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RedDB, a computational database 
of electroactive molecules for 
aqueous redox flow batteries
Elif Sorkun1,2, Qi Zhang1,2, abhishek Khetan1, Murat Cihan Sorkun  1 & Süleyman Er  1 ✉

an increasing number of electroactive compounds have recently been explored for their use in high-
performance redox flow batteries for grid-scale energy storage. Given the vast and highly diverse 
chemical space of the candidate compounds, it is alluring to access their physicochemical properties 
in a speedy way. High-throughput virtual screening approaches, which use powerful combinatorial 
techniques for systematic enumerations of large virtual chemical libraries and respective property 
evaluations, are indispensable tools for an agile exploration of the designated chemical space. 
Herein, RedDB: a computational database that contains 31,618 molecules from two prominent 
classes of organic electroactive compounds, quinones and aza-aromatics, has been presented. 
RedDB incorporates miscellaneous physicochemical property information of the compounds that can 
potentially be employed as battery performance descriptors. RedDB’s development steps, including:  
(i) chemical library generation, (ii) molecular property prediction based on quantum chemical 
calculations, (iii) aqueous solubility prediction using machine learning, and (iv) data processing and 
database creation, have been described.

Background & Summary
The successful development of next-generation redox flow batteries with high cell voltage, energy density, and 
cycle life depends on the discovery of electroactive materials with optimum properties. Organic electroactive 
compounds have been attracting increasing attention due to their abundance, low cost, sustainable synthesis 
as well as recycling possibilities1. Notably, the compositional variance and structural diversity of electroactive 
compounds create plentiful opportunities for tuning their essential battery-relevant properties and thereby for 
their potential use as active battery materials. Given the nearly intractable configurational space of organic com-
pounds, high-throughput virtual screening (HTVS) provides an effective way through, the creation of virtual 
libraries of diverse candidate electroactive compounds, computing performance-related chemical descriptors, 
prediction of molecular properties, and subsequent identification of the most promising candidates for further 
study2. The field of HTVS is burgeoning due to advances in automation of workflows and computing power, 
meanwhile the HTVS studies concerning the different classes of organic-based energy storage compounds are 
no exception3–5. HTVS generated FAIR data6, chiefly by employing accurate computational methods for the cal-
culation of battery-relevant chemical descriptors, serves as a valuable reference for the advancement of aqueous 
redox flow battery (ARFB) technologies. Moreover, for an accelerated screening of the electroactive compound 
space for ARFBs, it is imperative to systematize the data in a way to make it accessible not only for humans and 
but also for machines.

In this work, we present a computational database, RedDB, that has been populated on a focused chemical 
space of candidate electroactive compounds as based on the two promising classes of ARFB molecules, namely, 
quinones7–11 and aza-aromatics12–17. RedDB is created by using the calculation data from physics-based sim-
ulation tools that employ molecular mechanics and quantum chemistry methods, in addition to the contem-
porary machine learning (ML) and cheminformatics generated data of the compounds. RedDB contains the 
predicted physicochemical properties of candidate molecules that are relevant to their function as electroactive 
components in ARFBs. Thus, it can be employed for material screening and/or empirical method development 
purposes.
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RedDB contains miscellaneous property data of the molecules, whilst the emphasis here is laid on the preem-
inent properties that relate to the redox potential. The thermodynamic basis to predict the redox potentials of 
electroactive compounds is the aqueous-phase redox reaction M + 2H+ + 2e− ⇔ MH2, in which M is the electro-
active molecular species. Accordingly for RedDB, M indicates either the quinone- or the aza-aromatic-derived 
reactant molecules, while MH2 indicates the corresponding hydrogenated product molecules that are generated 
through their respective chemical reactions shown in Fig. 1. The reaction energy, ΔErxn, of redox couples has 
been calculated by using Eq. (1),

Δ = − +E E E E(MH ) [ (M) (H )] , (1)rxn 2 2

where E(M), E(MH2), and E(H2) are the total energies of reactant and product molecules, and hydrogen mole-
cules, respectively.

