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Chromosomal-level genome 
assembly of potato tuberworm, 
Phthorimaea operculella: a pest of 
solanaceous crops
Mengdi Zhang1,12, Xinyue Cheng2,12, Runmao Lin3,4,12, Bingyan Xie3, Ralf Nauen  5, 
Silvia I. Rondon6, Jorge a. Zavala7, Subba Reddy Palli8, Suhua Li9, Xingyao Xiong9, 
Wenwu Zhou  10 ✉ & Yulin Gao1,11 ✉

the potato tuberworm, Phthorimaea operculella Zeller, is an oligophagous pest feeding on crops mainly 
belonging to the family Solanaceae. It is one of the most destructive pests of potato worldwide and 
attacks foliage and tubers in the field and in storage. However, the lack of a high-quality reference 
genome has hindered the association of phenotypic traits with their genetic basis. Here, we report on 
the genome assembly of P. operculella at the chromosomal level. Using Illumina, Nanopore and Hi-C 
sequencing, a 648.2 Mb genome was generated from 665 contigs, with an N50 length of 3.2 Mb, and 
92.0% (596/648.2 Mb) of the assembly was anchored to 29 chromosomes. In total, 16619 genes were 
annotated, and 92.4% of BUSCO genes were fully represented. The chromosome-level genome of P. 
operculella will provide a significant resource for understanding the genetic basis for the biological study 
of this insect, and for promoting the integrative management of this pest in future.

Background & Summary
The potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), is one of the main pests 
affecting potatoes, Solanum tuberosum, worldwide (Fig. 1). As an oligophagous pest of plants in the fam-
ily Solanaceae, it uses potato, tomato (S. lycopersicum), and tobacco (Nicotiana tabacum) as principal hosts. 
It was first described in California in 1856. Since then, its presence has been reported in over 90 countries1. 
Phthorimaea operculella larvae feed on potato leaves, stems and petioles in the field, and tubers in storage. Severe 
infestations can destroy the foliage and results in substantial yield loss; however, main damage is the one that 
affects tubers. For instance, in some developing countries, the larvae can cause a 50–90% economic loss in stor-
age; within weeks, tubers can become unmarketable if left untreated2. Pesticide application is most widely used 
management strategy to control P. operculella. Unfortunately, it can cause the development of insecticide resist-
ance and negatively impact agro-ecosystem3,4. Thus, to promote more innovative management strategies for this 
destructive pest, a deeper understanding of its genetics is required but remains to be accomplished.
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P. operculella belongs to the family Gelechiidae which is one of the most diverse families of microlepidoptera. 
Gelechiidae includes over 4700 described species in more than 500 genera in the world5. Many species of this 
family are considered important agricultural pests and feed voraciously on Solanaceous crops. P. operculella, 
the Guatemalan potato tuber moth Tecia solanivora Povolny, the tomato leaf miner Tuta absoluta Meyrick, the 
tomato pinworm Keiferia lycopersicella Walsingham, etc are among the major pests of this family. The genomic 
information for this family, however, remains scarce. Tabuloc et al. recently constructed a draft genome assembly 
for T. absoluta; the group also sequenced a preliminary genome of K. lycopersicella and P. operculella, with which 
a panel of 21-SNP markers6. Accumulating genomic information in the Gelechiidae family could promote a 
better understanding of the supra-specific classification within species7. To promote future studies on the genet-
ics, biology, and ecology of Gelechiidae, it is of importance to build a chromosomal-level high quality genome 
assembly for important species such as P. operculella.

In the current study, we present a high-quality P. operculella chromosome-level genome assembly and life 
cycle transcriptomes. Using Illumina short reads, Nanopore, and High-throughput chromosome conformation 
capture (Hi-C) data, a 648.2 Mb genome was generated from 665 contigs, with an N50 length of 3.2 Mb, and 
92.0% (596/648.2 Mb) of the assembly was anchored to 29 chromosomes. The female-specific W chromosome 
of P. operculella was not dertermined in this genome, since the identification of W chromosome is challenging 
due to high degeneracy, being gene-poor and repeat-rich8. In total, 16441 genes were annotated. Our genomic 
features of P. operculella will lay a foundation for further research on this insect pest.

Methods
Sample collection and sequencing. In 2014, P. operculella adults (n = 500) were collected from a potato 
field in Yunnan Province, China. The insect colony was maintained in the climate chamber at 27 ± 2°C, 60% RH 
and photoperiod of 12 h L: 12 h D. As in 2022, the colony has 100 generations of P. operculella. The chromosomal 
sex determination of P. operculella takes the form of female heterogamety (females are WZ, males ZZ)9. The male 
genome of P. operculella was thus sequenced to avoid the complications expected from the W chromosome of 
Lepidoptera10. DNA for both Illumina and Oxford Nanopore sequencing was obtained from 16 male pupae to 
avoid the contamination of eggs, and for Hi-C sequencing it was obtained from 200 mg fresh eggs.

