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Rethinking clinical study data: why 
we should respect analysis results 
as data
Joana M. Barros   1,2,3 ✉, Lukas A. Widmer   1, Mark Baillie   1 ✉ & Simon Wandel   1

The development and approval of new treatments generates large volumes of results, such as 
summaries of efficacy and safety. However, it is commonly overlooked that analyzing clinical study 
data also produces data in the form of results. For example, descriptive statistics and model predictions 
are data. Although integrating and putting findings into context is a cornerstone of scientific work, 
analysis results are often neglected as a data source. Results end up stored as “data products” such as 
PDF documents that are not machine readable or amenable to future analyses. We propose a solution 
to “calculate once, use many times” by combining analysis results standards with a common data 
model. This analysis results data model re-frames the target of analyses from static representations 
of the results (e.g., tables and figures) to a data model with applications in various contexts, including 
knowledge discovery. Further, we provide a working proof of concept detailing how to approach 
standardization and construct a schema to store and query analysis results.

Introduction
The process of analyzing data also produces data in the form of results. In other words, project outcomes them-
selves are a data source for future research: aggregated summaries, descriptive statistics, model estimates, pre-
dictions, and evaluation measurements may be reused for secondary purposes. For example, the development 
and approval of new treatments generates large volumes of results, such as summaries of efficacy and safety from 
supporting clinical trials through the development phases. Integrating these findings forms the evidence base 
for efficacy and safety review for new treatments under consideration.

Although integrating and putting scientific findings into context is a cornerstone of scientific work, project 
results are often neglected or indeed not handled as data (i.e., the machine-readable numerical outcome from 
an analysis). Analysis results are typically shared as part of presentations, reports, or publications addressing 
a greater objective. The results of data analysis end up stored as data products, namely, presentation-suitable 
formats such as PDF, PowerPoint, or HTML documents populated with text, tables, and figures showcasing the 
results of a single analysis or an assembly of analyses. Contrary to data which can be stored in data frames or 
databases, data products are not designed to be machine-readable or amenable to future data analyses. An exam-
ple comparing a data product with data is given in Fig. 3. In this example, we illustrate how a descriptive analysis 
of individual patient data - in this case the survival probability by treatment over time - then becomes a new 
machine-readable data source for subsequent analyses. In other words, the results from one analysis becomes 
a data source for new analyses. This is the case for clinical trial reporting where the data analysis summaries 
from a study are rendered to rich text format (RTF) files that are then compiled into appendices following the 
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) 
E3 guideline1 where each appendix is a table, listing or and figure summary of a drug efficacy and safety evalu-
ation. The analysis results stored in these appendices - which can span 1000s of pages - are not readily reusable: 
extracting information from PDF files is notoriously difficult, and even if machine-readable formats (RTFs) are 
available, often some manual work is required since important (meta-)information is contained in footnotes for 
which no standard formats exist. There have been recent attempts to modernise the reporting of clinical trials 
including the use of electronic notebooks and web-based frameworks. However, while literate programming 
documents such as Rmarkdown allow documenting code and results together and R-shiny enables dynamic 
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data exploration, the rendered data products also suffer the same fate of presentation-suitable formats. In other 
words, modern data products also do not handle data analysis results as data. Although there is an agreement on 
which information should be shared as part of a data package and that sharing data can accelerate new discover-
ies, there is no proposed solution to facilitate the sharing and reuse of analysis results2.

A focus on results presentation over storage considerations sets up a barrier impeding the assimilation of 
scientific knowledge, understanding what was intended and what was implemented. As a repercussion, the sci-
entific process cycle is broken, leaving researchers who want to reuse prior results with three options:

	 1.	 Re-run the analysis if the code and original source data are accessible.
	 2.	 Re-do the analysis if only the original source data is accessible.
	 3.	 Manually or (pseudo-)automatically extract information from the data products (e.g., tables, figures, pub-

lished notebooks).

The first option would appear to be the best one and is, for instance, being implemented in Elife executable 
research articles3. However, being able to rerun the analysis does not guarantee reproducibility and can be computa-
tionally expensive when covering many studies, large data, or sophisticated models. Analyses can depend on technical 
factors such as the products used, their versions, and (hardware and software) dependencies, all of which affect the 
outcome. Even tailored statistical environments such as R4 have a wide range of output discrepancies and must rely on 
extensions, such as broom5 for reformatting and standardizing the outputs of data analysis.

