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Human mobile robot interaction in 
the retail environment
Yuhao Chen   1, Yue Luo   1, Chizhao Yang2, Mustafa Ozkan Yerebakan1, Shuai Hao1, 
Nicolas Grimaldi3, Song Li4, Read Hayes5,6 & Boyi Hu1 ✉

As technology advances, Human-Robot Interaction (HRI) is boosting overall system efficiency and 
productivity. However, allowing robots to be present closely with humans will inevitably put higher 
demands on precise human motion tracking and prediction. Datasets that contain both humans and 
robots operating in the shared space are receiving growing attention as they may facilitate a variety 
of robotics and human-systems research. Datasets that track HRI with rich information other than 
video images during daily activities are rarely seen. In this paper, we introduce a novel dataset that 
focuses on social navigation between humans and robots in a future-oriented Wholesale and Retail 
Trade (WRT) environment (https://uf-retail-cobot-dataset.github.io/). Eight participants performed the 
tasks that are commonly undertaken by consumers and retail workers. More than 260 minutes of data 
were collected, including robot and human trajectories, human full-body motion capture, eye gaze 
directions, and other contextual information. Comprehensive descriptions of each category of data 
stream, as well as potential use cases are included. Furthermore, analysis with multiple data sources 
and future directions are discussed.

Background & Summary
Utilizing artificial intelligence (AI) methods to accurately model human motion patterns (trajectory, posture, 
etc.) has received substantial attention recently. This direction of research has broad implications in many 
domains, such as autonomous driving1–3, collaborative robots (co-bots)4–7, and public safety surveillance8,9. 
Over many millennia, our ancestors have acquired the skill to incorporate the intentions and responses of other 
nearby agents (e.g., humans, pets, vehicles) into their decision making process. This resilient survival and social 
skill has quietly supported many aspects of our modern life, from navigating through crowded spaces to driv-
ing on a local street or merely acting civil among other people10. In order to operate safely and appropriately in 
dynamic and complex environments, robots, like humans, should employ accurate human motion perception 
and human-like behavior planning as critical ‘awareness’ and decision-making capabilities, especially when 
sharing space with humans.

The era of ubiquitous co-bots is becoming a reality with the rapid advancements of AI, robotics, control, 
5G, and many other enabling techniques. During the COVID-19 pandemic, co-bots were able to interact with 
humans in close quarters in many environments to promote social distancing. Tasks performed included sur-
veillance11, administering COVID-19 tests12, and disinfecting ground surfaces13. This utility has proven vital 
during the pandemic as physical contact became more dangerous and less desirable. Even after the pandemic 
ends, these co-bots are unlikely to disappear as people have begun to see the utility of robots, which will lead to 
higher acceptability14. It would be the new norm that humans and robots share the same space and collaborate 
closely. To achieve seamless and harmonic HRI, robots need to perceive human intention precisely and behave 
in a socially compatible manner. One particular bottleneck is the scarcity of publicly accessible datasets of HRI 
that AI models can learn from. Datasets that include HRI scenarios are even rarer and the contextual informa-
tion aspect of them can be further improved, such as high-fidelity simulation environments, and detailed human 
participants’ intention and motion behaviors. Several human trajectory datasets have been published. Many of 
them, such as ETH15, UCY16, Edinburgh17, Town Center18, and Daimler Pedestrian19, were captured outdoors  
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using one or more video cameras. There are also datasets collected indoors, such as JRDB20, Central station21, 
ATC22 and MoGaze23. However, most of these datasets have only annotated humans with bounding boxes, 
neglecting the merits of other contextual information such as human intention, body posture, and joint level 
kinematics. Furthermore, they did not include detailed human physical locomotion as well as physiological 
performance during the tasks. There are many datasets devoted to monitoring and recording human move-
ments via various motion capture systems. Examples such as CMU Graphics Lab Motion Capture Database24, 
Human3.6 m25, and KIT26 were recorded using the optical motion capture system (e.g., Vicon), whereas datasets 
from27,28, and29 were recorded using wearable sensors. However, these datasets are mostly restricted to stan-
dalone (lack of interactions between humans and surrounding environment and agents) and domestic daily 
activities (e.g., sitting, standing). A limited number of datasets can be found that cover human and man-made 
agent interactions. Datasets include HRI are even rarer. Table 1 summarized six publicly accessible datasets that 
include diversified agents in the environment. Three datasets, L-CAS, KTH, and THÖR include one or more 
robots. Among them, only THÖR contains detailed contextual information such as human intention and human 
body postures. The lack of such datasets became the primary motivation for this research activity.

