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Single-cell chromatin landscapes of 
mouse skin development
Fang Li  1, tiantian Xu1, Jiale Li1, Xuxu Hao1, Wei Ge2 ✉ & Xin Wang  1 ✉

the coat of mammals is produced by hair follicles, and hair follicle is an important and complex 
accessory organ of skin. as a complex physiological regulation process, hair follicle morphogenesis is 
regulated by a series of signal pathway factors, involves the interaction of multiple cell types and begins 
in the early embryonic stage. However, its transcriptional regulatory mechanism is unclear. We have 
therefore utilized single-cell ATAC sequencing to obtain the chromatin accessibility landscapes of 6,928, 
6,961 and 7,374 high-quality cells from the dorsal skins of E13.5, E16.5 and P0 mice (Mus musculus), 
respectively. Based on marker gene activity clustering, we defined 6, 8 and 5 distinct cell types in E13.5, 
E16.5 and P0 stages, respectively. Furtherly, we integrated the fibroblasts and keratinocytes clusters, 
performed further analysis and re-clustered. the single cell map of the chromatin open area was drawn 
from each cell type and the mechanism of cell transcription regulation was explored. Collectively, 
our data provide a reference for deeply exploring the epigenetic regulation mechanism of mouse hair 
follicles development.

Background & Summary
Hair follicle, as one of the skin appendages, is the most tractable model to study appendage development1. 
Hair follicle development involves complex interactions between the epidermis and underlying mesenchyme 
and is produced from a series of specific sites in the ectoderm and the underlying mesoderm2. During hair 
follicle development, the dynamic morphological changes have been extensively explored3–5. The hair follicle 
development of mice has been histologically categorized into three unique stages: induction (E13.5 - E14.5), 
organogenesis (E15.5–17.5), and cytodifferentiation (E18.5 onwards) in utero5, the molecular and cellular events 
of those morphological stages have been well characterized. In the induction stage, dermal first signal initiates 
hair follicle development, placode (Pc) and dermal condensates (DC) structures are gradually formed. In the 
organogenesis stage, keratinocyte proliferation leads to the formation of hair germ, further down-growth pro-
gresses to the peg stage. In cytodifferentiation stage, the most-proximally located keratinocytes begin to enwrap 
the dermal papilla (DP), followed by the bulbous peg stage and distinct strata of epithelial differentiation within 
hair follicle become morphologically noticeable5. Identifying the internal and external signaling mechanisms 
of hair follicle morphogenesis are the key for understanding the dynamic epithelial-mesenchymal interactions 
during the complex tissue development6. A multicellular organism comprises diverse cell types which is highly 
specialized to carry out unique functions7. The establishment of different cell lineage for development relies on 
specific spatiotemporal gene expression programs8 and gene regulatory networks (GRNs)9. Transcription factors 
bind to enhancers and promoters to regulate target gene expression, ultimately resulting in a cell type-specific 
transcriptome10–12. Single-cell technologies provide new opportunities to study the mechanisms underlying cell 
identity. Single cell RNA sequencing (scRNA-seq) was recently adopted for deciphering hair follicle heterogene-
ity across cell sub-populations, distinguishing fine molecular differences between individual cells, and describ-
ing the transcription atlas of mouse skin hair follicle1,13.

Single-cell ATAC sequencing (scATAC-seq), serving as a read-out of chromatin accessibility9, is a powerful 
tool to interrogate the epigenetic heterogeneity of cells and reveal cell type-specific transcriptional regulatory 
network14. Recent technical advancements in scATAC-seq have made it possible to simultaneously analyze the 
open chromatin regions of tens of thousands of cells and list the active DNA regulatory elements profile of the 
chromatin states such as cis- and trans-regulatory elements15. These open chromatin regions play important 
regulatory roles in distinguishing the cell types from complex organisms7. scATAC-seq has an essential role in 
depicting the trajectories of cell differentiation15,16, elucidating the transcriptional regulators of developmental 
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lineages17, revealing the complex patterns of gene regulatory relationships for maintaining cellular state and 
developmental processes18.

