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Integrated analyses reveal 
evolutionarily conserved and 
specific injury response genes in 
dorsal root ganglion
Lian Xu1,4, Zhifeng Chen1,4, Xiaodi Li2,4, Hui Xu3, Yu Zhang2, Weiwei Yang2, Jing Chen1, 
Shuqiang Zhang1, Lingchi Xu1, Songlin Zhou1, Guicai Li1, Bin Yu1, Xiaosong Gu1,2 ✉ &  
Jian Yang  1 ✉

Rodent dorsal root ganglion (DRG) is widely used for studying axonal injury. Extensive studies have 
explored genome-wide profiles on rodent DRGs under peripheral nerve insults. However, systematic 
integration and exploration of these data still be limited. Herein, we re-analyzed 21 RNA-seq datasets 
and presented a web-based resource (DRGProfile). We identified 53 evolutionarily conserved injury 
response genes, including well-known injury genes (Atf3, Npy and Gal) and less-studied transcriptional 
factors (Arid5a, Csrnp1, Zfp367). Notably, we identified species-preference injury response candidates 
(e.g. Gpr151, Lipn, Anxa10 in mice; Crisp3, Csrp3, Vip, Hamp in rats). Temporal profile analysis reveals 
expression patterns of genes related to pre-regenerative and regenerating states. Finally, we found a 
large sex difference in response to sciatic nerve injury, and identified four male-specific markers (Uty, 
Eif2s3y, Kdm5d, Ddx3y) expressed in DRG. Our study provides a comprehensive integrated landscape 
for expression change in DRG upon injury which will greatly contribute to the neuroscience community.

Introduction
Unlike extremely limited regenerative capacity in CNS neurons upon injury, neurons in the peripheral nervous 
system (PNS) could regrow damaged axons and reinnervate targets1. However, this process is often incomplete 
and leads to sensory dysfunction and neuropathic pain (NP) in humans2. Understanding the cellular and molec-
ular changes of damaged neurons responding to axonal injury is key to developing effective therapies against 
nerve injury and NP1,2. Dorsal root ganglion (DRG) neurons are unique in morphology with the cell body in 
the spinal nerve and axons bifurcate into a peripheral branch and a central branch, connecting peripheral target 
tissues and the spinal cord and conveying sensory information3. Besides, DRG neurons have a phenomenon 
called “conditioning” that activation of a transcriptional program after peripheral nerve injury (PNI) permits a 
robust regenerative response to the second insult of either the peripheral or central axon4. Current knowledge 
about molecular and cellular mechanisms on axon regeneration and NP development was most identified from 
rodent models. The common axonal injury models in rodents include damage (e.g. transection, ligation, crush) 
of two of three terminal branches of the sciatic nerve (SNI, leaving the sural nerve intact), spinal nerve (SpNI) 
and sciatic nerve (ScNI) (Fig. 1a). The former two are most used to establish NP models while the last specifi-
cally crush of the sciatic nerve is used to establish nerve regeneration models5,6.

Microarray and RNA-seq, together with the recent advance of the single-cell transcriptome (scRNA-seq) 
have provided genome-wide profiles of genes at tissue or cell resolution in the development and disease7,8. 
Extensive studies employed microarray and/or RNA-seq or scRNA-seq of DRGs have identified a variety of 
key molecules in regard to regeneration or NP in mice and/or rats under similar or different PNIs4,9–30, such as 

1Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of 
neuroregeneration, nMPA Key Laboratory for Research and evaluation of tissue engineering technology Products, 
Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China. 2nanjing University of chinese Medicine, 
nanjing, china. 3Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare 
Hospital of Nantong University, Nantong, Jiangsu, China. 4these authors contributed equally: Lian Xu, Zhifeng chen, 
Xiaodi Li. ✉e-mail: nervegu@ntu.edu.cn; dna2009@ntu.edu.cn