For the second option, there are additional complications to account for: even if we assume that the entire analysis 
is fully documented, common analyses are not straightforward to implement. This option assumes that the complete 
details required to implement the analysis are documented, for example, in a statistical analysis plan (SAP). However, 
data-driven and expertise-driven undocumented choices are a hidden source of deviations that make reproducing or 
replicating the results an elusive task6. On top of this, the selective reporting of results limits replication of the complete 
set of performed data analyses (both pre-specified and ad-hoc) within a research project7–9.

The last scenario is common place for secondary research that combines and integrates findings of single, inde-
pendent studies, such as meta-analyses or systematic reviews. Following the Cochrane Handbook for Systematic 
Reviews of Interventions to perform a meta-analysis, to assess the findings, it is necessary to first digitize the studies’ 
documents either through a laborious manual effort or by using extraction tools known to be error-prone and requir-
ing verification10. Furthermore, the unavailability of complete results, potentially through selective reporting, requires 
researchers to extrapolate the missing results, which can lead to questionable reliability and risk of bias11.

Data management is an important, but often undervalued, pillar of scientific work. Good data manage-
ment supports key activities from planning and execution to analysis and reporting. The importance of data 
stewardship is now also recognized as an additional pillar. Good data stewardship supports activities beyond 
the single project into areas such as knowledge discovery, as well as the reuse of data for secondary purposes, 
to other downstream tasks such as the contextualization, appraisal, and integration of knowledge. Initiatives 
like FAIR set up the minimal guiding principles and practices for data stewardship based on making the data 
Findable, Accessible, Interoperable, and Reusable12. Likewise, the software and data mining community (e.g., 
IBM, ONNX, and PFA) have introduced initiatives bringing standardization to analytic applications, thus facili-
tating data exchange and releasing the researcher from the burden of translating the output of statistical analysis 
into a suitable format for the data product.

An important component of data management is the data model which specifies the information to cap-
ture, how to store it, and standardizes how the elements relate to one another. In the clinical domain, data 
management is a critical element in preparing regulatory submissions and to obtain market approval. In 1999 
the Clinical Data Interchange Standards Consortium (CDISC) introduced the operational data model (ODM) 
facilitating the collection, organization, and sharing of clinical research data and metadata13. In addition, the 
ODM enabled the creation of standards (Fig. 1) such as the Standard Data Tabulation Model (SDTM) and the 
analysis data model (ADaM) to easily derive analysis datasets for regulatory submissions. Owing to the needs 
at the different stages of the clinical research lifecycle, CDISC data standards reflect the key steps of the clinical 
data lifecycle. Although regulatory procedures were traditionally focused on document submission, there has 
since been a gradual desire to also assess the data used to create the documents14. CDISC data standards address 
this need; however, these standards only consider data from planning and collection, up to analysis data (i.e. 
data prepared and ready for data analysis). Therefore, the outcome of this paper can be viewed as a potential 

Fig. 1  CDISC defines a collection of standards adapted to the different stages in the clinical research process. 
For example, ADaM defines data sets that support efficient generation, replication, and review of analyses36.
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extension to the CDISC data standards and how not only individual patient data but also descriptive and infer-
ential results should be stored and made available for future reuse.

In this paper, we explore the concept of viewing the output of data analysis as data. By doing so, we address 
the problems associated with the limited reproducibility and reusability of analysis results. We demonstrate 
why we should respect analysis results as data and put forward a solution using an analysis result data model 
(ARDM), re-framing the analyses target from the applications of the results (e.g., tables and figures) to a data 
model. By integrating the analysis results into a similar schema with specific constraints, we would ensure anal-
ysis data quality, improve reusability, and facilitate the development of tools leveraging the re-use of analysis 
results. Taking meta-analyses again as an example, applying an ARDM would now only require one database 
query instead of a long process of information extraction and verification. Tables, listings, and figures could be 
generated directly from the results instead of repeating the analysis. Furthermore, storing the results as inde-
pendent datasets would also allow sharing information without the need for the underlying individual patient 
data, a useful property given data protection regulations in both academic and industry publications. Viewing 
analysis results as a data source moves us from repeating or redundantly recording results to a calculate once, use 
many times mindset. While we use the latter term focusing on results of statistical analyses for clinical studies, it 
can be seen as a special case of the more general concept of open science and open data, which aims at reducing 
redundancy in scientific research on a larger scale.