To systematically investigate the cellular complexity of developing embryonic skin and gain the comprehen-
sive insights into the molecular identity of hair follicle progenitors and niche cells, the nuclei from single-cell 
suspensions of E13.5, E16.5 and P0 mice dorsal skin were obtained using 10x Genomics ChromiumTM Controller 
&Accessory Kit. Then single-cell libraries were constructed and performed 10x Genomics single-cell ATAC 
sequencing on a droplet-based commercial platform. The raw data were obtained and subsequent data analysis 
was processed with Signac19. The datasets here provided the single-cell epigenomic profiling of hair follicle cells 
from the skin at different stages of mouse embryonic development. Our work would provide a suitable reference 
and basis for future single-cell chromatin studies, enriching the spectrum of cellular heterogeneity with hair 
follicle development and the dynamic morphological changes, serving as a valuable resource to understand how 
the system changes during hair follicle morphogenesis.

Materials and Methods
Ethics statement. All experimental protocols were approved by the Experimental Animal Manage 
Committee of Northwest A&F University (2011-31101684).

isolation of mononuclear cells from mice skins. The dorsal skin tissues were collected from the preg-
nant mice on E13.5, E16.5 and postnatal day 0 (P0). Initially, the dissected skins were incubated with TrypLETM 
Express (TE, 1X) (Gibco) at 37 °C for 30 min, then separated the epidermis and dermis under a stereoscope 
(Motic). Thereafter, the epidermis was digested with TE for 15 min, while the dermis was digested with 2 mg/mL 
collagenase type II (Sigma, St Louis, MO, USA) for 15 min. Then the cells were centrifuged and resuspended in 
phosphate-buffered solution (PBS) containing 0.04% bovine serum albumin (BSA). Eventually, the cell suspen-
sions were filtered through a 40-μm mesh and completed the preparation of single-cell suspension.

Nuclei isolation and scATAC-seq library preparation. The concentration of cell suspension was 
counted using a hemocytometer (TC20, Bio-Rad, Hercules, CA, USA) immediately, and the cell membrane was 
destroyed by surfactant, then the nuclear suspension was prepared. The nuclei concentrations were measured and 
adjusted to the desired capture number. The single nuclear barcoding and library preparation were performed 
following the 10x Chromium Single Cell ATAC Library & Gel Bead Kit (16 rxns PN-1000110) and sequenced on 
the Illumina NovaSeq. 6000 (Illumina, San Diego, CA, US) platform. Finally, 8016, 7714 and 7896 single nuclear 
samples from E13.5, E16.5 and P0 stages were sequenced, respectively.

raw data processing. Preliminary sequencing data was transformed into FASTQ format using Cell Ranger 
ATAC (version 1.2.0, https://cf.10xgenomics.com/releases/cell-atac/cellranger-atac-1.2.0.tar.gz) by 10x Genomics 
standard sequencing protocol. Then the FASTQ files were aligned to mouse genome reference sequence mm10 
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Fig. 1 Workflow of mice skin scATAC-seq.
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(GRCm38.p6) using cell ranger ATAC count. Subsequently, we applied Cell Ranger for preliminary data analysis 
and generated a file that contained barcoded BAMs, peaks.bed, fragments tsv.gz, per barcode cell calling etc. 
Eventually, the output files (pre-process data) were used for the downstream visualization analysis.

Bioinformatic analysis of scataC-seq data. Quality control (QC) filtering. R (version 3.6.1, https://
www.r-project.org/) and Signac R packages (version 1.0.0, https://github.com/timoast/signac/)20,21 were used to 
perform downstream analysis. We identified barcodes representing genuine cells mainly by TSS enrichment score 
and the number of unique fragments. The filter metrics were determined by referencing the Signac official tutorial 
and previous studies (https://satijalab.org/signac/)20. The criterion was as follows: (1) the peak region fragment 
was >3000 and <10000 unique fragments; (2) enrichment at transcription start sites (TSS) ≥2; (3) pct reads in 
peaks ≥15; (4) blacklist ratio ≤0.025; (5) nucleosome signal <10 were filtered. And the outliers for those QC 
metrics were removed.

