.

Two different cameras were used during the monitoring period: an OPT-06 Underwater IP Camera (Sony 
SNC-RZ25N) from 1st January 2013 to 11th December 2014, and an Axis P1346-E Camera thereafter until  
31st December 2014 (Table 1). The selected resolution of images for the first cameras was 640 × 480 pixels, 

Fig. 2 Examples of photos acquired by the different cameras used at the OBSEA. The Sony SNC-RZ25N 
(CAM1) (a,b) and the Axis P1346-E (CAM2) (c,d) cameras’ acquired photos during day and night.

Sony SNC-RZ25N (CAM1) Axis P1346-E (CAM2)

N. of Pixels 3.8 MP 3 MP

Varifocal 4.1–73.8 mm 3.5–10 mm

Pan Angle −170°–170° 72°-27°

Tilt Angle −90° - 30° /

Focal Length-Aperture ratio F1.4 F1.6

Light Sensitivity 0.7 lux 0.5 lux

Day-Night Function Yes Yes

Infrared Filter Yes Yes

Zoom 18x Digital Zoom

Image Sensor 1/4 type CCD Imager CMOS RGB of progressive scan 1/3”

Obturation Speed / 1/35500 - 1/6 sec

Image Size 640 × 480, 480 × 360, 384 × 288, 
320 × 240, 256 × 192, 160 × 120 from 2048 × 1536 to 160 × 90

Table 1. Technical characteristic of the two cameras used for the monitoring at the OBSEA. Technical characteristics 
of the two cameras (i.e., Sony SNC-RZ25N and Axis P1346-E) used between 2013–2014 at the OBSEA platform: 
number of pixels (N. of Pixels), varifocal, pan and tilt angle, focal length-aperture ratio, light sensitivity, presence/
absence of the day-night filter, zoom, image sensor, obturation speed, and size of the saved images.

https://doi.org/10.1038/s41597-022-01906-1
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whereas the second camera image resolution was 2048 × 1536 pixels (Fig. 2). The acquired images have a JPEG 
format for both cameras.

Fish tags and annotation procedure. In order to tag the relevant biological content of the images (i.e., 
fish individuals), a Python code was developed based on the OpenCV framework for Python (https://opencv.
org/)48 (Fig. 3).

The script allowed tracing a line around the biological subjects, calculating afterwards a bounding box (bbox). 
The script and all the instructions of the tagging procedure are available through the Zenodo repository49.

The species classification was performed according to FISHBase50. In those cases where the fish was not fully 
classifiable because too distant or badly positioned within the FOV we classified them as “Unknown fish”. This 
is because these unclassified fishes are important for the estimate of fish biomass (Fig. 3). Some examples deal 
with individuals appearing in the photo like dots. Other examples deal with overlapping fishes, such as when 
they form schools.

oceanographic and meteorological data acquisition and processing. The OBSEA was equipped 
with a CTD probe to measure the water temperature, salinity, and the changes of depth, calculated from shifts in 
water pressure (as proxy for tides). During the period between 2013–2014, two CTD probes were sequentially 
deployed to avoid data gaps during sensor maintenance operations (Table 2). In Table 3 the deployment periods 
of both CTD probes are depicted.

Fig. 3 Flowchart for the tagging procedure. The tagging procedure of the photos were carried out with a 
Python code, at the end of which it releases as output a list of tags in text format and save the images with their 
bounding boxes (rectangles of different colours). Here, we report an example of a processed photo with tagged 
specimens and untagged fishes (green circle).