ANALYSiS

OPEN

https://doi.org/10.1038/s41597-022-01783-8
http://orcid.org/0000-0001-6318-8854
mailto:nervegu@ntu.edu.cn
mailto:dna2009@ntu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-022-01783-8&domain=pdf


2Scientific Data |           (2022) 9:666  | https://doi.org/10.1038/s41597-022-01783-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

L3

L4

L5

L6

DRG

Spinal nerve

Sciatic nerve

Saphenous nerve

Pero
neal nerv

e

Tibial n
erv

e
Sural nerve

Spar
ed

 ner
ve i

nju
ry

(S
NI) Sciatic nerve injury

(ScNI)

Spinal nerve injury
(SpNI)

a

ipsilateral

Spinal cord

b
Data collection

c
2455
2219
2853
3048
2389
505

1426
287
285
456

1481
2087
2261
637
436
374
607

1493
24

239
718
540

1456
335
181
650

1451
121
518

1060
1548
1158
426
647
396
479
168
138
214
153
Up

2008
2294
2454
2955
2247
313

1712
160
147
208
959

1461
1706
193
144
87

122
1144

80
162
213
261
869
53
51

508
1290

26
230
803

1586
944
183
314
139
143
49
48

136
55

Down

injury model

injury tim
e

sexual study
strain

species
year

SRP accession
neuron

PubMed

Sp
N

I
Sc

N
I

SN
I

rat 2010

2015
2014
2019

2019

2020

2020

2020
2016

2021

2015

2017

2018

2018

2018

2019

2019

2019

2019

2019

rat
rat
rat

rat

mouse

mouse

mouse

mouse

mouse

mouse

mouse

mouse

mouse

mouse
mouse

mouse

mouse

mouse

rat

rat

14d

14d
14d
1d
3d
7d

7d
1d
4d
7d
3d
9h
1d

1d
1d
1d

1d
3d
3d

3d
7d
7d
28d
28d
28d
28d

3/7d
1d

12h

7d
7d

4d
7d

5d
5d
5d

21d

21d
7d

2m

C57

C57

C57

C57

C57

C57

C57

C57

C57

C57

C57

SD

SD

SD

SD

SD

CAST
DBA

BALB/c

BALB/c

B10.D2

Wistar
Wistar

CAST;C57

ligation

transection

cci

crush

ligation

transection

2016

SRP002416

SRP044030
SRP034868
SRP125336

SRP109547

SRP268785

SRP056393

SRP044619

SRP134051

SRP182089

SRP200823

SRP055201
SRP154895
SRP102543

SRP332955

SRP157873

SRP253717
SRP061708

SRP115543

SRP133622

SRP125336

*

*

*

*

d

DEGs occur in rat groupsDEGs occur in mouse groupsDEGs occur in four groups

Gpr151
Fgf3
Slc6a4
Lipn
Anxa10

0
1
2
3
4
5
6

injury
sham

ScNI
SNI

SpNI
lo

g 2(e
xp

re
ss

io
n+

1)

Stac2
Tgm1
Hamp
Csrp3
Vip
Ptprh
Crisp3

treat
models

treat
models treat

models

e

12
h1d 1d 1d28
d

28
d1d 1d28
d

28
d5d 5d 7d

3/
7d 3d 3d 7d 7d 7d 7d4d 5d 3d 3d 7d3d 1d 1d

9h1d14
d4d7d14
d

2m14
d7d21
d7d21
d

RegenerationPain

Injury

InjuryPain

Pain
Injury

Data preprocessing
bulk RNA-seq

Data analysis

Data sharing

(GEO/SRA: “dorsal root ganglion” AND “injury”)

Bioinformatic analysis

(Alignment, quantification,

quality-check etc)

(Ortholog identification,

differential expression,

expression pattern etc)

DRGProfile(Shiny App)