Therefore, more comprehensive datasets are required to foster future progress in robot learning. In this 
paper, we introduce a dataset that focuses on social navigation between humans and robots in a retail environ-
ment. The WRT domain is selected as the focus and test-bed of this work because of the significant increase in 
robot usage in this industry sector. The usage of robots in the WRT sector has been amplified by the emergence 
of the pandemic which has prompted a crucial need for the safe integration of this technology into the industry. 
Furthermore, compared to other common robot deployment environments (manufacturing plants, large scale 
distribution centers, etc.), retail settings present more direct and frequent HRI opportunities, which makes 
human motion data more valuable.

Methods
Participants.  The data collection was done with eight healthy participants, five males and three females. All par-
ticipants were recruited from the University of Florida student population and reported being healthy. Their mean 
(SD) age, height with shoes on, and body weight were 19.4 (2.0) years old, 176.7 (10.2) cm, and 66.0 (10.1) kg. Seven 
of the participants were self-reported to be right-handed and one was reported to be ambidextrous. Participants 
voluntarily agreed to be recorded and were informed that the data collected in the study will be made public. The 
experiment protocol was approved by the University of Florida Institutional Review Board (IRB202002765).

Test environment setup and instruments.  The experiment was conducted in a future-oriented WRT 
research facility (Fig. 1). This laboratory allows researchers and practitioners to conduct studies and practice 
interaction protocols with emerging WRT methods. These include no/low touch locking systems, anti-theft 
devices, protective displays, day/night cameras with edge-AI, and special public view monitors that provide per-
sonalized advertising or messaging. It also includes configurable walls and shelves, and multi-functional units, 
enabling a highly flexible physical layout adjustment capability.

The robot used in the experiment was a customized mobile robot platform consisting of a Fetch Freight Base 
(Fetch Robotics, Inc., San Jose, California) and a UR5 robot manipulator (Universal Robots, Odense, Denmark). 
The robot platform has a footprint of 0.508 × 0.559 m and a height of 1.295 m, as shown in Fig. 1. The mobile 
robot base was operated in Robot Operating System (ROS) with an Intel i3 processor, 8 GB RAM, and 120 GB 
SSD. The UR5 manipulator was 18.4 kg in weight and it has six rotating joints and a maximum payload of 5 kg. 
The robot platform was equipped with an embedded 2D Lidar, which has a scanning range of 25 m and 220 
degrees field of view (TIM571 SICK, Waldkirch, Germany), a Logitech C920 webcam (Logitech, Lausanne, 
Switzerland), a 6D Inertial Measurement Unit (IMU), and two wheel encoders. By integrating the webcam on 
the mobile robot, the video data was saved in the rosbag format along with other robot data. Furthermore, the 
videos were automatically synchronized with other robot data, as opposed to a stand-alone camera on the ceil-
ing. During the experiment, the maximum speed of the robot was set at 1.0 m/s and the UR5 was powered off 
and remained retracted.

The same mobile robot control scheme was employed as in our earlier studies30,31. Briefly, the control scheme 
was developed based on a 2D navigation framework32, which includes functional modules for localization, global 
path planning, local path planning (i.e., collision avoidance), and robot movement control. The costmap (i.e., 
occupancy grid map) of the environment was pre-generated using the Lidar-based gmapping technique33 since 

Dateset Author & Year Environment

Agents Systems

Robot(s) Human Vehicle(s) ET* PM* HM* VD*
Stanford Drone Robicquet et al., 201645 Outdoor ✓ ✓ ✓

VIRAT Oh et al. 201146 Outdoor ✓ ✓ ✓

KITTI Geiger et al. 201247 Outdoor ✓ ✓ ✓

L-CAS Yan et al. 201748 Indoor ✓ ✓ ✓

KTH Dondrup et al. 201549 Indoor ✓ ✓ ✓

THÖR Rudenko et al. 202040 Indoor ✓ ✓ ✓ ✓ ✓

Table 1.  A summary of publicly accessible datasets that include human and other agents in the data collection 
environment. *ET: Eye-Tracking; PM: Physiological Measurement; HM: Human Motion; VD: Video.
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layouts in WRT environments are often organized and consistent. The Monte Carlo localization approach34 was 
used to localize the robot using 2D Lidar and embedded inertial sensors and wheel odometry. This method com-
pares Lidar scans to the previously acquired map using a particle filter to estimate the robot’s pose. The Dijkstra’s 
algorithm35 was adopted to determine the global traverse path on the known map. The Trajectory Rollout algo-
rithm36, a widely applied and effective collision avoidance algorithm, was used as our local path planner. The 
robot was then guided along the local and global path using a velocity-based proportional controller.