Results
Implementing the ARDM in clinical research.  The ARDM is adaptive and expandable. For example, 
with each analysis standard, we can adapt or create new tables to the schema. With respect to the inspection and 
visualization of the results, there is also the flexibility to create a variety of outputs, independent of the analysis 
standard. The proof of concept for the ARDM is implemented using the R programming language and a rela-
tional SQLite database; however, these choices can be revisited as the ARDM can be implemented using a variety 
of languages and databases. This implementation should be viewed as a starting point rather than a complete 
solution. Here, we highlight the considerations we took to construct the ARDM utilizing three analysis stand-
ards (descriptive statistics, safety, and survival analysis) and leveraging the CDISC Pilot Project ADaM dataset. 
Further documentation is available in the code repository. An overview of the requirements to create the ARDM 
is shown is Fig. 2.

Prior to ingesting clinical data, the algorithm first creates empty tables with specifications on the column 
names and data types. These tables are grouped into metadata, intermediate data, and results. The metadata 
tables are created to record additional information such as variables types (e.g., categorical and continuous) and 
measurement units (e.g., age is given in years). As part of the metadata tables, the algorithm also creates an anal-
ysis standards table requiring information on the analysis standard name, function calls, and its parameters. The 
intermediate data tables aggregate information at the subject level and are useful to avoid repeated data transfor-
mations (e.g., repeated aggregations) thus, reducing potential errors and computational execution time during 
the analysis. The results tables specify the analysis results information that will be stored. Note that the creation 
of the metadata, intermediate data, and result tables require upfront planning to identify which information 
should be recorded. Although it is possible to create tables ad hoc, a fundamental part of the ARDM is to gen-
eralize and remove redundancies rather than creating a multitude of fit-for-purpose solutions. Hence, creating 

Fig. 2  In clinical development, the analysis results data model enables a source of truth for results applied in 
various applications. Currently, the examples on the right require running analyses independently, even when 
using the same results.
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a successful ARDM requires understanding the clinical development pipeline to effectively plan the analysis by 
taking into account the downstream applications of the results (e.g., the analysis standard or the data products). 
As the information stored in the results tables is dictated by the data model, it is possible to inspect the results by 
querying the database and creating visualizations. In the public repository15, we showcase how to query the data-
base and create different products from the results. Furthermore, the modular nature of the ARDM separates 
the results rendering from the downstream outputs hence, updates to the data products do not affect the results.

Applications.  Analysis standards are a fundamental part of the ARDM to guarantee coherent and suitable 
outputs. They ensure that the results are comparable, which is not always the case. Similarly, where conventions 
exist (e.g., safety analysis), we can use an ARDM to provide structure to the results storage thus, facilitating access 
and reusability. In short, it provides a knowledge source of validated analysis results, i.e. a single source of truth. 
This enables the separation between the analysis and the data products, streamlining the creation of tables or 
figures for publications, or other products as outlined in Fig. 2.

Tracking, searching, and retrieving outputs is facilitated by having an ARDM as it enables query-based 
searches. For example, we can search based on primary endpoints “p-value”, “point estimates”, and adverse 
events incidence for any given trial present in the database. With automation, we can also select cohorts through 
query-based searches and apply the analysis standards to automate the creation of results using the selected 
data. This also facilitates decision-making and enhancements. For example, one can have access to complete 
trial results beyond the primary endpoint, and extrapolate to cohorts that require special considerations such as 
pediatric patients. In addition, a single source of truth for results encourages the adoption of more sophisticated 
approaches to gather new inferences, for example, using knowledge graphs and network analysis.