RedDB’s building steps are outlined in Fig. 2. They include, virtual chemical library generation, physics-based 
calculations on molecules, ML predictions of solubility of compounds in water, and database creation. The sys-
tematic generation of the virtual library involves the creation of chemically functionalized derivatives of the 
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Fig. 1 The reversible two-electron two-proton redox reactions that are shown for the two representative 
molecules of (a) quinone and (b) aza-aromatic. On the molecules, the positions that are employed for the 
systematic chemical functionalizations are shown with the R groups.
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Fig. 2 A schematic overview of the various tasks that have been undertaken for the development of RedDB. 
The three horizontal layers contain the main actions including, library generation (red shaded boxes), data 
generation, and database creation (yellow shaded boxes). The data generation includes both the electronic 
structure calculations (green shaded boxes) and the solubility predictions (blue shaded boxes). The boxes and 
arrows describe specific actions and flow of information, respectively.
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reactant molecules and their redox reaction pair products. This step generates two-dimensional (2D) representa-
tions of all compounds in the virtual library, which are next used as inputs for both the first-principles calcula-
tions and the surrogate models. Accordingly, data generated from the two different types of methods is included 
in RedDB: (i) the electronic structure data that has been obtained from a sequence of classical and quantum 
chemical methods, and (ii) the aqueous solubility data that has been obtained by using a consensus ML model. 
In the last step of database development, the generated data is extracted, processed, and stored in a relational 
database by parsing the output files of the first-principles calculations and ML models.

RedDB has principally been built to support the design of new materials beyond conventional ARFB chem-
istries. It contains comprehensive data that has systematically been collected by using the state-of-the-art com-
putational procedures18,19 and data-driven methods20. With an emphasis on the key properties of quinone- and 
aza-aromatic-based electroactive compounds, it contains several promising candidates with compelling pre-
dicted properties, which directly relate to the governing parameters for battery performance21, that are worthy 
of experimental investigation for practical use in ARFBs22,23. RedDB has been exported to five different data 
formats, as explained in the Usage Notes below, in order to serve the users who want to apply their own metrics 
in the most suitable format for them when they are working with RedDB data as a reference source. In addition 
to containing thus far uncharted depths of chemical space of small electroactive molecules and being a reference 
database for specialized studies on ARFBs, RedDB is also expected to be useful for other applications beyond 
ARFBs for which the intriguing chemistry of these molecules will matter. Identifying suitable redox-active mol-
ecules from the immense chemical space of small molecules requires rapid screening techniques with good 
precision in the predicted properties. However, due to the prohibitively costly computing requirements of robust 
quantum chemical simulations at large scale, it is not straightforward to scale-up HTVS efforts by orders of 
magnitude, such as from thousands to millions of molecules. RedDB, owing to its size, diversity, and quality of 
data, serves as a good resource for the development of empirical ML models that can be used for rapid property 
predictions or, more ambitiously, for the de novo design of energy compounds with desired features.

Methods
RedDB was built in three stages, and by applying various methods within each stage, as described in below.