Biological 
interpretation molecular signatures upon PNI

(robust DEGs, species predominance
sex predominance, expression patterns etc)

genome
annotation

rodent DRG tissue or bulk neurons

D1
D2
D3
D4
D5

D6

D7

D8

D9

D10

D11

D12
D13
D14
D15

D16

D17
D18

D19

D20

D21

DEG number dataset informationNo.
20452967

26551542
24472155
30335683

30782122

33263277

26004914

28626869

30401432

31182472

31624232

27720483
31858405
29434374

34966260

30735704

32320663
27558660

29386116

30763288

30335683

NpySprr1a Atf3

GalCckbr Ecel1

Gadd45a

Sox11
Flrt3

Crh

Gpr151

Anxa10

Fgf3

Lipn

Slc6a4

Igfn1

Gm5152

Fst

Kcnk16

Nts

Sez6l

Slfn9Wfdc3

Lmo7

Tmprss11f

Acvr1c

Adcyap1

Gfap

Igfbp3
Mcoln2

Sema6a

Smim3

Stmn4

Btc
Gm45194

Ly6a

Antxrl

Clca3a2

Crlf1

Dsp

Fam151a

Fgd3

Glis3

Hrk

Met

Pkd2l1

Tex16

Tnc

Vgf

Npy
Sprr1a

Atf3 Gal

Cckbr
Ecel1

Ankrd1

Gadd45a Sox11

Flrt3

Il24

Crh

Pde6b

Gpr151

Anxa10

Fgf3

Lipn

Slc6a4

Igfn1

Gm5152

Fst

Reg3b

Kcnk16

Nts

Sez6l

Slfn9

Wfdc3Lmo7

Tmprss11f

Il6
Acvr1c

Adcyap1

Gfap

Igfbp3

Mcoln2

Sema6a

Smim3

En1

Ucn

Stmn4

Alkal2

Gadd45g

Socs3

Procr

Tmem88bTnfrsf8

Car1

Serpine1

Areg

Reg1

Cd207

Star

Tubb6

Rin1

Rnf183

Saa1

Sectm1b

Sh2d1b2

1700003F12Rik

Abra

Adgrd1
Aim2

Anxa1

Bdnf

Car3

Card14Cbr2 Colec10

Cryba2

Csf1

Cx3cr1

Cyp26a1

Fcgr2b

Fcrls

Folr2

Gfra1

Gm7298

Grp
Ifi202b

Ifi213

Ifit1

Itk

Jun

Liph
Lmx1a

Loxl2

Ly6g

Mcoln3

Mmp16

Mrgprb4

Ms4a4c

Mylk4

Oas2

Oas3

Phox2a

Plaur

Plin2

Pmaip1

Prc1

Prokr2

Rnf122

Sbno2

Serpinb1a

Serpinb1c

Slc15a3 Slc18a3

Slc1a7

Slc6a19

Speer4b

Steap1

Tifa

Timp1

Tnfrsf12a

Trim15

Npy
Sprr1a

Atf3 Gal

Ankrd1
Gadd45a Sox11

Flrt3
Il24

Crh

Pde6b

Vip

Reg3b Crisp3

Serpina3n

Stac2 Csrp3

Tgm1

Hamp

Cldn4

Ptprh

Il6

Hpd

Serpinb2

Alkal2

Gadd45g

Socs3

Has1

Tslp

Il12rb2

Lce1f

Ccl2

Cyp2s1
Fabp4

Gsta1

LOC108351097

LOC120100841

LOC685699

Mb

Mroh4

Myh1

Myh2

Nat8f3

RGD1359290

RT1−Ba

RT1−Bb

RT1−Da

RT1−Db1

Rps12l2

Sdc1

Tmc2

Tnfaip6

Vhll

Npy Sprr1a
Atf3

Gal

Cckbr

Ecel1Ankrd1

Il24

Pde6b

Vip

Crisp3
Serpina3n

Stac2

Csrp3

Tgm1

Hamp

Cldn4

PtprhEn1

Ucn

Hpd
Serpinb2

Has1

GzmbCxcl14

Cck
Cd68

Cuedc2

Draxin

Gpnmb

Hmga2

Igsf23
Lsmem1

Mpo

Msln

Ngp
Pou3f1 Slc30a3 Tacstd2

Thbs2

Vtcn1

SNI ScNI(mouse) ScNI(rat) SpNI

DEGs occur in three groups

Fig. 1 Analysis of the top 15 up-regulated genes in comparisons of injured rodent DRG with the control reveals 
species-preference in response to nerve injury. (a) The schematic illustration for peripheral nerve injury models 
employed in collected RNA-seq datasets. (b) The schematic illustration of the data processing in this study. (c) 
The number of differentially expressed genes (DEGs) and detailed information of 20 studies (21 datasets). Star 
indicated bulk RNA-seq of sensory neurons. cci, chronic constriction injury; d: days, h: hours, m: months; SD, 
Sprague-Dawley; CAST, CAST/Ei; C57: C57BL/6. (d) The wordcloud plots showed the frequency of the top 
15 ranked up-regulated DEGs from each comparison within four groups (SNI and ScNI from mice and ScNI 
and SpNI from rats). Red-labeled genes indicated occurrence in four groups; pink-labeled genes indicated 
occurrence in three groups; blue-labeled genes indicated occurrence only in mouse groups; green-labeled genes 