Case study: updating a Kaplan–Meier plot.  The Kaplan-Meier plot is a common way to visualize the 
results from a survival or time-to-event analysis. The purpose of the Kaplan-Meier non-parametric method is to 
estimate the survival probability from observed survival times16. Note that some patients might not experience 
the event (e.g., death, relapse); hence, censoring is used to differentiate between the cases and to allow for valid 
inferences. As a result of the analysis, survival curves are created for the given strata. For the CDISC pilot study 
which was conducted in patients with mild to moderate Alzheimer’s disease, a time-to-event safety endpoint, 
the time to dermatologic events, is available. Such time-to-event safety endpoints are not uncommon in practice 
since they allow understanding potential differences between the treatment groups in the time to onset of the first 
event. Since the pilot study involved three treatment groups – placebo, low dose, and high dose – it may be a good 
starting point to plot all groups first. Figure 3A shows a Kaplan-Meier plot with three strata corresponding to the 
treatments in the CDISC pilot study.

Even in the showcased scenario, we assume to have access to the clinical data, however, this might not be 
the case. Data protection is an important aspect of any research area. While data protection regulations have 
provided a way to share data and in return improve the reproducibility of experiments, in clinical research, 
sharing sensitive subject-specific data is impractical or simply not possible for legal reasons. Another option is 
to only share aggregated data or the analysis results. While this option can still bring privacy issues, for exam-
ple due to the presence of outliers, results are already widely shared in publications through visualizations like 
the ones shown in Figs. 3 and 4. For Kaplan-Meier plots, this has led to numerous approaches17–20 on extract-
ing/retrieving the underlying results data, since these are often required e.g. in health technology assessments 
or when incorporating historical information into actual studies (e.g., Roychoudhury and Neuenschwander 
(2020)21). In contrast to current practice, having an ARDM in place gives many options on what data to share to 
support results reusability in a variety of contexts. For example, even regulatory agencies can benefit from the 
ARDM since outputs such as tables, graphics and listings can be easily generated from the results without the 
need to repeat or reproduce analyses. From our experience, it is common to initially share results with limited 
people (e.g., within a team) where we do not give much importance to details like aesthetics. However, at a later 
stage, researchers need the results to update the visualization to suit a wider audience, or use this data for future 
research. In the Kaplan-Meier plot example, this requires reverse-engineering by using tools to digitize the plot 
and create machine-readable results.

Fig. 3  The Kaplan-Meier plot corresponds to a data product from a survival analysis (A). On the contrary, the 
data from the analysis is stored in a machine-readable format (B) allowing for updates to the Kaplan-Meier plot 
and for use in downstream analyses.

https://doi.org/10.1038/s41597-022-01789-2


5Scientific Data |           (2022) 9:686  | https://doi.org/10.1038/s41597-022-01789-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

A results visualization can appear in a variety of documents from presentation slides, an initial report, or 
a final publication, however, it is most likely not accompanied by the results used to create it. This hinders the 
reuse of the information (i.e., results) in the plot. A frequently encountered situation is illustrated in Fig. 4A, 
where one stratum is removed and the plot only shows two survival curves, for placebo and the high dose. This 
is not atypical in drug development, since after a general study overview, the focus is often on one dose only. 
While this update may seem trivial, from our experience, this task can require considerable time and effort due 
to the unavailability of the results. Without an analysis results data model or a known location where to find the 
results from the survival analysis, one must first locate the clinical data to perform the same analysis again. Then, 
search for and find the analysis code and the instructions to create the Kaplan-Meier plot. Eventually, one must 
repeat the analysis entirely. Thirdly, it is advisable to confirm whether the new plot matches the one we want to 
update; this is especially important if the analysis had to be redone as data transformations might have happened 
(e.g., different censoring than originally planned). Finally, one can filter the strata and create the plot in Fig. 4A.

Methods
The analysis results data model.  To create an analysis results data model, the first step requires thinking 
of the results of the analysis as data itself. Through this abstraction, we can begin organizing the data in a com-
mon model linking (e.g., clinical) datasets with the analysis results. Before we further introduce the ARDM it 
is necessary to clarify what an analysis and analysis results entail. An analysis is formally defined as a “detailed 
examination of the elements or structure of something”22. In practice, it is a collection of steps to inspect and 
understand data, explore a hypothesis, generate results, inferences, and possibly predictions. Analyses are fluid 
and can change depending on the conclusions drawn after each one of the steps. Nonetheless, routine analyses 
promote conventions that we can use as a foundation to create analysis standards. For example, looking at the 