Molecule library generation. The steps of the library enumeration process are shown in Fig. 2. All the mol-
ecules in the virtual library were originally derived from a group of 24 quinone and 28 aza-aromatic reactant core 
structures that are deemed to be promising ARFB compounds in acidic or alkaline solutions (Fig. 3). The core 
molecule structures were designed manually by using the Maestro modeling interface of Schrödinger Materials 
Science Suite v2019-2 (SMSS)24. Next, the Custom R-group Enumeration tool of SMSS was employed to perform 
an exhaustive enumeration task in order to uncover all of the possible functionalized derivatives of the reactant 
core structures as well as their redox coupled product molecules. Five distinct R-groups (–SO3H, –COOH, –NH2, 
–OH, and –F) were used for the chemical functionalization of compounds. These R-groups were decided upon 
the available chemical knowledge regarding their ability to tune the redox potential and aqueous solubility of the 
compounds4. It is known that incorporation of electron donating groups such as –OH and –NH2 decreases the 
electron affinity of the parent molecules and therefore usually results in lower redox potential values than their 
parent molecules. On the contrary, the use of electron-withdrawing groups such as –SO3H, –COOH, and –F 
leads to an opposite effect and results in functionalized molecules with higher redox potentials than their parent 
molecules. Additionally, functional groups such as –OH, –NH2, –COOH, and –SO3H are known to improve the 
solubility of quinones18 and aza-aromatics19. In order to remove redundant entries of the generated molecules, the 
virtual library was screened by using the Filter Duplicates tool of SMSS. Also at this stage, the reactant-product 
molecule couples were paired by assuming a two-electron two-proton reaction mechanism9 shown in Fig. 1. We 
used the Reaction-based Enumeration tool of SMSS in order to match each reactant molecule to its correspond-
ing product molecule. This way the enumeration process has been completed. It must be noted that both of the 
enumeration tools that were used in the current work accept the SMILES25 representations of molecules as their 
inputs. Therefore, they do not require explicit three-dimensional (3D) geometry information of the compounds. 
Similarly, the output format of these tools is also the SMILES representations. Therefore, when further evaluations 
on the molecules are aimed for, as the case of current study, they have to be translated to a 3D geometry data.

Molecule structure and property data generation. Electronic structure calculations. First-principles 
electronic structure calculations yield essential information about the compounds that can directly be employed 
to estimate their macroscopic performance. Likewise, these calculations provide an effective way for the 
modelling of redox active compounds for ARFB applications4,18,19. Fig. 2 shows a simplified workflow of the 
physics-based calculations that were applied in the current work.

First, prior to quantum chemical calculations, the SMILES representations of all the candidate molecules 
that are found in the library were converted to energy minimized 3D molecular structures by using the LigPrep 
module as implemented in the Schrödinger Software Package26. Next, their corresponding minimum energy 3D 
conformers were predicted by using the MacroModel program and OPLS3e27 force field (FF) as implemented 
in SMSS. Thus, only the lowest energy 3D conformers were employed as inputs for density functional theory 
(DFT) calculations that were used for the gas phase optimization (OPT) of all molecules. Then, the DFT cal-
culations were carried out using the Jaguar ab initio package28 as implemented in SMSS. All DFT calculations 
were performed using PBE exchange-correlation functional29 and LACVP**++ basis set with polarization and 
diffuse functions30. The LACVP basis set includes the effects of core electrons in a parametrized form known as 
the effective core potentials (ECPs). Using ECPs is advantageous, with regard to computing time, particularly 
when calculating compounds that contain many heavy elements. Moreover, LACVP and the widely employed 
6-31 G basis sets are essentially indistinguishable for the elements from H to Ar. Since the molecules considered 
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in this work contain only H, C, N, O, F, and S, the use of LACVP**++ is consistent with the use of 6-31 G**++. For 
DFT OPT calculations, medium grid densities have been used in Jaguar, and the energy and root mean square 
density matrix change convergence criteria were kept at their default values of 5.0 × 10−5 and 5.0 × 10−6 Hartree, 
respectively. As the convergence scheme, the default direct inversion in the iterative subspace was employed in 
combination with Jaguar’s mixed pseudospectral approximation at its default cutoffs. Lastly, the DFT optimized 
3D geometries of the compounds were used as inputs for single point energy (SPE) calculations. For the SPE 
calculations, fine electronic grid densities, in combination with accurate self-consistent field cutoffs, were used. 
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Fig. 3 2D representations of the 52 core molecules that have been used for the chemical library generation. The 
numbering of the core molecules is in accordance with the data package IDs found in RedDB.
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Additionally, the effects of aqueous medium were modelled by using the implicit Poisson-Boltzmann Solvation 
Model (PBF)31.