The high-quality genomic DNA of P. operculella was prepared by the CTAB method and purified with 
QIAGEN® Genomic kit (QIAGEN, USA) at Grandomic Biosciences Co., Ltd (Wuhan, China), which was used 
for preparing the Illumina and Oxford Nanopore (ONT) sequencing libraries. The Illumina NovaSeq 6000 plat-
form generated ~61 Gb of data with 150 bp paired-end reads, with an average insert size of 300~500 bp (Table 1). 
The Nanopore PromethION 24 platform generated ~68 Gb of sequencing data, and the adapters were removed 
using Porechop (https://github.com/rrwick/Porechop). The Hi-C library was constructed at Annoroad Gene 
Technology Co., Ltd (Beijing) following the standard library preparation protocol, and ~101 Gb of data with 
50 bp paired-end sequencing raw reads were generated.

With the Illumina sequencing data, we estimated the P. operculella genome size of ~636 Mb directly from 
kmer coverage from jellyfish v 2.0.0 analysis11; meanwhile, we used the Genomescope v1.0.0 method12 and 
estimated the genome size of ~560 Mb. The result suggested that the size of P. operculella may range from 560 to 
636 Mb.

eggs larvae pupae adult

damage pattern

Fig. 1 The potato tuberworm Phthorimaea operculella and its damage on potato plant.

Platforms Nanopore (bp) Illumina (bp) Hi-c (bp)

Sum 68,640,761,997 61,377,501,600 101,236,335,300

Coverage ~108–123 x ~97–110 x ~159–180 x

Table 1. Summary of sequencing data of Phthorimaea operculella genome. Note: Platforms of Nanopore 
PromethION 24 and Illumina NovaSeq 6000 for reads sequencing.
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rNa sequencing and analysis. Newly laid eggs, 1st, 2nd, 3rd and 4th instar larvae, mature larvae, pupae, 
and newly emerged adult moths were collected for transcriptome sequencing and gene expression analysis. Total 
RNA was isolated from eggs, larvae, and adults samples collected above, using Trizol reagent (Invitrogen, USA) 
following the manufacturer’s protocol. Illumina sequencing and complementary DNA (cDNA) library construc-
tion were performed at Grandomic Biosciences Co., Ltd (Wuhan, China). Clean data were obtained by removing 
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Fig. 2 Characterization of the Phthorimaea operculella genome. Circos plot of chromosome level genome 
assembly (~648.2 Mb) and the distribution of COE, UGT, GST and P450 genes on 29 chromosomes.

Genome assembly Nuclear Genome Mitogenome

Estimated size ~560−636 Mb —

Chromosome 29 1

Contig size 648.2 Mb 15,269 bp

Contig number 665 1

Contig N50 3.2 Mb 15,269 bp

Longest contig 20.6 Mb 15,269 bp

GC content (%) 39.5 19.4

Gene number 16,619 13

Complete BUSCO (%) 92.4 —

Table 2. Statistics of genome assembly.
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Fig. 4 Comparison of characteristics between Phthorimaea operculella and 22 other Lepidopteran genomes. 
(a) GC contents of 23 lepidopteran genomes including species of 12 superfamily. (b) BUSCO scores for 23 
assembled lepidopteran genomes. (c) Relationships between Contig N50 sizes and Contig numbers for 19 
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gene numbers for 19 lepidopteran genomes with complete BUSCO scores above 80%. The abbreviations for the 
name of each species were marked with blue.
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adapters, low-quality reads, and high-content unknown sequences. Clean reads from each sample were mapped 
to the genome assembly to measure gene transcript levels using the reported analysis pipeline13.

De novo genome assembly. Nanopore sequenced reads with a length of at least 8 kb were used for genome 
assembly by the Canu v1.814 with parameters of “maxThreads = 60 genomeSize = 636 m -nanopore-raw”. For 
the primary assembly, the purge_dups15 was used to remove haplotypic duplication sequences, and Pilon16 and 
Racon17 were used to polish the assembly. Bacterial sequences that were identified by aligning against the NCBI 
nt database were also removed. After removing the mitogenome and bacterial sequences, we obtained the 665 
contigs with size of 648.2 Mb, which was similar to the predicted size of ~560–636 Mb. The contig N50 size was 
3.2 Mb. The analysis of Hi-C data helped to anchor 337 (50.7%) contigs of 596.3 (92.0%) Mb sequence to 29 chro-
mosomes18 (Table 1 and Fig. 2). The 328 (49.3%) un-anchored scaffolds contained 51.9 (8.0%) Mb sequence. The 
mitochondrial genome of 15,267 bp was also obtained (Table 2 and Fig. 3).