Normalization and Linear dimensional reduction. After QC, the high quality scATAC-seq datasets were 
obtained, then were normalized by term frequency-inverse document frequency (TF-IDF) and Seurat function 
“Run TFIDF”. The dimensionality was reduced from the DNA accessibility assay by latent semantic indexing 

E13.5 E16.5 P0

Estimated number of cells 8016 7714 7896

Median fragments per cell 19906 27044 24006

Fraction of fragments overlapping any targeted region 69.3% 69.9% 74.9%

Fraction of transposition events in peaks in cell barcodes 50.8% 52.5% 66.1%

Fraction of read pairs with a valid barcode 75.7% 98.4% 97.8%

Q30 bases in Read 1 91.4% 94.3% 91.8%

Q30 bases in Read 2 90.8% 93.8% 91.2%

Q30 bases in Barcode 86.5% 90.3% 86.7%

Q30 bases in Sample Index 90.1% 93.1% 90.9%

Enrichment score of transcription start sites 8.13 8.15 7.31

Fraction of fragments overlapping TSS 31.6% 29.9% 34.0%

Fraction of fragments overlapping called peaks 53.4% 55.5% 68.5%

Fraction of transposition events in peaks in cell barcodes 50.8% 52.5% 66.1%

Fraction of fragments overlapping any targeted region 69.3% 69.9% 74.9%

Fraction of total read pairs mapped confidently to genome (>30 mapq) 66.7% 86.7% 88.6%

Fraction of total read pairs that are unmapped and in cell barcodes 1.0% 1.1% 1.3%

Fraction of total read pairs in mitochondria and in cell barcodes 0.4% 1.2% 0.2%

Table 1. Overview of the mapping parameters for the 10x Genomics scATAC-seq datasets established in mice 
skins.
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Fig. 2 Clustering and UMAP visualization of scATAC-seq data in E13.5 (a), E16.5 (b) and P0 (c) mice skins.
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(LSI), while the first LSI component was usually be removed from downstream analysis for capturing sequencing 
depth rather than biological variation.

Non-linear dimension reduction and clustering. After linear dimensional reduction, the cells were embedded in 
a low-dimensional space, performed graph-based clustering and non-linear dimension reduction for visualiza-
tion, and applied the UMAP algorithm to visualize and identify cell clusters by Seurat function of “RunUMAP” 
and “FindClusters”.

Generating a counts matrix and cell-type annotation of scATAC-seq clusters. To define the specific highly 
expressed gene set of each cluster, we generated a count matrix and calculated the genescore value by the Signac 
function “GeneActivity ()”. The activity of each gene was quantified by evaluating the chromatin accessibility 
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associated with the gene in the scATAC-seq data. A gene activity matrix was generated from the reads mapped 
to gene body and promoter (upstream 2 kb from the TSS), and calculated the genescore value of each gene. In 
order to facilitate cluster annotation, the gene activity of TopFeatures was examined and visualized genescore by 
“DotPlot”. Finally, the “gene activity” of some typical cell type-specific marker genes were visualized for cluster-
ing and cell type assignment of scATAC-seq data.
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Fig. 4 GO enrichment analysis of top20 differentially gene activity in E13.5 (a), E16.5 (b) and P0 (c).
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Data records
We present chromatin accessibility landscapes of different cell types of mice skins, as a reference to deeply 
explore the epigenetic regulation mechanism of cell heterogeneity. Our data set on skins consists of chromatin 
accessibility landscapes for 6928, 6961 and 7374 high-quality cellular (single nuclear), respectively. According 
to the developmental characteristics of hair follicles at different stages and gene activity of scATAC-seq, we 
assigned biological identities to 6, 8 and 5 populations based on the gene activity of known marker genes. 
Figure 1 provides an overview of laboratory and bioinformatical workflow.

All skin scATAC-seq data have been uploaded to the NCBI Gene expression Omnibus (GEO) database with 
accession number GSE20121322. The raw data of the three samples have been deposited in NCBI Sequence 
Read Archive (SRA) and are accessible through the accession numbers: SRX1495148423, SRX1495148524 and 
SRX1495148625.

technical Validation
All mice dorsal skins used in this study were freshly collected, dissected and digested into single cells (Methods). 
Each sequencing samples were from three independent individuals mixed in equal proportion according to the 
same cell count. Increasing biological duplication ensured the reliability of scATAC-seq data.