Range Accuracy Stability Resolution
Time of 
Acquisition

SBE 37-SMP

Conductivity 0–7 S/m 0.0003 S/m 0.0003 S/m per month 0.00001 S/m 10 sec

Temperature −5 °C–35 °C 0.002 °C 0.0002 °C per month 0.0001 °C 10 sec

Pressure 20–7000 m 0.1% of full-scale range 0.05% of full-scale 
range per year

0.002% of full-scale 
range 10 sec

SBE 16plus V2

Conductivity 0–9 S/m 0.0005 S/m 0.0003 S/m per month 0.00005 S/m 10 sec

Temperature −5 °C–35 °C 0.005 °C 0.0002 °C per month 0.0001 °C 10 sec

Pressure 20–7000 m 0.1% of full-scale range 0.1% of full-scale range 
per year

0.002% of full-scale 
range 10 sec

UPC Weather Station 
(Station 1)

Air Temperature −40 °C–65 °C 0.3 °C / 0.1 °C 10 sec

Wind Speed 0–322 km/h 3 km/h / 1 km/h 10 min

Wind Direction 0–360° 3° / 1° 10 min

Sant Pere de Ribes Weather 
Station(Station 2)

Solar Irradiance 0–5000 W/m typ. <3%, 5% 
maximum / 1 W/m2 10 min

Rain 0–20 mm/min 0.1 mm / 0.001 mm 10 min

Table 2. Technical characteristics of the two CTD probes, and of the two meteorological stations. Technical 
characteristic of the two CTD sensors (i.e., SBE16 and SBE37) installed at the OBSEA, the meteorological 
station of the Polytechnic University of Catalonia (UPC) in Vilanova i la Geltrú (i.e., Station 1), and the 
meteorological station of Sant Pere de Ribes (i.e., Station 2) present during the period between 2013–2014.

https://doi.org/10.1038/s41597-022-01906-1
https://opencv.org/
https://opencv.org/
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Sensor Deployment Recovery

SBE 16plus V2 2013-01-09 2013-04-10

SBE 37-SMP 2013-04-10 2013-04-19

SBE 16plus V2 2013-04-19 2013-12-05

SBE 37-SMP 2013-12-05 2014-03-20

SBE 16plus V2 2014-03-20 2014-09-12

SBE 37-SMP 2014-09-12 2014-12-31

Table 3. Deployment periods of the CTD sensors of the OBSEA. Details of the deployment and recovery of the 
CTD probes during the period between 2013–2014.

Flag Value Flag Meaning

1 Good Data

2 QC Not Applied

3 Suspicious Data

4 Bad Data

9 Missing Data

Table 4. Quality control flags’ codes and meanings. Quality control flags values and respective meanings 
applied to the environmental data.

Taxa N %

Diplodus vulgaris 14328 20.49

Diplodus sargus 2727 3.90

Diplodus puntazzo 374 0.53

Diplodus cervinus 415 0.59

Diplodus annularis 1268 1.81

Oblada melanura 6898 9.87

Dentex dentex 615 0.88

Sparus aurata 34 0.05

Sarpa salpa 208 0.30

Boops boops 10 0.01

Spondyliosoma cantharus 1001 1.43

Pagrus pagrus 50 0.07

Pagellus sp. 9 0.01

Spicara maena 1826 2.61

Chromis chromis 2762 3.95

Symphodus tinca 7 0.01

Symphodus mediterraneus 209 0.30

Symphodus cinereus 54 0.08

Coris julis 1589 2.27

Thalassoma pavo 53 0.08

Serranus cabrilla 258 0.37

Epinephelus marginatus 5 0.01

Sciaena umbra 50 0.07

Seriola dumerili 72 0.10

Trachurus sp. 1 0.00

Apogon sp. 822 1.18

Atherina sp. 101 0.14

Conger conger 14 0.02

Scorpaena sp. 1017 1.45

Unknown fish 33140 47.40

TOTAL 69917 100.00

Table 5. List of fish taxa with their respective number of tags and relative percentage. Number of tags (N) and 
relative percentage (%) for each fish taxa, unclassified individuals and total of fishes detected during 2013 and 
2014 at the OBSEA platform.

https://doi.org/10.1038/s41597-022-01906-1
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Moreover, meteorological variables were measured from the meteorological station on the roof of the 
Polytechnic University of Catalonia (UPC) building in Vilanova i la Geltrú, and from the meteorological station 
of Sant Pere de Ribes, Spain (www.meteo.cat) (Table 2). The first one was a Vantage Pro2 meteorological station. 
This station was installed to collect data on the air temperature, wind speed and direction. Furthermore, we 
compiled data for solar irradiance and rain from the meteorological station in Sant Pere de Ribes. This station 
was equipped with a Pyranometer SKS 1110 to measure solar irradiance, and a Rain[e] sensor for the rain.