indicated occurrence only in rat groups. (e) The expression of genes from mouse-preference (top panel) or rat-
preference (bottom panel) in response to injury across each dataset. Only injured timepoints in the injury group 
from mice (top panel) or rats (bottom panel) were shown.
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regeneration-associated genes (RAGs), Atf3, Jun, Hsp27, Sprr1a, Gap43. However, systematic integration and 
exploration of these public data are still limited. In addition, genome-wide comparison for identification of 
molecular similarities in DRG upon distinct axonal injuries (SNI, ScNI, SpNI) is also rare. A pilot study has inte-
grated several microarrays of rat DRGs at different injured timepoints upon PNIs and performed a systems-level 
analysis of the regulatory network involved in axon regrowth after injury31. Species difference in response to 
nerve injury has been investigated between Schwann cells from human and mice32. Acting as the most com-
monly used pre-clinical injury models, genome-wide molecular evolutionarily conserved, and the difference 
between rats and mice in response to axonal injury is still being rarely discussed. A better understanding of 
molecular similarity and differences responding to nerve injury in these pre-clinical animals may contribute to 
screening more effective targets in the development of drugs for neural repair and NP.

To initially explore these, we performed a thoroughly integrated analysis of public expression profiles of 
rodent DRGs upon nerve injury in this study. Considering the limitations of microarray depending on prior 
probe design and inconsistency of array platforms and low accuracy in low expressed genes8, we only collected 
and re-analyzed public RNA-seq datasets of rodent DRGs upon PNIs (including SNI, ScNI, and SpNI) using a 
universal standard. Datasets with a low-quality were discarded and 21 public RNA-seq datasets from 20 inde-
pendent studies4,10–15,17–29 were finally kept for the whole analysis. To aid in interpreting these data, we also 
re-analyzed other datasets (including profiles of sensory neurons upon injury14, profiles of sciatic nerve upon 
crush injury33, and long-term time-series profiles of the spinal cord in development34 and injury35). We defined 
a robust differential expression gene (DEG) which showed differential expression in most injured groups than 
the corresponding control group (sham-operated or naïve groups). We detected 53 robustly up-regulated genes 
across species and injury models, including well-documented RAGs (Atf3, Npy, Gal) and other less-studied 
transcriptional factors (TF, e.g. Csrnp1, Arid5a, Zfp367). We also found that some well-documented genes with 
dramatic changes upon injury presented species-preference manners at the transcriptional level, such as Hamp, 
Vip, Serpina3n in rats, and Gpr151 in mice. In addition, we also explored gene expression patterns specifically 
pre-regeneration and regenerating related genes by re-analysis of the time-series RNAseq datasets. We also ini-
tially explored sex differences in response to injury and identified four male-specific markers expressed in DRG. 
Finally, we present a web-based application for exploring gene expression change in rodent DRGs upon nerve 
injury to aid the development of novel therapeutics for neural repair and neuropathic pain.