After sequencing the three libraries on an Illumina NovaSeq. 6000 and processing the raw sequencing data 
with Cell Ranger ATAC v1.2.0, pre-process data were analyzed with Seurat and Signac. For E13.5, E16.5 and P0 
pre-process data, we detected 8,016, 7,714 and 7,896 cells, and obtained a median number of 19,906, 27,044 and 
24,006 fragments per cell. All the libraries achieved a high overlapping rate for fragments of 69.3%, 69.9% and 
74.9% (>55%) (Table 1). The Q30 index was beyond the QC low-border, indicating that high-quality mapping 
data were generated for the downstream analysis.

We further used Signac to filter low-quality data, in which the TSS enrichment and unique fragment from 
each cell were calculated (Supplementary Fig. 1, available at Figshare26). Hence, we computed the nucleosome 
banding pattern, the total number of fragments in peaks, the fraction of fragments in peaks, ratio reads in 
‘blacklist’ sites and transcriptional start site (TSS) enrichment score in each sample and removed the cells with 
the peak region fragment was >3000 and <10000 unique fragments, enrichment at TSS ≥2, pct reads in peaks 
≥15, blacklist ratio ≤0.025, nucleosome signal <10.

After QC, 6,928, 6,961 and 7,374 high-quality nuclei were further analyzed, and the cell clustering was vis-
ualized by UMAP. The sample of E13.5 formed 8 indistinct clusters, E16.5 formed 12 separated clusters and 
P0 formed 13 clusters. Differential gene activity between the clusters was identified. The 20 top differential 
gene activity per cluster could be found in Supplementary Table 1 (available at Figshare26) for E13.5 clusters, 
Supplementary Table 2 (available at Figshare26) for E16.5 clusters, and Supplementary Table 3 (available at 
Figshare26) for P0 clusters, respectively.
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Differential gene activity in the pre- and early post-implantation mammalian embryo resulted in the expres-
sion of certain parts of the genotypic potential to create a phenotypic form27. From the literature, we expected 
to find several dermal and epidermis cells during hair follicle development, such as epidermal keratinocytes, 
dermal fibroblasts, neural crest-derived melanocytes, schwann cells, etc6.

We focused on the “gene activity” of the cluster and the marker gene of different cell-type to validate that the 
established dataset was indeed represented a hair follicle population. In E13.5, we found that clusters 0, 1 and 2 
mainly expressed fibroblast markers of Twist228 and Col1a129, clusters 3 and 8 expressed keratinocytes markers 
of Krt1430 and Krt1531, cluster 4 expressed macrophages markers of Cd8632 and Inpp5d33, cluster 5 expressed 
schwann markers of Sox56 and Sox1034, cluster 6 expressed blood vessels markers of Pecam135 and Kdr36,37, clus-
ter 7 expressed muscle markers of Pax730 and Cdh1538. In E16.5, we detected that clusters 0, 2 and 6 expressed 
fibroblasts markers of Twist2 and Col1a1, cluster 1 expressed keratinocytes markers of Krt14 and Krt15, cluster 
3 and 9 expressed blood vessels markers of Kdr and Flt436, cluster 4 expressed lymphocytes markers of Cpa339 
and Ccr840, cluster 5 expressed macrophages markers of Cd86 and F13a141, cluster 7 expressed muscle markers 
of Myod142 and Myog43, cluster 8 expressed schwann markers of Gpr17 and Lims26, cluster 10 expressed mel-
anocytes markers of Tyr6 and Dct44, cluster 11 expressed melanocytes markers of Ctsd6 and Lamp145. In P0, 
we detected that clusters 0, 2, 3, 7 and 9 mainly expressed fibroblasts markers of Twist2 and Col1a1, clusters 
1, 4, 5, 6 and 8 expressed keratinocytes markers of Krt14 and Krt15, cluster 10 expressed melanocyte markers 
of Pax36 and Plp146, cluster 11 expressed blood vessels markers of Kdr and Cdh530, whereas the cells of cluster 
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12 expressed pericytes markers of Ebf230 and Rgs547. According to the gene activity of marker genes, the cells 
were classified into 6, 8 and 5 populations, respectively. The 6 populations included fibroblasts, keratinocytes, 
macrophages, schwann, blood vessels and muscle (Fig. 2a); the 8 populations were fibroblasts, keratinocytes, 
blood vessels, lymphocytes, macrophages, muscle, schwann and melanocytes (Fig. 2b); and the 5 populations 
were fibroblasts, keratinocytes, melanocytes, blood vessels and pericytes (Fig. 2c). The specific markers of these 
different cell types were shown in Fig. 3. GO term analysis was performed on the identified top 20 differentially 
gene activity (Fig. 4). The result showed that fibroblasts enriched in the signaling pathways including skeletal 
system development and embryonic morphogenesis; keratinocytes in the signaling pathways including skin 
development, keratinization, skin epidermis development and hair follicle development; Other cell clusters were 
also enriched in the corresponding development and differentiation related pathways (Fig. 4). These results fur-
ther explained the rationality of clustering.