All the oceanographic and meteorological data were averaged every 30 min, in order to have mean and stand-
ard deviation measurements contemporary to the timing of all acquired images (see above), except for the irra-
diance and rain, that were compiled selecting and extracting only readings correspondent to the acquired image 
timings (see above).

Fig. 4 Photomosaic of the fish taxa encountered during the tagging procedure. Examples of photos of the  
29 fish taxa recognized during the tagging, plus an example of an unclassified fish: (a) Diplodus vulgaris,  
(b) Diplodus sargus, (c) Diplodus puntazzo, (d) Diplodus cervinus, (e) Diplodus annularis, (f) Oblada melanura, 
(g) Dentex dentex, (h) Sparus aurata, (i) Sarpa salpa, (j) Boops boops, (k) Spondyliosoma cantharus, (l) Pagrus 
pagrus, (m) Pagellus sp., (n) Spicara maena, (o) Chromis chromis, (p) Symphodus tinca, (q) Symphodus 
mediterraneus, (r) Symphodus cinereus, (s) Coris julis, (t) Thalassoma pavo, (u) Serranus cabrilla, (v) Epinephelus 
marginatus, (w) Sciaena umbra, (x) Seriola dumerili, (y) Trachurus sp., (z) Apogon sp., (a.a) Atherina sp.,  
(a.b) Conger conger, (a.c) Scorpaena sp., and (a.d) Unknown fish.

Column Labels Description

Event “OBSEA:CAM1:2013_14” if the Sony SNC-RZ25N camera was used to take the photo, or “OBSEA:CAM2:2013_14” if 
the Axis P1346-E camera was used.

Date/Time The time stamp information in UTC with “yyyy-mm-ddThh:mm:ss” as format

IMAGE The image name in the repository that include the time stamp and the type of camera used to take the photo

Species The species’ Latin name checked with the taxonomy site www.fishbase.org

bboxx1 [pixel] abscissa value of the first vertex of the tag

bboxy1 [pixel] ordinate value of the first vertex of the tag

bboxx2 [pixel] abscissa value of the second vertex of the tag

bboxy2 [pixel] ordinate value of the second vertex of the tag

bboxx3 [pixel] abscissa value of the third vertex of the tag

bboxy3 [pixel] ordinate value of the third vertex of the tag

bboxx4 [pixel] abscissa value of the fourth vertex of the tag

bboxy4 [pixel] ordinate value of the fourth vertex of the tag

Table 6. Details of the dataset with the tags of the fish specimens. The details of each variable of the dataset for 
the manual tagging of the OBSEA photos for the years 2013 and 2014 are reported here, with the timestamp in 
Universal Time Coordinates (UTC) and the bounding boxes (bbox) coordinates.

https://doi.org/10.1038/s41597-022-01906-1
http://www.meteo.cat
http://www.fishbase.org
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In order to filter these data, we applied a Quality Control (QC) procedure for all the environmental variables 
except for the solar irradiance and rain, considered prefiltered and institutional data. This procedure is based 
on the guidelines from the Quality Assurance of Real-Time Oceanographic Data (QARTOD), issued by the 
United States Integrated Ocean Observing System (US-IOOS) Program Office, as part of its Data MAnagement 
and Cyberinfrastructure (DMAC) (https://ioos.noaa.gov/project/qartod/). This QC procedure was based on the 
IOOS QC python tools (https://github.com/ioos/ioos_qc). Following the QARTOD guidelines, the following 
tests were applied:

•	 Gross Range test. Highlight data points that exceeded sensors or operator selected minimum and maximum 
levels.