Fig. 4  Employing an Analysis Results Data Model enables re-use at the results level rather than requiring source 
data. In this example, treatment arms can be removed (A), or additional summary statistics, such as the median 
survival time (B) or a risk table (C), can provide more context without repeating the underlying analysis.
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table of contents of a Clinical Study Report (CSR) we can see a collection of routine results summaries. Diving 
deeper into these sections, we can see the same or similar analysis results between CSRs of independent clinical 
studies, namely due to conventions1. For example, it is standard for a clinical trial to report the demographics and 
baseline characteristics of the study population, and a summary of adverse events. These data summaries may also 
be a collection of separate data analyses grouped together in tables or figures (i.e., descriptive statistics of various 
baseline measurements, or the incidence rates of common adverse drug reactions, by assigned treatment). Also, 
the same statistics, such as the number of patients assigned to a treatment arm, may be repeated throughout the 
CSR. Complex inferential statistics may also be repeated in various tables and figures. For example, key outcomes 
maybe grouped together in a standalone summary of a drug’s benefit-risk profile. Therefore, without upfront 
planning, the same statistics may be implemented many times in separate code.

The analysis results are the outcome of the analysis and are typically rendered into tables, figures, and listings 
to facilitate the presentation to stakeholders. Some examples of applications that can reuse the same results are 
present in Fig. 2 (right). Before the rendering, the results are stored in intermediate formats such as data frames 
or datasets. We can use this to our advantage and capture the results for posterior use in research by defining 
which elements to store and the respective constraints. This supports planning the analyses and the potential 
applications for the results, minimizing imprudent applications. An analysis results data model can be used to 
formalize the result elements to store and the constraints with the additional benefit of making the relation-
ships between the results explicit. For example, we can store intermediate results, generated after the initial 
analysis steps, and use them to achieve the final analysis results. Besides improving the reusability of results, 
and reproducibility of the analysis, establishing relationships enables retracing the analysis steps and promotes 
transparency.

Data standards are useful to integrate and represent data correctly by specifying formats, units, and fields, 
among others. Due to the many requirements in clinical development, guidelines detailing how to implement a 
data standard are also frequent and essential to ensure the standard is correctly implemented and to describe the 
fundamental principles that apply to all data. An analysis standard would thus define the inputs and outputs of 
the analysis as well as the steps necessary to achieve those outputs. While an analysis convention follows a gen-
eral set of context-dependent analysis steps, a standard ensures the analysis steps are inclusive (i.e., independent 
of context), consistent and uniform where each step is specified through a grammar23–25 or the querying syntax 
used in database systems. In Fig. 5, we compare the concepts behind an analysis standard with Wilkinson’s gram-
mar of graphics (GoG) data flow. Both follow an immutable order, ensuring that previous steps must be fulfilled 
to achieve the end result. For example, any data transformation needs to occur before we apply a formula (e.g., 
compute the descriptive statistics), otherwise, the result of the analysis becomes dubious. The collection of steps 
forms a grammar; however, each step also offers choices. For example, apply formula can refer to a linear model 
or Cox model. Wilkinson refers to this characteristic as the system’s richness by the means of “paths” constructed 
by choosing different designs, scales, statistical methods, geometries, coordinate systems, and aesthetics. In the 
context of the ARDM, analysis standards support pre-planning, compelling the researcher to iterate over the 
potential analysis routes and the underlying question the analysis should address. In general, it is good practice 
to write down the details of an analysis, for example using a SAP, with sufficient granularity that the analysis 
could be reproduced independently if only the source data was available. Thus, the analysis standards would 
translate the intent expressed in the SAP into clear and well-defined steps.

Analysis standards bring immediate benefits to the analysis data quality26,27 as it enables the validation of 
software and methods. With software validity, we refer to whether a piece of software does what it is expected 
and whether it clearly states how the output was reached. The validation of methods addresses whether the 
adequate statistical methodology was chosen. Due to its nature, this quality aspect is tightly related to other 
components of the clinical development process such as the SAP. In clinical development, standard operating 
procedures already cover many of these steps. However, they critically do not handle analysis results as a data 
source. Combining a data model with analysis standards would benefit clinical practice in four aspects:

	 1.	 Guaranteeing data quality and consistency across a clinical program, essentially creating a single source of 

Fig. 5  The analysis standard follows a grammar to define the steps in the analysis. Similarly, Wilkinson’s23 
grammar of graphics (GoG) concisely defines the components required to produce a graphic.
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truth designed to handle different levels of project abstraction. For example, from a single data analysis to a 
complete study, or a collection of studies.