Results
Overview of public RNA-seq of rodent DRG tissue or sensory neurons under distinct PNis. We 
collected 21 bulk RNA-seq datasets of rodent DRGs (tissue or sensory neurons) upon PNI (SpNI, ScNI, and SNI) 
from 20 studies with injury-time points ranging from hours (3 h, 9 h, 12 h) to months (2 m) which focused on 
nerve regeneration or neuropathic pain4,10–15,17–29 (Fig. 1 and Supplementary Table 1). Only libraries related to 
injury or control were kept for each dataset (Supplementary Table 2 available at Figshare). We next performed a 
uniform pipeline to re-analyze, including quality-control, mapping against the reference genome, gene expression 
quantification, and differential expression (DE) analysis (Fig. 1b and Method). The ScNI is the most investigated 
rodent model with thirteen datasets and species including rats and mice. Three datasets and four datasets inves-
tigated profiles of DRG in SNI (mice) and SpNI (rats) models, respectively. To explore molecular characters and 
expression patterns in DRG upon axonal injury, we only investigated time points with significant up-regulation 
of Atf3, a neuronal injury marker36. DE analysis was performed using the injury group compared to the sham or 
naïve group (defined as the control group) and results showed that Atf3 was significantly up-regulated at as early as 
9 h, thus we focused on injured timepoints ranging from 9 h to 2 m. 1d, 3d,and 7d (days) post-injury are the most 
investigated time points. Five datasets investigated time-series (at least three injured time points were considered) 
within the first seven days upon injury, species strains, and gender differences were investigated in two datasets 
and four datasets respectively. DE analysis showed a vast of molecular changes in the SpNI model and a small 
number of DEGs in the SNI model, while varied DEG numbers were detected in the ScNI compared to the corre-
sponding control groups (Fig. 1c). We next ranked DEGs in each comparison of datasets by adopting the π-value 
metric37 which considers both significance (e.g. adjusted P-value) and log-transformed fold-change (LFC) for 
datasets with biological replicates while only LFC for datasets without biological replicates (Supplementary Figs. 1 
and 2). We found three well-known injury-induced genes (Atf3, Npy, Gal) that showed a high frequency of the 
top-ranking DEGs (Fig. 1d). However, we found several genes with a high frequency of the top-ranking DEGs that 
showed species-preference manners featured with a dramatic change in mice (rats) while a small change in rats 
(mice) upon injury, such as Gpr151, Anxa10, Slc6a4, Lipn, Fgf3 in mice, while Stac2, Ptprh, Hamp, Crisp3, Tgm1, 
Vip, Csrp3 in rats (Fig. 1d,e). We found a similar low expression level of these injury-induced genes in the con-
trol group from mice and rats, except for Stac2, while a different response specifically in the late post-injury (e.g. 
3d~7d) with either up-regulated in mice or rats. Some of which have been documented with roles (lipid metab-
olism: Lipn; calcium channel related: neuronal Stac2; immune and inflammation: Anxa10, Ptprh (also known as 
SAP-1)38, Crisp3 39; actin cytoskeleton: Csrp3; neuroprotective peptides: Vip and Hamp; cell proliferation: Tgm1) 
in axonal injury, axonal regeneration (Gpr151, Slc6a4), or neuropathic pain (Gpr15140, Anxa1041). We also found 
that mouse-preference top ranking genes (Anxa10, Slc6a4, and Lipn) showed dramatic changes in mouse sensory 
neurons collected from in vivo post-injury than that from in vitro after plating4 (Supplementary Fig. 3).

identification of robust differential expression genes (DEGs) in response to axonal injury. To 
systematically investigate expression patterns of DEGs in either SNI, ScNI, or SpNI from rats and mice compared 
to the control group, we adopted a uniform threshold (adjusted P-value ≤ 0.05 and |log2

fold-change| ≥ log2
1.5) and 

calculated the frequency of DEGs. DEGs with a frequency ≥50% of compared groups in either up-regulated or 
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down-regulated were defined as robustly up or down-regulated. We next deeply explored robust DEGs in DRG 
from mice and rats upon SNI, ScNI, and SpNI, separately.