Additionally, the percentage of fibroblasts, keratinocytes and other cell types were counted (Fig. 5). It was 
found that the percentage of fibroblasts was gradually decreased (E13.5: 63.5%; E16.5: 57.8%; P0: 47.8%) and 
the percentage of keratinocytes was gradually increased (E13.5: 16.8%; E16.5: 17.5%; P0: 43.6%). This result was 
consistent with the development of hair follicles, dermal fibroblasts migrated directly to form DC structure48,49, 
dermal condensate cells as the precursors of dermal papilla/dermal sheath niche cells within the mature follicle50. 
Progenitor cell migrated and then formed the physically identifiable Pc51, placode cells as the earliest progenitors 
of all epithelial hair follicle cells including adult stem cells (SCs) were in the bulge52. Pc progenitors signal backed 
to the dermis for the formation of DC6,53. The formation of Pc and DC was the beginning of hair follicle devel-
opment54. Then, DC structure formed dermal papilla (DP) through DC1 and DC255,56, which enwrapped with 
the most-proximally located keratinocytes. Finally, keratinocyte proliferation led to the formation of hair germ, 
further down-growth progresses to the peg stage and the HF became morphologically noticeable5.

Finally, we integrated the fibroblasts and keratinocytes cluster in different developmental stages (Fig. 6), 
and performed further analysis. Chromatin accessibility analysis identified the differential accessibility regions 
(DARs) of fibroblasts (Supplementary Table 4, available at Figshare26) and keratinocytes (Supplementary Table 5, 
available at Figshare26) among E13.5, E16.5 and P0. Aligning to the reference genome, the DARs were annotated 
to promoter, intron, exon, 3′ UTR, etc. In the annotation information of fibroblasts (Supplementary Table 6, 
available at Figshare26) and keratinocytes (Supplementary Table S7, available at Figshare26), we focused on the 
regions which were annotated by the fibroblasts (Col1a1 and Twist2) and keratinocytes (Krt14 and Krt15) mark-
ers. We identified different DARs in the fibroblast cells and keratinocytes cells. The chr11-94912196-94914313 
region was annotated to the distal intergenic region of Col1a1 (Fig. 7a), and chr1-91737593–91738868, chr1-
91848615-91866615 were annotated to the distal intergenic region of Twist2 (Fig. 7b) in fibroblast cells. 
Meanwhile, the chr11-100218634-100219710, chr11-100221566-100222419, and chr11-100199847-100210887 
were annotated to the distal intergenic region of Krt14 (Fig. 7c), and chr11-100127801-100129561 were anno-
tated to the UTR region of Krt15 (Fig. 7d) in keratinocyte cells. It is generally believed that the accessibility of 
promoter regions is related to gene expression, the differential peaks in the promoter of Krt14 and Krt15 may 
play an important role in regulating gene expression. Meanwhile, we performed motif enrichment analysis on 
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Fig. 8 Motif Enrichment in differential peaks between E13.5, E16.5 and P0. (a) fibroblasts, (b) keratinocytes.
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DARs at different stages of fibroblasts and keratinocytes, the enrichment results were shown in Supplementary 
Tables 8 and 9 (available at Figshare26). We found the stage differential peaks in fibroblasts were significantly 
enriched in Twist2, Junb and Nfatc1 and Lef1, respectively (Fig. 8a). These transcription factors were related to 
the development of dermal fibroblasts6. The stage differential peaks of keratinocytes were significantly enriched 
in Lhx2, Lef1 and Sox9, respectively (Fig. 8b). Lhx2 is a transcription factor positioned downstream of signals 
necessary to specify hair follicle stem cells57. Sox9 was an important transcription factor in dermal fibroblasts6. 
This result provided a basis for explaining reciprocal epithelial-mesenchymal signaling and was essential for the 
morphogenesis of mouse dorsal skin58.