To avoid the marker occlusion problem that is presented in camera-based motion capture (MOCAP) sys-
tems, Xsens (MVN Awinda, Xsens Technologies BV, Enschede, Netherlands), an IMU-based MOCAP system, 
was chosen for the study. The use of IMU sensors with full-body configuration enriched the dataset with human 
localization and body posture information. The sampling frequency of the MOCAP system was set at 60 Hz 
throughout the project.

In order to acquire eye gaze data, a pair of Tobii Pro Glasses 2 (Tobii, Danderyd Municipality, Sweden) 
was worn by participants with appropriate corrective snap-on lenses if needed. The sampling frequency of the 
eye-tracker was set at 50 Hz. In addition to the eye gaze data, the eye-tracker also contained a scene camera that 
recorded 1920 × 1080 video at 25 fps.

Tasks and procedure.  Table 2 summarizes the main tasks involved in the data collection and their approx-
imate durations. Right after the arrival, each participant received instructions for the test environment setup and 
instruments. Questions and concerns were addressed at the same time. Subsequently, demographic data includ-
ing age, gender, weight, and height with shoes on were obtained. Next, 17 IMU sensors were securely attached to 
participants’ body, specifically on: head, sternum, pelvis, right and left shoulder, right and left upper arm, right 
and left forearm, right and left hand, right and left upper leg, right and left lower leg, right and left foot37,38 (Fig. 2). 
The MOCAP system was then calibrated based on each participant’s body dimensions and calibration activities. 
A total of twelve body dimension measures were included: body height, foot or shoe length, shoulder height, 
shoulder width, elbow span, wrist span, arm span, hip height, hip width, knee height, ankle height, extra shoe sole 

Fig. 1  Top: a picture of the future-oriented WRT research facility. Bottom Left: 2D costmap of the facility and 
dimensions of the experiment area. Bottom Right: a picture of the customized mobile robot platform used in the 
experiment.
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thickness. Two calibration activities were: N-pose standing and straight-line walking. Following the MOCAP cali-
bration, the eye-tracker was mounted to the participant’s head as shown in Fig. 2. After the sensor attachment and 
system calibration had been completed, participants were given two tasks to perform. These tasks are commonly 
undertaken by WRT consumers and workers, as stated below.

Task I - Order picking and sorting.  For this task, the participant was asked to push a shopping cart and retrieve 
eight different items, one from each of the eight shelves. Afterwards, the participant returned to the self-checkout 
machine to sort the first four items into one bin and the other four into another bin. The shopping cart itself was 
37 lbs in weight, and in order to simulate real-world conditions, its weight was added to 100 lbs and controlled to 
be the same for all participants. There were two different conditions of the task: 1) picking and sorting alongside 
the robot, and 2) picking and sorting without the robot. Each condition had five trials (i.e., 2 × 5 = 10 trials of 
order picking and sorting). The repetition for each condition was determined to prevent any fatigue (mental or 
physical) accumulated from the test. The participant experienced five repetitions of one condition then the other 
five. In each trial, the participant was given a list showing the items that they were required to pick up; the item 
on each shelf was randomly selected. The same five lists were used in both conditions. The participant was asked 
to pick the items in order and use their dominant hand to perform the task. This included picking, sorting, and 
cart pushing (whenever one hand cart pushing is needed). No training was given prior to the data collection. 
The co-bot in the current study represented a generic mobile platform which can mock the motion trajectory of 
multiple functions in retail environments such as disinfection, cleaning, and inventory management. The robot 
in the experiment was programmed to move between waypoints automatically and it was able to avoid obstacles 
and replan routes. The waypoints were predefined so that the participant and the robot came across each other 
frequently (Fig. 3). In order to ensure that no physical collision would happen during the trials, the researcher 
assumed control of the robot when necessary. These instances were marked as “intervened” in the data sheets.

Task order Task description Approximate duration

1 Introduction of environment and instrument. 5 mins

2 Gathering demographic information. 2 mins

3 IMU MOCAP sensors attachment. 10 mins

4 MOCAP system calibration. 5 mins

5 Eye-tracker placement. 2 mins

6 Eye-tracking system calibration. 1 min

7 Introduction of the tasks. 5 mins

8 Ordering picking and sorting trials. 2 mins × 10 repetitions = 20 mins

9 Inventory checking trials. 3 mins × 4 repetitions = 12 mins

Table 2.  Main tasks involved in the data collection and their approximate durations.