Eight comparisons from three studies investigated profiles of mouse DRG upon SNI regarding a time-series 
(1d, 3d,and 7d), strain, and gender (female and male). We identified 233 genes that were robust up-regulation 
and 49 genes that were robust down-regulation, respectively (Fig. 2a,b, and Supplementary Table 3 available at 
Figshare). Of which, 18 and 4 transcription factors (TFs) showed robust up-regulation and down-regulation 
respectively. Twenty comparisons from eleven studies investigated expression profiles of mouse ScNI, including 
the conditions of time-series, strain, and sex at tissue or neuron level. We identified 477 robustly upregulated 
genes and 193 robustly downregulated genes respectively (Fig. 2a,b and Supplementary Table 3 available at 
Figshare). Of which, 28 and 16 TFs were robustly up-regulated and down-regulated respectively. Analysis of 
robust DEGs in mice upon SNI and ScNI showed 206 (88.4% of mouse SNI) and 43 (87.8% of mouse SNI) DEGs 
were commonly upregulated and downregulated respectively (Fig. 2a,b and Supplementary Table 4 available 
at Figshare). Functional enrichment analysis showed robustly up-regulated genes in mice upon injury were 
significantly enriched in terms related with the inflammatory response (e.g. cytokine production, cell adhesion, 
migration) while down-regulated genes were consistently involved in potassium ion transport (Fig. 2c).

Seven comparisons from three studies investigated profiles of rat DRG upon ScNI. We identified 217 robust 
upregulated and 39 robust downregulated DEGs respectively (Fig. 2d,e and Supplementary Table 3 available at 
Figshare). Of which, 12 TFs showed robust up-regulation. Five comparisons from four studies investigated pro-
files of rat DRG upon SpNI. Different with the number of robust DEGs detected in SNI and ScNI models, a larger 
number of DEGs (2,419 up-regulation and 2,270 down-regulation) were identified in the SpNI model (Fig. 2d,e 
and Supplementary Table 3 available at Figshare). A relatively large number of up-regulated DEGs (187, 86.2% 
of rat ScNI) were detected in both rat ScNI and SpNI models while a small number of down-regulated DEGs 
(2, 5.1% of rat ScNI, Fig. 2d,e and Supplementary Table 4 available at Figshare). Functional enrichment analysis 
showed the most enriched terms in robust up-regulated genes, including wound healing, immune cell activa-
tion, cell adhesion, and cytokine production (Fig. 2f).