•	 Climatology test. Data points that fall outside the seasonal ranges introduced by the operator.
•	 Spike test. Data points n-1 that exceeded a selected threshold relative to adjacent points.
•	 Rate of change test. Examination of excessive rises or falls in the data.
•	 Flat line test. Examination of invariant values in the data.

Column Labels Description

Date/Time The time stamp information in UTC with “yyyy-mm-ddThh:mm:ss”, as format

Temp [°C] average value of water temperature

QF Water Temperature Quality Flag of the water temperature measurement

Temp std dev [±] standard deviation of the water temperature measurement

Cond [mS/cm] average value of conductivity

QF conduct Quality Flag of the conductivity measurement

Cond std dev [±] standard deviation of the conductivity measurement

Press [dbar] average value of water pressure

QF water press Quality Flag of the water pressure measurement

Press std dev [±] standard deviation of the water pressure measurement

Sal average value of water salinity

QF sal Quality Flag of the water salinity measurement

Sal std dev [±] standard deviation of the water salinity measurement

SV [m/s] average value of sound velocity

QF SV Quality Flag of the sound velocity measurement

SV std dev [±] standard deviation of the sound velocity measurement

Event “OBSEA:SBE16:2013_14” if the SEA-BIRD SBE16plus V2 SeaCAT device was used for the measurement, or 
“OBSEA:SBE37:2013_14” if the SEA-BIRD SBE 37-SMP MicroCAT device was used.

Table 7. Details of the CTD probes measurements’ dataset. The details of each variable of the dataset for the 
OBSEA CTD probes for the years 2013 and 2014 are reported here with the timestamp in Universal Time 
Coordinates (UTC).

Column Labels Description

Date/Time The time stamp information in UTC with “yyyy-mm-ddThh:mm:ss” as format

T air [K] average value of air temperature

QF air temp Quality Flag of the air temperature measurement

TTT std dev [±] standard deviation of the air temperature measurement

ff [m/s] average value of wind speed

QF wind speed Quality Flag of the wind speed measurement

ff std [±] standard deviation of the wind speed measurement

dd [deg] average value of wind direction

QF wind dir Quality Flag of the wind direction measurement

PPPP [hPa] average value of atmospheric pressure

QF atmos press Quality Flag of the atmospheric pressure measurement

PPPP std [±] standard deviation of the atmospheric pressure measurement

RH [%] average value of relative humidity

QF RH Quality Flag of the relative humidity measurement

RH std [±] standard deviation of the relative humidity measurement

Table 8. Details of the SARTI rooftop meteorological station dataset. The details of each variable of the dataset 
for the “Development Centre of Remote Acquisition and Information Processing” (SARTI) meteorological 
station for the years 2013 and 2014 are reported here with the timestamp in Universal Time Coordinates (UTC).

https://doi.org/10.1038/s41597-022-01906-1
https://ioos.noaa.gov/project/qartod/
https://github.com/ioos/ioos_qc
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Column Labels Description

Date/Time The time stamp information in UTC with “yyyy-mm-ddThh:mm:ss” as format

E [W/m**2] value of Irradiance heat flux density measurement

Rain [mm] value of rainfall measurement

Table 9. Details of the Sant Pere de Ribes meteorological station dataset. The details of each variable of the 
dataset for the Sant Pere de Ribes meteorological station for the years 2013 and 2014 are reported here with the 
timestamp in Universal Time Coordinates (UTC).