	 2.	 Reusability by providing standardization across therapeutic areas and instigating the development of tools 
using the results instead of requiring individual patient data (e.g., interactive apps).

	 3.	 Simplicity as the analysis standard would encourage upfront planning and identify the necessary inputs, 
steps, and outputs to keep (e.g., reducing the complexity of forest plots and benefit-risk graphs summaries).

	 4.	 Efficiency by avoiding the manual and recurrent repetition of the analysis, and leveraging modularization 
and standardization of inferential statistics.

Analysis results datasets have been previously put forward as a solution to improve the uptake of graphics 
within Novartis, under the banner of graph-ready datasets28. Experienced study team leads often have imple-
mented it for efficiency gains, especially around analysis outputs that would reuse existing summary statistics, 
for example, to support benefit-risk graphs where outcomes may come from different domains. Our experience 
has also revealed an element of institutional inertia. Standardizing analysis and results requires upfront plan-
ning which is often seen as added effort. However, teams that have gone through the steps of setting up a data 
model and a lightweight analysis process, have found efficiency and quality gains in reusing and maintaining 
code, as well as verifying and validating results. Regarding inferential results, instead of using results documents 
or repeating an analysis, we can simply access a common database where these are stored. An ARDM also sim-
plifies modifications to the analysis (and consequently the results). With current practice, these changes might 
impact one function, program, or script in the best case, or multiple programs or scripts in the worst case. Using 
an ARDM only requires changes to one program as these can automatically propagate to any downstream anal-
yses. The validation is also simplified as we transition from comparing data products (e.g., RTF files and plots) 
to comparing datasets directly. Additionally, this brings clarity and transparency, and is suitable for automation.

Six guiding principles.  To create the ARDM we follow a collection of principles addressing the obstacles 
commonly faced during the clinical research process but also present in other areas. These principles are high-
lighted in Table 1 and broadly put forward improvements to quality, accessibility, efficiency, and reproducibility. 
On top of providing a data management solution, the ARDM compels us to take a holistic view of the clinical 
research process, from the initial data capture to the potential end applications. With this view, we have a clearer 
picture of where deficiencies occur and of their impact on the process.

The “searchable” principle refers to the easy retrieval of information by guaranteeing storage in a known, con-
sistent, and technically-sound way. As we previously highlighted, it is common to have vast collections of results 
with very limited searchability. For example, figures in a collection of PDF documents. A practical solution is to 
have a data model to store the information consistently. In turn, this supports using a database that is by default 
more searchable than the PDF documents. With “searchable” in place, one can apply the “interoperable”, “nonre-
dundant”, and “reusable and extensible” principles. In practice, this includes the use of consistent field names to 
store data in the database (e.g., the column “mean” has the mean value stored as a numeric value). The resulting 
coherent database is system-agnostic and can be queried through a variety of tools such as APIs. Thus, the data 
storing process supports straightforward querying which in turn can be used to avoid storing redundant results. 
Overall, this facilitates the use of the stored (results) data for primary analysis (i.e., submission to regulators) and 
secondary purposes (e.g., meta-analysis) but also allows for extensions of the data model granted the current 

Principle Justification

Searchable

• Consistent location to track and find results (i.e., knowledge source).

• Support search across results.

• Coherent querying through tools such as APIs.

• Accessible to data consumers and users.

Nonredundant

• Designed to acknowledge the grammar of data analysis (i.e., estimate, store, retrieve, render).

• Avoid repetitions (i.e., scripts and results).

• Control technical debt.

• Establish a single source of truth.

Separation of concerns
• Modularizes workflows to facilitate updates and expansion.

• Streamline validation and verification.

Reusable and extensible

• Primary use: support ready-to-use outputs (e.g., plots for clinical reports).

• Secondary use: reusable for subsequent analyses (e.g., meta-analysis and systematic reviews).

• Supports future extensions (e.g., novel outputs and updates to known applications).

Interoperable

• Results and metadata are stored in a consistent data format.

• Results are represented by common or shared vocabularies (i.e., following a data model).

• Enables standardization of outputs across programming languages bypassing language-specific conventions.

Community-driven
• Consensus building and accessible within and across organizations.