Fig. 2  Sensor setup for the experiment. The participant consented for the publication to utilize their likenesses.
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Task II - Inventory checking.  Subsequent to the order picking and sorting tasks, four inventory checking trials 
were performed by each participant. Similar to task I, there were also two conditions, i.e., inventory checking 
alongside the robot and inventory checking without the robot. In each trial, the participant was given a checklist 
showing the items that need to be checked from the eight shelves (Fig. 4). The participant had to count the items 
on the list in order. The shopping cart was not utilized at any point throughout this task. The participant either 
experienced the robot condition or the non-robot condition first, and each condition had two repetitions (i.e., 
2 × 2 = 4 trials of inventory checking). Items from each shelf were randomly selected and the same two checklists 
were used in both conditions. No training was given prior to this task.

It’s worth noting that the task selection was determined after careful consideration. The main challenge in 
the HRI domain comes from the ‘interaction’, ‘collaboration’, and ‘cooperation’ between agents (both physi-
cally and cognitively), especially for HRI scenarios with fixed manipulators. However, regarding mobile robot 
applications, due to their advanced mobility in the spatial domain, interactions between mobile robots and 
human partners may occur in a much larger space (spatial) or in different forms (temporal). Specifically, in the 
retail environment, the direct interactions between human and robot are still not commonly seen other than 
a few exploratory applications like auto shopping guides or shopping carts. Most of the current adopted retail 
co-bots do not interact directly with humans, such as floor cleaning robots, disinfection robots, and inventory 
scanning robots. However, they still interact with each other in a more general sense and do not merely co-exist 
in the same space with human partners. For example, the mobile robot may be auto floor cleaning robot or an 
inventory scanning robot, their behavior will inevitably influence the shopping experience of human partners 

Fig. 3  Demonstration of the ordering picking and sorting task in the WRT facility along with the predefined 
waypoints of the robot. The origin and axis directions of the human motion capture system are also included.

Fig. 4  Left: An example picture of the participant picking an item from the shelf. Right: The participant 
performed the inventory checking task while the robot went by. The participant consented for the publication to 
utilize their likenesses.
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substantially and the overall ecosystem (i.e. retail store) performance. To ensure good practicability, the cur-
rent work included testing scenarios involving these more commonly seen applications, instead of those ones 
that are still further beyond the horizon. Investigations of the selected HRI scenarios in the retail environment 
may lead to examining how humans respond physically and cognitively to mobile robots and developing more 
socially aware robot motions.

Data Records
More than 260 minutes of data were recorded, including data of robot sensors, human motion capture, and eye 
gaze measurements. In order to provide free accessibility to the public, the data has been uploaded to Science 
Data Bank39 (https://doi.org/10.11922/sciencedb.01351), an open generalist data repository developed and 
maintained by the Computer Network Information Center of the Chinese Academy of Sciences. Readers can 
also access the dataset through the website (https://uf-retail-cobot-dataset.github.io/), where a detailed descrip-
tion of each type of data is available. Among 112 trials accomplished by eight participants, 80 (8 participants × 5 
repetitions × 2 conditions) of them were ordering picking and sorting tasks, and inventory checking tasks 
accounted for the other 32 (8 participants × 2 repetitions × 2 conditions) trials. The details of recorded data are 
listed as follows.

Robot sensor data.  All sensor data from the robot, including images from camera, point clouds from Lidar, 
measurements of acceleration and angular rate from IMU, and joint states from wheel encoders, were recorded 
as the serialized ROS message data in the rosbag format. Note that, in order to perform online recordings, the 
images were recorded as 640 by 480p, which is on par with comparable works and is sufficient to show the infor-
mation from the first-person robot view. Moreover, the navigation information (i.e., the online pose estimates and 
planned path) during each trial, which will be discussed in the following analysis, was also recorded in the rosbag 
files. Since only half of the trials were robot involved, 56 (40 order picking and sorting + 16 inventory checking) 
bag files are available in the dataset.