Solubility predictions. The water solubility data of the compounds was built by using the Aqueous Solubility 
Prediction Model (AqSolPred v1.0)20. AqSolPred is a supervised and consensus ML model that was empowered 
by training on a large, curated, and reference aqueous solubility database, AqSolDB32. The SMILES representa-
tions of the molecules were used as input for the AqSolPred and their ML-predicted solubility data has been 
incorporated to RedDB (Fig. 2).

Database creation. Five different data sources were used as input for building the database: (1) Identifier 
files containing the SMILES representations of reactant and product molecules, (2) Supplementary files contain-
ing naming conventions for reactant molecules and SMILES notations of product molecules, (3) Output files as 
obtained from OPT calculations using the Jaguar package, (4) Output files as obtained from SPE calculations 
using the Jaguar package, and (5) Aqueous solubility data of compounds as obtained using the AqSolPred code.

The database creation process consists of data processing and database generation steps (Fig. 2). The former 
includes three steps, namely, data synchronization, data extraction, and chemical reaction pair matching. In the 
data synchronization step, the calculation output folder hierarchy and file naming conventions were created. 
By using them and the SMILES notations, the molecules from the virtual library were matched with the output 
files of the quantum chemical calculations. In the data extraction step, all output files were parsed by using an 
in-house developed code that employs regular expression sequences to extract relevant physicochemical data. 
In the chemical reaction pair matching step, the reactant molecules were matched with their respective prod-
ucts from the chemical library through the guidance of supplementary files that were generated by using the 
Reaction-based Enumeration tool24. In the database generation step, the database has been created on a MySQL 
server and implemented through a code first approach by using the Django object-relational mapper. Lastly, 
the parsed data, also including the ML-predicted solubility data of the compounds, has been added to RedDB.

Data Records
The generated full data is stored in a MySQL database, and its reduced forms in CSV and XLSX formats, all of 
which are downloadable from the Harvard Dataverse Repository33. The data is stored in a relational database 
that consists of 15 data tables. These tables were created in accordance with the type of data they contain. Their 
names and brief descriptions as well as the original sources that have been used for their formulation are shown 
in Table 1.

RedDB contains data on 31,618 unique molecules that have been derived through the structural function-
alization of 52 different core molecules shown in Fig. 3. For every compound, structural, thermodynamic, and 
electronic properties have been included. RedDB includes 23 atom-, 315 molecule-, four reaction-, and 19 
simulation-related meta-information fields. Supplementary Information Table S1 shows RedDB’s most essen-
tial data tables that contain the most relevant information for application of molecules in ARFBs. For each 
data table shown in Supplementary Information Table S1, in addition to the names of data columns, their brief 
descriptions and the corresponding units, whenever applicable, have been included. Additionally, in Fig. 4, 
a simplified scheme of the database is shown that includes the most essential RedDB tables, their data fields 

Table Name Table Description Data Source

atomicProperties Atomic properties from DFT SPE calculations (e.g. NMR shielding 
constants, Fukui indices for HOMO and LUMO, etc.) Jaguar DFT SPE output file

chCalc Moments from quantum mechanical wavefunction, electrostatic 
potential charges, and Mulliken charges (gas and solution phase) Jaguar DFT SPE output file

cpolarCalc Polarizability and hyperpolarizability results from coupled 
perturbed HF (cpolar) method Jaguar DFT SPE output file

functionalGroup Stoichiometric information on chemical functional groups User-defined folder name

job Meta-information of calculation outputs Jaguar DFT OPT and SPE output files

jobSetting Information on software version and calculation settings and 
parameters Jaguar DFT OPT and SPE output files

molecule Identifiers of molecules (SMILES and InChIKey) SMILES output file

moleculeInfo Stoichiometric information of the molecules Jaguar DFT SPE output file