Repeat annotation. Transposable elements (TE), low complexity sequences and simple repeats were 
identified by RepeatMasker open-4.0.5 (http://www.repeatmasker.org) and RepeatScout19. Firstly, we used 
RepeatMasker to analyze low complexity sequences and simple repeats, as well as reference based TEs based on 
Repbase sequences v19.0620. Then we used the de novo method to discover TE families by running RepeatScout 
analysis, and these TE families were used for repeat annotation by running RepeatMasker analysis. In the 
648.2 Mb genome assembly, 55.0% was repeat sequences21, including 54.2% of transposable elements (TEs), and 
0.8% of simple repeats and low complexity sequences22.

Protein-coding genes prediction and other annotation of the genome. Based on the 
genome sequence, we used Augustus23 and Genemark24 for ab initio gene prediction. And based on evi-
dence from RNA-seq alignments and NCBI refseq invertebrate homology (https://ftp.ncbi.nlm.nih.gov/
refseq/release/invertebrate/), we used Braker25 to infer gene models under three rounds of prediction (i.e., 
Braker + RNA-seq, Braker + refseq, Braker + RNA-seq + refseq). Then, we assigned priority to five gene sets (i.e., 
Braker + RNA-seq + refseq > Braker + RNA-seq > Braker + refseq > Genemark > Augustus), and selected genes 
supported by at least two methods or genes supported by only one method but containing functional domains. 
Moreover, all the selected genes may have similarity to reported invertebrate proteins or have RNA-seq evidence. 
Finally, we obtained 16,619 predicted protein-coding genes.

For five genomes of Samia ricini, Dendrolimus punctatus, Drepana arcuata, T. absoluta and Carposina sasakii 
without gene sets available at NCBI, we performed gene prediction analysis based on genome sequences using 
Augustus, Genemark and Braker + refseq methods, similar to those for the prediction of P. operculella genes. A total 
of 14,015, 14,483, 13,387, 17,607 and 15,873 genes were identified for S. ricini, D. punctatus, D. arcuata, T. absoluta  
and C. sasakii, respectively26.
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For the amino acids of gene sets from 23 genomes within Lepidoptera and L. decemlineata genome within 
Coleoptera22, we used Benchmarking Universal Single-Copy Orthologs (BUSCO) v3.0.127 to evaluate their qual-
ity. The “eukaryota_odb9” dataset at the BUSCO website (https://busco-archive.ezlab.org/v3/) was downloaded 
for analysis. The BUSCO completeness of >90% and >80% were found for gene sets from 16 and 20 genomes, 
respectively (Fig. 4).

To perform functional annotation, we aligned gene sequences against Pfam22,28, NCBI refseq invertebrate 
(https://ftp.ncbi.nlm.nih.gov/refseq/release/invertebrate/), UniProt29 and KOG30 databases using BLASTP with 
E-value cutoff of 1e-5 (Fig. 5). And pathway annotation was analyzed by KAAS31 online database server22. The 
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P450 genes were annotated by aligning amino acids of genes against the collected data on Cytochrome P450 
database (http://www.p450.unizulu.ac.za/)32. The genes from four sub-families (mito, CYP2, CYP3 and CYP4) 
were confirmed according to their annotation and orthogroup information (as described in the “Comparative 
genomic analysis”). The ABC transporters were identified based on UniProt annotation and orthogroup infor-
mation of genes. All other metabolic enzyme genes were annotated based on domain annotations. The chem-
osensory genes containing the odorant receptor, olfactory receptor, the chemosensory receptor, PBP/GOBP 
family, and insect pheromone-binding family domains were annotated as OR, ORother, GR, OBP, and CSP 
genes, respectively. Genes of ligand-gated ion channels were annotated as IR genes. The sub-families (delta, epsi-
lon, sigma, zeta, omega, theta and unclassified) of GST genes were annotated by comparing sequences against 
GSTs of Plutella xylostella33. These metabolic enzyme genes and chemosensory genes from 20 lepidopteran 
genomes with BUSCO completeness of larger than 80% were annotated22 (Fig. 6).