Human motion capture.  A total of 112 excel files are available in the MOCAP data folder. Four trials 
were found to have poor data quality (i.e., off-axis), and the corresponding files were labeled as “offaxis”. The 
human motion data from Xsens contains over 930 thousand frames of human posture information (i.e., joint 
positions). The following human motions were observed frequently during the experiment: 1) picking up and 
putting down the item list, 2) pushing and pulling the shopping cart, 3) browsing through the shelf, 4) bending 
over and crouching, 5) picking up items from the shelf, 6) putting items into the bin, 7) writing on the checklist, 
8) walking between shelves, 9) counting items, and 10) avoiding robot if necessary. With video recordings and 
wearable motion tracking data stream (all are accessible), this semantic information can be extracted and labeled 
by the public. Inside each participant folder, trial files contain the timestamp information and position data of 23 
joints, including pelvis, L5, L3, T12, T8, neck, head, right and left shoulder, right and left upper arm, right and 
left forearm, right and left hand, right and left upper leg, right and left lower leg, right and left foot, right and left 
toe. All position data use the same coordination system (i.e., the origin and axis directions), as shown in Fig. 3. 
In addition, participant identification number (from 1 to 8) and trial identification number (from 1 to 14) were 
properly marked.

Eye-tracking data.  Eye-tracking data, such as gaze directions and eye movements, were saved in 112 excel 
files (8 participants × 14 trials). The collected data were exported with timestamps so that they can be further 
analyzed along with other measurements. In addition, a total of 112 videos (.MP4) recorded by the embedded 
scene camera are also available in the current dataset.

Participant data sheet.  Participants’ demographic data, trial conditions, and task durations were recorded 
in “Participant data sheet.docx”.

Technical Validation
Sensor placement.  Participants were required to wear tight clothes during the experiment to prevent sensor 
movement. As described in the Methods section, the placement of wearable sensors (i.e., IMU sensors and eye-
tracker) was according to the manufacturer’s instructions. In addition, before each experiment trial, the signal 
quality of each sensor was manually verified through the system’s acquisition software. Furthermore, the wearable 
sensors were attached by the same researchers for consistency.

Evaluation metrics of human trajectories.  To evaluate the quality of human trajectories recorded in 
the current dataset, methods proposed by Rudenko et al.40 were used to compute the tracking duration, trajec-
tory curvature, perception noise, and motion speed of each trial. The position of the IMU sensor on the pelvis 
was used for the calculation as it is nearly equivalent to the human body’s center of mass. All position data 

Metric The Current Study THÖR ETH ATC Edinburgh

Tracking duration (s) 143.7 ± 53.8 16.7 ± 14.9 9.4 ± 5.4 39.7 ± 64.7 10.1 ± 12.7

Trajectory curvature (m−1) 13.5 ± 39.7 1.9 ± 8.8 0.2 ± 1.5 0.8 ± 1.4 1.0 ± 3.9

Perception noise (m⋅s−2) 0.65 0.12 0.19 0.48 0.81

Motion speed (m⋅s−1) 0.21 ± 0.25 0.81 ± 0.49 1.38 ± 0.46 1.04 ± 0.46 1.00 ± 0.64

Table 3.  Comparison of datasets (results of the existing datasets were retrieved from Rudenko et al.40).

https://doi.org/10.1038/s41597-022-01802-8
https://doi.org/10.11922/sciencedb.01351
https://uf-retail-cobot-dataset.github.io/


7Scientific Data |           (2022) 9:673  | https://doi.org/10.1038/s41597-022-01802-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

were filtered by a low-pass filter (Butterworth, 2nd order, 6 Hz cut-off frequency, zero lag) before the calculation. 
Results were compared with existing relevant datasets: THÖR40, ETH15, ATC22, and Edinburgh17. As shown in 
Table 3, our dataset has a longer duration (143.7 ± 53.8 s) and a higher trajectory curvature (13.5 ± 39.7 m−1) 
when compared to other datasets. This indicates that the walking paths traversed by our participants are rela-
tively more complicated and non-linear. In addition, a relatively high perception noise (0.65 m⋅s−2) and slow 
motion speed (0.21 ± 0.25 m⋅s−1) were observed in the current dataset, which could be attributed to participants’ 
extended static period during the item searching phase of the task. The mixture of activities (e.g., walking and 
standing) in such a confined space with the presence of a mobile co-bot close by potentially further increased the 

Fig. 5  A demonstration figure of the video frame annotated by YOLO V5. The participant consented for the 
publication to utilize their likenesses.

Fig. 6  Participants’ trajectories under two robot conditions (without robot vs. alongside robot) during the order 
picking and sorting task and the inventory checking task.

https://doi.org/10.1038/s41597-022-01802-8
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trajectory curvature and perception noise, while lowering the overall motion speed as compared to simpler tasks. 
Overall, these analyses collectively validate the unique value our dataset can bring to the research community.