Station Variable
Temporal Coverage 
(%)

OBSEA sea water temperature 93.49

OBSEA sea water electrical pressure 93.49

OBSEA sea water salinity 89.74

UPC air temperature 94.68

UPC wind speed 94.68

UPC wind direction 94.68

St Pere solar irradiance 75.77

St Pere rain intensity 51.42

Table 10. Temporal coverage of the different environmental data. Temporal coverage as percentage (%) for the 
environmental data acquired at the OBSEA, and at the meteorological stations on the Polytechnic University of 
Catalonia (UPC) building in Vilanova i la Geltrù and in Sant Pere de Ribes during 2013 and 2014.

Fig. 5 Time series plots of fish individuals. Here we report the time series for the 3 most abundant species  
(i.e., Diplodus vulgaris, Oblada melanura, and Chromis chromis) and total of individuals for the tagged fishes at 
the OBSEA platform between 2013 and 2014.

https://doi.org/10.1038/s41597-022-01906-1
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Each time that the quality test was run, each value of the dataset was flagged with a quality control code. The 
QC flags and meanings are shown in Table 4.

The oceanographic and meteorological data were annotated into comma delimited files (CSV) with addi-
tional information on QC flags, time stamps, and measurement devices used for their acquisition51–53.

Data Records
tagging outputs. All time-lapse images were saved with the filename indicating the date (i.e., the year, the 
month, and the day), the timestamp in Universal Time Coordinates (UTC) (i.e., hour, minutes and seconds), 
the name of the platform, and finally the camera used for the acquired image48. As a result, we had an inspected 
dataset of 33805 images, depicting a total of 69917 manually tagged fish specimens, 36777 of which pertaining 
to 29 different taxa (Fig. 4) (Table 5). The remaining specimens (i.e., 33140) were attributed to the unclassified 
category (see previous section).

In the dataset file for manual tagging48, we reported the timestamp in UTC (yyyy-mm-ddThh:mm:ss) and 
the filename (e.g., timestamp associated) of the tagged image, plus the fish taxa name and the image verti-
ces’ coordinates of the bounding box (bbox) containing the identified specimens in the OBSEA photo (Fig. 4).  

Fig. 6 Time series plots of the environmental variables. Here we report the time series for the three 
oceanographic variables (i.e., water temperature, salinity and depth), and the five meteorological variables 
(i.e., air temperature, wind speed and direction, solar irradiance and rain) at the OBSEA platform, and 
meteorological stations on the “Development Centre of Remote Acquisition and Information Processing” 
(SARTI) rooftop and in Sant Pere de Ribes between 2013 and 2014. In the seawater temperature, pressure and 
salinity graphs we highlighted the use of SBE37 CTD probe with grey bands, and the SBE16 CTD probe with 
light yellow bands. The green points in the time series are the good quality data, the yellow ones the suspicious 
and the red ones the bad. Relative percentage of each QC Indexes was reported in the time series, except for rain 
and solar irradiance data, considered a prefiltered and institutional source (see previous section).
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In order to improve the reuse of this dataset, we report here its details, described also in the PANGEA repository48,  
in Table 6.

The proposed dataset can be used with any image analysis methodology, including the popular Deep 
Learning (DL) approaches, thanks to the annotated bboxs and related species labels for each fish individual. 
The bboxs proposed in this work are rotated rectangles that tightly fit each tagged fish individual. Image analysis 
approaches based on convolutional operators need the bboxs to be rectangles with the edges parallel to the image 
borders and, depending on the specific implementation, the bboxs could have different encoding. An example is 
the rectangle encoding for the “You Only Look Once” (YOLO) approach54, for which it is very easy to transform 
the general-purpose rectangle encoding suggested in our work into the YOLO encoding and vice-versa.

A recent work on Deep Learning (DL) methods for automatic recognition and classification of fish 
specimens55 identified the paucity of multiple species labelled datasets created by specialists, and with a 
community-oriented approach as major constraint for this methodology. In our dataset, ground-truthed by spe-
cialists, we labelled multiple species of fishes with a great number of tags, and with images taken from a camera 
focussing the same artificial reef during the whole monitoring period. For this reason, this dataset can be a good 
material for DL procedures and Artificial Intelligence based approaches in general.

oceanographic and meteorological datasets. The measurements from the CTD device of the OBSEA, 
the meteorological stations of “Development Centre of Remote Acquisition and Information Processing” (SARTI, 
https://www.sarti.webs.upc.edu/web_v2/) rooftop and the Sant Pere de Ribes station were stored in a PANGEA 
repository51–53. In order to better use this dataset we report the details of these datasets in Tables 7, 8 and 9, 
respectively.