Comparative genomic analysis for lepidopteran species. Twenty-four genomes were used for per-
forming a comparative genomic analysis22, including 23 Lepidoptera genomes and one Coleoptera genome  
(L. decemlineata). These Lepidoptera genomes were from 17 families, with T. absoluta and P. operculella from the 
Gelechiidae family. The OrthoFinder v2.3.1134 detected 69,067 orthogroups for genes from these 24 genomes22, 
including 85 single-copy gene groups. Each orthogroup was considered as one gene family in the following analysis.

For each single-copy gene, we used MUSCLE v3.8.3135 to perform sequence alignment of amino acids. All 
the aligned genes were assembled by an in-house perl script (global_alignment_single_copy_genes.pl; https://
github.com/linrm2010/global_alignment_single_copy_genes/). Then Gblock v0.91b36 was used to remove 
ambiguously aligned regions. The ProtTest v3.437 identified the best model of JTT + I + F + G for construct-
ing the phylogenetic trees. We used RAxML38 to construct the maximum likelihood phylogenetic tree for the 
24 genomes (Fig. 7). After that, we analyzed the potential gene family emergence extinction according to the 
description in a previous study39, and applied CAFE v3.140 to examine the expansion and contraction of gene 
families across the phylogenetic tree of genomes (Figs. 8,9).

Data Records
The genome sequence and gene sequence had been deposited at the National Center for Biotechnology 
Information (NCBI), under the accession number of JANFCV000000000.1, and can be download from 
(ftp.ncbi.nlm.nih.gov/genomes/all/GCA/024/500/475/GCA_024500475.1_ASM2450047v1/)41. The NCBI 
BioProject accession number is PRJNA848272. The raw data of Nanopore, Illumina and Hi-C sequencing were 
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Coleoptera was used as outgroup.
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submitted to NCBI SRA with the accession number of SRP40534042.Meanwhile, the genome sequence and gene 
sequence were also publicly available in National Genomic Data Center (NGDC), under the accession number 
of GWHBJUP00000000 (nuclear genome) and GWHBJUO01000000 (mitogenome). The gene expression data 
were publicly available in NGDC, under the accession number of OMIX001281. All data were related to the 
BioProject PRJCA010352.
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Fig. 8 Gene family changes among lepidopteran insects. (a) Gene family changes associated with the origin 
and evolution of Lepidoptera. The topology of a phylogenetic tree constructed of 19 lepidopteran species. 
Leptinotarsa decemlineata (Coleoptera) was used as an outgroup. Gene family birth (+) and death (−) in 20 
species are shown. (b) Expansion gene families in P. operculella, compared to other lepidopteran insects and  
L. decemlineata.
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technical Validation
We assessed the quality of genome assembly in the following aspects: (i) We obtained the complete mitoge-
nome sequence of P. operculella. (ii) We aligned the Illumina sequencing reads against the nuclear genome using 
BWA v 0.7.17-r118843, and found that 99.41% reads matched to genome sequences. (iii) The Core Eukaryotic 
Genes Mapping Approach (CEGMA) defined 458 core eukaryotic genes, and 248 of them were the most 
highly-conserved core genes, which could be used to assess the completeness of the genome or annotations44. 
We aligned the P. operculella genes against these 248 core genes, and identified that 243 (97.98%) core genes have 
homologous genes in the P. operculella gene sets. (iv) The BUSCO20 analysis showed that 96.4% of gene orthologs 
were identified in P. operculella, including complete and fragment scores of 92.4% and 4.0%, respectively. These 
results showed that we obtained the high-quality genome of P. operculella.

Code availability
All software and pipelines used in this study were executed according to the manual and protocols of the 
published bioinformatic tools. The versions of software have been described in Methods.
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Fig. 9 Expansion and contraction of gene families in 16 species. 67 gene orthogroups were found. The group-
wide P-value of ≤ 0.01 was identified by CAFÉ analysis. The BUSCO complete of 90% was found for gene sets 
from these 16 species.
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The parameters of software/programs are as follows:
Jellyfish: count -C -m 21.
Genomescope: Rscript genomescope-1.0.0/genomescope.R NGS_reads.histo 21 150 NGS_reads.genomescope.
Canu: genomeSize = 636 m -nanopore-raw.
minimap2: -x map-ont.
purge_dups: −2 -T cutoffs -c PB.base.cov.
BUSCO: -m prot -f -l eukaryota_odb9.
ProtTest: -all-distributions -F -AIC -BIC.
Default parameters were used for Porechop, Pilon, Racon, RepeatMasker, RepeatScout, RepeatScout, Augustus, 

Genemark, Prothint, Braker, hmmsearch, OrthoFinder, MUSCLE and Gblock.
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