optimizationGeometry Initial and final 3D geometries of molecules from DFT OPT Jaguar DFT OPT output file

optimization Convergence level and results from DFT OPT calculations Jaguar DFT OPT output file

otherInfo Additional information (e.g. nuclear repulsion energy, point group 
used for calculations, and molecular point group) Jaguar DFT SPE output file

pbfCalc Results from DFT SPE calculations with the PBF solvation model 
included Jaguar DFT SPE output file

reaction Redox reaction related information Reaction-based Enumeration tool output file

solubility ML-predicted solubility data of compounds AqSolPred output file

scfCalc Self-consistent field results from SPE calculations (gas and solution) Jaguar DFT SPE output file

Table 1. An overview of RedDB data tables. For each data table, the table name, a brief description of the 
contents, and the original data source from where the data has been extracted, are shown.
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and the interconnections. Finally, the contents of all the remaining RedDB data tables have been provided in 
Supplementary Information Table S2.

In RedDB, the total number of possible redox reactions, or similarly the reactant-product pairs, is 15,882. 
Among them are 3,509 quinone and 12,373 aza-aromatic molecule reactions. A mismatch between the total 
number of molecules and the total number of redox reactions occurs due to the molecules that take part in mul-
tiple redox reactions or the dismissed molecules because of failed DFT calculations. The reduced chemical space 
of RedDB’s chemical data, which has been converted into a visual representation via ChemPlot34 by applying the 
uniform manifold approximation and projection (UMAP) and tailored similarity methods, is shown in Fig. 5. 
Additionally, its interactive version is reachable at https://www.amdlab.nl/reddb.

Fig. 4 A Crow’s foot representation of RedDB’s most essential database tables.
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technical Validation
The data in RedDB is generated from either first-principles or regression models, both of which are entirely 
parameterized. The data generated from such models is not stochastic and it is possible to reproduce it to numer-
ical precision by using the parameters discussed above. In addition, reliability of the modelling data can also be 
interpreted in terms of its accuracy with respect to measurements from experiments. Thus, the sources of uncer-
tainties are tied to the applied modelling parameters and the quality of underlying data. In the current work, to 
ensure the veracity of data that’s included in RedDB, several measures have been taken into account during the 
library generation process, DFT calculations, ML predictions, and database creation.

Validation of library enumeration and convergence in DFT calculations. The molecule library 
generation included steps for filtering the duplicate molecules and removing the redundancies. To ensure that the 
molecular geometries employed for DFT OPT calculations are the lowest energy conformers, a sampling of the 
3D conformational space of the molecules was performed. High accuracy for the two types of DFT calculations, 
OPT and SPE, was ensured by choosing tight convergence criteria for the various sub-routines in the Jaguar soft-
ware package, as was described above. Further details on the systematic effect of these parameters can be found 
in the Jaguar documentation. Nevertheless, critical failures in convergence can result in spurious data that is unfit 
for further usage. To address this issue, Jaguar performs a simple analysis of the convergence during OPT, and 
yields a convenient verdict on the dynamics of the convergence process (i.e. whether the convergence was mono-
tonic or erratic), and the quality of the converged structure (i.e. whether the final geometry corresponds to the 
lowest energy or not) on a scale of 0 to 4, where 0 denotes the best convergence. RedDB contains the convergence 
criteria for each molecule as obtained from OPT calculations employing the Jaguar package. This way, RedDB 
users are recommended to exercise caution when using data from molecules with convergence criteria value of 4, 
which simply indicates that the OPT resulted in a non-optimal structure of the molecule. In addition to this, DFT 
calculations on several molecules did not result in full convergence of the SCF routines, and thus, they did not 
produce any sensible results. Therefore, these molecules were also excluded from RedDB.