• Standards and tools are open, designed by and for the scientific community.

Table 1.  The analysis results data model (ARDM) follows six principles broadly addressing the challenges in 
ensuring reproducible, traceable, reusable, and interoperable results.
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model constraints are respected. The “separation of concerns” refers to having the analysis (i.e., analysis code) 
separated from the source data, the results (e.g., from a survival analysis as shown in Fig. 3B), and the data prod-
ucts (e.g., the Kaplan-Meier plot in Fig. 3A). Finally, the “community-driven” principle ensures that the ARDM 
can be used pervasively, for instance, such that locations for tracking and finding results are not just multiplied 
across organizations but are community-developed and ideally lead to a single, widely accepted resource that 
can be searched as pioneered by the EMBL GWAS Catalog.

In many industries where sub-optimal but quick solutions are preferred, technical debt is a growing prob-
lem. While some amount of technical debt is inevitable, understanding our processes can point us to where to 
make progressive updates and improvements. For example, upfront planning using analysis standards would 
reduce this debt by default as our starting point are previously verified and validated analyses (i.e., analysis 
standards). In an effort to continue reducing the debt, the ARDM separation of concerns principle streamlines 
changes and updates to processes since the analysis, results, and products are separate entities. Standardizing 
how to store results enables the use of different programming languages to perform analysis with traditionally 
non-comparable output formats (e.g., SAS and R). Furthermore, we believe the ARDM should grow organically 
and community-driven, supporting consensus building and cross-organization access.

Discussion
The ARDM provides a solution to handle analysis results as data by creating a single source of truth. To guar-
antee the accuracy of the source, it leverages analysis standards (i.e., validated analyses) with known outputs 
which are then organized in a database following the proposed data model. The use of analysis standards sup-
ports the pre-planning of analyses, compelling the researcher to iterate on the best approach for analyzing the 
data, and potentially deciding to use pre-existing and appropriate analysis standards. Considering the ARDM 
from the biomedical data lifecycle view (e.g., through the lens of the Harvard Medical School’s Biomedical 
Data Lifecycle), the ARDM touches the documentation & metadata, analysis ready datasets, data repositories, 
data sharing, and reproducibility stages. However, we take the point of view of a clinical researcher (both data 
consumer and producer) who sees the recurring problem of having to extract results data from published work. 
Therefore, in the context of the clinical trial lifecycle2, extending CDISC with the ARDM would touch on all of 
the biomedical data lifecycle phases as the ARDM relies on details present in supporting documents like the 
statistical analysis plan and data specifications.

The concept of creating standards through a common data model is recognised as good data management 
and stewardship practice. A few examples include the Observational Medical Outcomes Partnership data 
model, a standard designed to standardize the structure and content of observational data29 and the Large-scale 
Evidence Generation and Evaluation across a Network of Databases research initiative to generate and store 
evidence from observational data30. The data model created by the Sentinel initiative, led by the Food and Drug 
Administration (FDA), is tailored to organize medical billing information and electronic health records from a 
network of health care organizations. Similarly, the National Patient-Centered Clinical Research Network also 
established a standard to organize the data collected from their network of partners. Finally, expanding the 
search to translational medicine, the Informatics for Integrating Biology and the Bedside introduced a standard 
to organize electronic medical records and clinical research data31.

Alongside data models, standard processes have been established to generate analysis results such as the 
requirement to document analyses in SAPs32, including all data transformations from the source data to analysis 
ready data sets. However, analyses can be complex and dependent on technical factors, such as the statistical 
software used, as well as undocumented analysis choices throughout the pipeline, from source data to result. 
Even less complex routine analyses are error-prone and might not be clearly reproducible. Altogether, this pro-
cess is time and resource-consuming. A proposed solution is to perform the analysis automatically. With this in 
mind and targeting clinical development, Brix et al.33 introduce the ODM Data Analysis, a tool to automatically 
validate, monitor, and generate descriptive statistics from clinical data stored in the CDISC Operational Data 
Model format. The FDA’s Sentinel Initiative is also capable of generating descriptive summaries and performing 
specific analysis leveraging the proprietary Sentinel Routine Querying System.