Environmental data had temporal gaps in their time series due to sensor malfunction or power/communica-
tions loss. The temporal coverage for each variable is detailed in Table 10.

Technical Validation
The manual tagging fish classification was performed following the FishBase website48, consulting local fish 
faunal guides56–58. The operator that carried out the tagging trained in the fish classification using the Citizen 
Science tool of the OBSEA website (https://www.obsea.es/citizenScience/). Furthermore, to better classify the 
recognizable fish specimens we cross-checked our fish identification with specialists in fish classification from 
the Institut de Ciències del Mar of Barcelona (ICM-CSIC, www.icm.csic.es).

Here, we report the time series for the three most abundant fish taxa (i.e., Diplodus vulgaris, Oblada melanura 
and Chromis chromis) and total fish counts detected during the tagging procedure in order to ensure that there 
are not large gaps in the image acquisition at the OBSEA during 2013 and 2014, and that the data encompass all 
the seasons to detect and classify the highest number of species of the local changing fish community (Fig. 5).

We also reported the time series of the environmental variables measured at the OBSEA platform, and at 
the two different meteorological stations on the “Development Centre of Remote Acquisition and Information 
Processing” (SARTI) rooftop and in Sant Pere de Ribes between 2013 and 2014. These time series are displayed 

Fig. 7 Waveform analysis plots. We reported here the waveforms of the 3 most abundant species (i.e., Diplodus 
vulgaris, Oblada melanura, and Chromis chromis) and total of fishes at the OBSEA platform during 2013 and 
2014 for the tagged fishes (blue line) related to the photoperiod (yellow line).
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with their respective Quality Control (QC) Indexes highlighted by different colours, in order to ensure the good 
quality of these data and show the low occurrence of gaps in the time series (see previous section) (Fig. 6).

As a result, we also show here the resulting graphs from the diel waveform analysis of the tagging data for the 
three most abundant species and the total number of individuals of fishes related to the solar irradiance respec-
tive values to identify the phase of rhythms (i.e., the peak averaged timing as a significant increase in fish counts) 
in relation to the photoperiod (solving via data averaging the problems of gaps in data acquisition) (Fig. 7).

It can be observed that in general the species are diurnal as reported in literature59. The only exception is O. 
melanura that was observed more active during crepuscular hours59, but in our case was tagged more during 
nighttime. This could be explained by the better visualisation of this species with illumination, lacking of well 
recognizable marks for its classification. Therefore, it could be inferred that, in general, the tags for the different 
species are proportional to the local abundances, except for the certain species, such as O. melanura. This last 
statement is based on a recent article60 describing a method for the estimation of organisms’ abundance from 
visual counts with cameras. The article proposes a Bayesian framework that, under appropriate assumptions, 
allows to estimate the animals’ density in a single survey without the need to track the movement of the single 
specimens.

Usage Notes
As can be observed in Table 5 the classes of the inspected dataset are imbalanced (e.g., there are 14328 Diplodus 
vulgaris tags and only 1 Trachurus sp. tag). This characteristic has to be managed by applications dealing with 
Artificial Intelligence for the automated interpretation of the image content. In case the image analysis method 
could not manage unbalanced datasets61,62, data augmentation approaches could be used for generating new 
reliable individuals starting from the classes tagged in the dataset63–65.

code availability
The developed Python code for tagging and labelling the images is available through the Zenodo repository49. 
Another device that can be used for tagging fishes is the public Label Image tool (https://github.com/tzutalin/
labelImg).
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