Validation of solubility predictions. The AqSolPred model, which was used for solubility predictions 
in the current work, had previously been validated on a benchmark solubility dataset35. The model has a Mean 
Absolute Error of 0.348 LogS, which is lower than the conventional cheminformatics and ML methods that are 
ordinarily used for the prediction of aqueous solubility of chemical species20.

Validation of data processing. The consistency of the data included in RedDB was further validated by 
comparing the values from randomly selected calculation output files to the data found in RedDB. For each of the 
52 core molecule-derived groups of molecules, four randomly selected molecules’ DFT calculation output files 
have been used for comparisons. No consistency errors were detected on the cross-checked data.

Usage Notes
Table 1 shows the names, descriptions, and data sources for each of the database tables. Additionally, the content 
descriptions and units of RedDB fields that are relevant to ARFBs are shown in Supplementary Information 
Table S1. The descriptions for the remaining tables are provided in Supplementary Information Table S2.

UM
AP

-2

UMAP-1

Fig. 5 The chemical space of RedDB, as visualized by the ChemPlot using the UMAP dimensionality reduction 
technique in combination with the tailored similarity method. The color bar on the right shows the DFT-
calculated ΔErxn values in Hartree as obtained by using  Eq. (1).
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The ‘job’ table contains the parsed meta data of DFT OPT and DFT SPE calculation outputs. Thus, the results 
from both the OPT and SPE calculations are reachable simply by using ‘Optimization’ or ‘SinglePoint’ tags in the 
‘jobType’ field in the ‘job’ table.

The ‘job’ and ‘functionalGroup’ tables are linked to each other with ‘functionalGroup id’. Each identifier in 
the ‘functionalGroup id’ field represents a chemical functional group from the ‘functionalGroup’ table. A blank 
stoichiometry field in the ‘functionalGroup’ table indicates that no chemical functional group has been incor-
porated to the molecule, in other words, the molecule is a core molecule.

RedDB contains atomic, molecular, and reaction data of the candidate compounds for energy storage chiefly 
in ARFBs. To facilitate accessibility and reuse in future studies, RedDB has been exported to five different data 
formats that have been described in below.

RedDB.sql. The file format is SQL. The relationships of database tables are shown in Fig. 4. The database 
tables are linked together by IDs. The content information of the tables has been provided in Supplementary 
Information Table S1 and Supplementary Information Table S2.

RedDB.xlsx. The file format is XLSX. This file is a copy of the reddb.sql file. Each table of the database has 
been exported to a different sheet inside the XLSX file.

RedDB_atomic.csv. The file format is CSV. This file contains all important atom properties of the molecules. 
Each row contains information on the atoms of a molecule. Using this file, the user can access all atom-relevant 
properties of the individual molecules, for instance by grouping the data according to the broadly accepted mol-
ecule identifiers of SMILES or InChIKey.

RedDB_molecule.csv. The file format is CSV. This file contains all important molecule properties. Each row 
contains information on a single molecule.

RedDB_reaction.csv. The file format is CSV. This file contains tabulated information about the likely redox 
reactions. Each row contains the reaction information and the DFT-calculated reaction energies. For the calcula-
tion of the reaction energies, the total energy of a H2 molecule was calculated by using the same methods that have 
been used for all other molecules. In addition to reaction energies18, other chemical descriptors, such as the lowest 
unoccupied molecular orbital (LUMO) of reactant and the highest occupied molecular orbital (HOMO) of product 
molecules, can independently be used to predict the experimental redox potentials19. For that reason, the numer-
ical data of different chemical descriptors as well as useful compound features have also been included in this file.

Code availability
All classical and quantum chemical calculations have been performed by using the SMSS24, which is a proprietary 
software package. The solubility predictions have been made by using the AqSolPred20, which is a freely accessible 
tool. In addition, the in-house developed Python scripts that have been used to parse the calculation outputs and 
to convert them into relational database formats, are openly accessible at https://github.com/ergroup/RedDB.
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