Following this direction, the natural progression would be to create a standard suited for storing analysis 
results. Such an idea is implemented in the genome-wide association studies (GWAS) catalogue where cura-
tors assess GWAS literature, extract data, and store it following a standard including the summary statistics. 
Taking a step in this direction, CDISC began the 360 initiative to support the implementation of standards as 
linked metadata in an attempt to improve efficiency, consistency, and reusability across the clinical research. 
Nonetheless, the irreproducibility of research results remains an obstacle in clinical research and has brought up 
calls for global data standardization to enable semantic interoperability and adherence to the FAIR principles34. 
In our view, analysis standards and the ARDM are an important contribution to this initiative.

An important aspect which we did not explicitly discuss is the quality of the (raw/source) data which will 
ultimately serve as the source of any analyses for which results dataset are created through the ARDM. While the 
ARDM can be seen as a concept naturally tied to the CDISC philosophy, which is most prominently used in drug 
development studies that are conducted in a highly regulated environment with rigorous data quality standards, 
its applicability goes far beyond. For example, analyses conducted on open health data could also benefit from 
the ARDM, which would help to simplify traceability, exchangeability and reproducibility of analysis results. 
However, when working with these kind of data, understanding the quality of the underlying raw data is of para-
mount importance. In particular, since the ARDM will make analysis results more easily accessible and reusable 
also to an audience who may only have a limited understanding of how to assess the quality of the underlying 
raw data. In this wider context, it may beneficial to use data quality evaluation approaches that were developed 
for a non-technical audience or for an audience without subject-matter (domain) expertise35. This will allow the 
audience to interpret the results taking the quality of the underlying raw data into account.
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Utilizing the proposed ARDM has a set of requirements. Firstly, the provided clinical data must follow a 
consistent standard (i.e., CDISC ADaM). Our solution involves automatically populating a database, hence there 
are expectations regarding the structure of the data. Similarly, data standards are necessary to enable analysis 
standards. If the analysis input expectations are not met, the analysis is unsuccessful and no results are produced 
or stored. Further, when a data standard is updated it is necessary to also update the analysis standards and the 
ARDM accordingly. Another limitation is the necessity of analysis standards. Without quality analysis standards, 
the quality of the source of truth is not guaranteed. Creating analysis standards requires a good understanding 
of the analysis to correctly define the underlying grammar and identify relevant decision options for the user 
(e.g., filter data before modeling). The third limitation corresponds to the applications. At the moment, the 
ARDM stores and organizes results in a suitable way to reuse in known applications (e.g., creating plots, tables, 
and requesting individual result values). As future applications are unknown, the data model might not store all 
the information needed. However, given the ARDM modular approach, it is only necessary to update the result 
information to be kept rather than updating the entire workflow. Another limitation refers to the supported 
data modalities. The proposed ARDM is implemented on tabular clinical trial data. However, it is possible to 
adapt the ARDM and design choices (e.g., type of database) to support diverse data. For example, the summary 
statistics present in the genome-wide association studies (GWAS) catalog could be stored following an ARDM.

The current option to share and access clinical trials results is ClinicalTrials.gov. Nonetheless, this is a repos-
itory and does not permit querying results as these are not stored as data (i.e., a machine-readable dataframe). 
The ARDM is an attempt to bring forward the problem of reproducibility and the lack of a single source of truth 
for analysis results. With it, we call for a paradigm shift where the target for the data analysis becomes the data 
model. Nonetheless, we understand the ARDM limitations and view it as one solution to a complex problem. We 
believe the best way to understand how the ARDM should evolve, or to shape it into a better solution, is to hear 
the opinions of the community. Hence, our underlying objective is to get the community’s attention, discover 
similar initiatives, and converge on how to move forward in establishing analysis results as a data source to sup-
port future reusability and knowledge discovery.

Data availability
The CDISC Pilot Project ADaM ADSL, ADTTE, and ADAE datasets were used to support the implementation 
of the analysis results data model. This data can be found at the PHUSE scripts repository (https://github.com/
phuse-org/phuse-scripts/blob/fa55614d7d178a193cc9b6e74256ea2d8dcf5d80/data/adam/TDF_ADaM_v1.0.zip) 
and at the repository supporting this manuscript15.

Code availability
The implementation of the analysis results data model is available on Github15. This repository exemplifies how 
to construct the data model and the respective schema, as well as shows how to query the underlying database. 
Furthermore, we provide three output examples to visualize the results.
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