To better understand the heterogeneity of fibroblasts and keratinocytes clusters which were integrated from 
different developmental stages, we subclustered the fibroblasts and keratinocytes into 12 clusters, respectively. 
In fibroblast cells, we found that clusters 0 and 5 expressed fibroblast progenitor markers of Zfhx4, Zfhx3 and 
Wnt116,59, respectively, cluster 1 expressed papillary fibroblast markers of Scel and Sgcg30, clusters 2 expressed 
papillary fibroblast markers of Adamts5 and Zbtb2030, cluster 3 expressed reticular fibroblast markers of Pdpn 
and Xdh30, cluster 4 expressed dividing fibroblast markers of Kif4 and Kif1430, cluster 6 expressed reticular fibro-
blast markers of Thbs1 and Thbs230, cluster 7 expressed pre-DC markers of Pdgfra and Hes156, cluster 8 expressed 
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Fig. 9 Subcluster fibroblasts and keratinocytes by gene activity. (a) Dot plots showing gene activity of marker 
genes for fibroblasts subtypes. (b) Dot plots showing the expression of marker genes for keratinocyte subtypes. 
(c) UMAP plots showing single-cell chromatin accessibility analyzed in fibroblasts. (d) UMAP plots showing 
single-cell chromatin accessibility analyzed in keratinocytes.
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DP markers of Sox18 and Sox26, cluster 9 expressed DC markers of Vdr and Gas656, cluster 10 expressed Fascia 
markers of Mfap530, cluster 11 expressed DC markers of Sox9 and Fgf1056 (Fig. 9a). In keratinocyte cells, we 
detected that clusters 0 expressed hair germ markers of Shh and Lef136, cluster 1 expressed pre-Pc markers 
of Wnt10b60 and Wnt9b36, cluster 2 expressed outer root sheath (ORS) markers of Krt5 and Krt1636, cluster 3 
expressed Pc markers of Dkk436, cluster 4 and 8 expressed hair follicle stem cells (HFSCs) and their precursor 
markers of Tgfb2, Adamts17, Fbn2 and Adamts2036, cluster 5 expressed Pc markers of Wif136, cluster 6 expressed 
HFSCs markers Sox9 and Nfatc163, cluster 7 and 10 expressed epithelial cell markers of Krt14, Smoc2, Pvrl4 
and Ovol16, cluster 9 expressed keratinized cells markers of Krt1 and Krt1036, cluster 11 expressed terminally 
differentiated cells markers of Krt80 and Ly6d36 (Fig. 9b). According to the gene activity of marker genes, the 
fibroblast cells were classified into 8 populations, including fibroblast progenitor, papillary fibroblast, reticular 
fibroblast, DC, pre-DC, DP, Fascia and dividing fibroblast (Fig. 9c). The keratinocyte cells were classified into 
9 populations, including Pc, hair germ, pre-Pc, ORS, HFSCs and their precursors, keratinized cells, epithelial 
cell and terminally differentiated cells (Fig. 9d). The differential gene activity of different fibroblasts and kerati-
nocytes subtypes were shown in Supplementary Table 10 (available at Figshare26) and Supplementary Table 11 
(available at Figshare26). The differential peaks of different fibroblast and keratinocyte subtypes were shown in 
Supplementary Table 12 (available at Figshare26) and Supplementary Table 13 (available at Figshare26). Many 
studies have found that promoter accessibility is positively correlated with gene expression, and the strongest 
correlation may be related to the function of housekeeping genes61. However, recent studies have found that 
there is a weak or no correlation between promoter accessibility and the transcription level of some genes62. The 
mechanism of this regulation process needs to be further revealed.

Taken together, our datasets provided a valuable resource for deeply exploring the epigenetic regulation 
mechanism of cell heterogeneity.

Code availability
The R code used for the analysis of scATAC-seq data is available on GitHub (https://github.com/fangli0909/
scATAC-seq_sa).
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