Usage Notes
Machine learning model training.  The video camera on the mobile robot recorded the surrounding envi-
ronment, which can be used to train varied computer vision based Machine Learning (ML) models. As a proof 
of concept, we deployed the YOLO V541, a state-of-the-art object detection architecture pre-trained on COCO 
dataset, on our video images. Results are interesting: pre-trained models can reliably detect the human worker 
and large objects in the scene with relatively high confidence. In terms of the items and products on the shelves, 
however, there is a considerable amount of false detection and failed detection (Fig. 5). To address the above 
problem and further fine-tune the ML models, more contextual based high quality video images are necessary. 
We hope that our initial efforts will result in  the emergence of a new wave of appropriate datasets.

Comparison of human trajectories between tasks and conditions.  Participants’ trajectories under 
two robot conditions (without robot vs. alongside robot) are plotted in Fig. 6 to show the deviation participants 
made during each task (e.g., order picking and sorting task and inventory checking task). In contrast to those 
tasks without the robot (Fig. 6a), participant trajectories during order picking and sorting alongside the robot 
(Fig. 6b) presented a more variant and deviant pattern. During inventory checking jobs, there is no appreciable 
variation in the trajectory patterns with or without the robot present. Meanwhile, there is no discernible differ-
ence in the trajectory patterns between the alongside and without robot conditions during inventory checking 
tasks. The extended duration of static standing required for inventory checking tasks may be one explanation 
for why no difference was found. It is possible that during the inventory checking tasks, the majority of potential 
human-robot collisions were avoided by the moving robot adjusting its trajectory rather than by the standing 
participants. Future follow up analysis is required to further confirm the rationale and uncover any intriguing 
behavior responses of participants when interacting with a robot.

Robot’s trajectory, participant’s trajectory, eye-tracking, and MOCAP data fusion.  By integrat-
ing outputs from both the robot and human motion tracking instrument, it was possible to investigate their 
collective motion patterns. Furthermore, by using the extra data dimension of the human physiological measure-
ment, a more detailed and precise spatial-temporal pattern analysis was able to be obtained. Figure 7 shows the 
integration of robot and human positions, eye-tracking information, as well as human 3D posture from one ran-
domly selected sample trial (P001_06). The robot’s positions (red dashed line) were estimated using the adaptive 

Fig. 7  Images on the left column show the mapping of human and robot positions at different time frames 
in the trial. In the middle are the screenshots from the eye-tracker at the corresponding frames. On the right 
column are the figures of the 3D human model created with Xsens MOCAP data. Frame A represents the 
participant’s first glance at the robot. Frame B represents the moment when the participant and the robot begin 
to avoid each other. Frame C shows the participant following the avoidance interaction, looking for an item on 
the shelf.
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Monte Carlo localization algorithm, which uses a particle filter to track the position of a robot through matching 
the point clouds to a known map42. The map of the retail environment was constructed by the robot prior to the 
experiment using lidar based gmapping approach33. Pelvis 2D positions extracted from the MOCAP data were 
used to determine the participant’s positions (blue dashed line).

Trajectories of both robot and participant were then overlaid on the map of the retail environment. In addi-
tion, by synchronizing the position data with the eye-tracking system using the timestamp, human and robot 
behaviors (e.g., obstacle avoidance) can be better visualized and investigated. The participant’s full-body posture 
at different time frames were also demonstrated using the 3D position data of 23 segments. In brief, this sample 
piece of data depicts a complete scene of a human participant meeting and avoiding a co-bot. The scene begins 
with the participant virtually identifying the robot, followed by a sequence of mental decision making and phys-
ical maneuvers to deviate from the previous trajectory and avoid a potential collision, and ends when the two 
agents successfully departed and returned back to their normal working modes. Our dataset will be valuable for 
roboticists to better design safe robot control strategies in human populated environments, especially in safety 
critical scenarios31, as well as for behavior scientists and human-systems researchers to better understand the 
human fundamental behavior when interacting with robots. For future work, in addition to the robot control 
scheme adopted in this study, we plan to test multiple robot navigation algorithms and collision avoidance 
strategies, such as Fuzzy control based navigation algorithms43, reinforcement learning based robotic navigation 
algorithms44. It would be interesting to investigate how effectively the robots operate and how people respond 
to them in a shared space.

Code availability
The following GitHub repository contains the custom MATLAB script (R2020a) for loading and visualizing robot 
trajectory and motion capture data shown in Fig. 7: https://github.com/UF-ISE-HSE/UF-Retail-HRI-Dataset.
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