To further screen rodent conserved injury-related genes, robust DEGs occurred in both rat and mouse SNI, 
ScNI, and SpNI models were selected. We observed a certain number of up-regulated genes (53 DEGs) while 
only Vstm2b (V-set and transmembrane domain-containing protein 2B) showed commonly down-regulated 
(Fig. 2g). We manually reviewed literature related to these genes to infer potential functions in nerve injury by 
searching against the PubMed. Twenty-six (49%) out of fifty-three robustly upregulated DEGs were documented 
as the RAGs, including TFs (Atf3, Sox11, Jun, Nfil3, and Smad1), cytoskeletal related proteins (Sprr1a, Stmn4, 
Sdc1, Gap43, and Pdlim1), ligand/receptors (peptides/neurotrophic factors: Npy, Gal, Adcyap1, and Vgf; GDNF 
receptor: Gfra1), peptidase (Ecel1 and Mmp19), ECM and cell adhesion (Chl1 and Sdc1) (Fig. 2h). Long-term 
spinal cord development profiles (covering embryonic, neonatal, young, and adult stages)34 and embryonic 
DRG profiles4 showed some of these genes were development-related genes, such as Sox11, Draxin, Flrt3, Sdc1 
(Supplementary Figs. 4 and 5). In addition, we found that 39 out of 53 genes showed significant up-regulation 
in injured DRG neurons featured with a high expression of Atf314, suggesting most of these genes may be related 
to injured neurons response, specifically two less-studied TFs (Arid5a and Zfp367) (Supplementary Fig. 6). We 
next investigated the expression of these robust DEGs in central nerve injury based on previously long-term 
RNA-seq of spinal cord hemi-transection injury35. The results showed most genes presented immediate injury 
response (e.g. 3 h), including TFs (Arid5a, Csrnp1), suggesting their potential role as an early injury marker. 
Arid5a has dual roles acting as a TF and RNA-binding protein, involved in the development and immune reg-
ulation respectively42. Csrnp1 (also known as AXUD1), a TF, could be up-regulated in inflammatory insult to 
regulate matrix metalloproteinases in human chondrocytes43. In addition, Csrnp1 has also been proven with 
roles in development, including cephalic neural progenitor proliferation and survival in zebrafish and neural 
crest formation44,45. Different from Arid5a and Csrnp1 in spinal cord injury, we found Zfp367 (zinc finger protein 
367) was only up-regulated at 3d post-injury (Supplementary Fig. 7). Consistently upregulated of these three 
uncharacterized TFs, particular two immediate response TFs (Arid5a and Csrnp1), in peripheral nerve injury 
and central nerve injury, highlighted their importance in axonal injury and required further investigation.

The distinct molecular response between rat and mouse upon ScNi. Next, we focused on distinct 
molecular responses to the nerve injury between rats and mice which were the two most widely used pre-clinical 
animal models in studying neural repair and NP. Considering datasets of mice and rats were both available in 
ScNI models (Fig. 1b), we systematically investigated robust DEGs in ScNI models at species-level. To avoid 
bias caused by gene nomenclature between mouse and rat or some inconsistent gene names from different data-
bases (such as NCBI and Ensembl), we first performed protein clustering analysis to detect orthologous rela-
tionships between rat and mouse, and identified 16,107 single-copy orthologs and 1,674 multi-copy orthologs, 
and 324 divergent or species-specific clusters in either rat (157 clusters) or mouse (167 clusters) (Fig. 3a). We 
found most robust DEGs were the single-copy orthologs, followed by the multi-copy orthologs between mouse 
and rat (Fig. 3a). We found 704 single-copy orthologs showed robust DEGs with 581 (up-regulation: 404 genes, 
down-regulation: 177 genes) in mice and 195 (up-regulation: 176 genes, down-regulation: 19 genes) in rats 
(Fig. 3a and Supplementary Table 4 available at Figshare).

We found that 70 genes from single-copy orthologs and 10 genes from multi-copy orthologs were detected 
as robust up-regulated DEGs in rat and mouse ScNI models (Fig. 3b). Forty-five out of seventy and eight out of 
ten genes have been detected above as robust DEGs in PNI (Fig. 2g). In addition, we found twenty-five genes 
(including RAGs: Socs3, Hspb1 (also known as Hsp27), Ccl2, Ankrd1, Il6 and Bdnf) and two genes (Tubb2b 
and Serpinb1a) from single-copy and multi-copy orthologs detected as robustly up-regulated DEGs in ScNI 
respectively (Fig. 3c). These DEGs were significantly enriched in terms related with synaptic transmission (Bdnf, 
Gabra5, Nsg1, Syt4, Tpbg, Stx11, and Cbln2), regulation of collagen biosynthetic process (Il6, Serpine1, Ccl2, 
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and Ucn), regulation of neuron death (Bdnf, Il6, Ptpn5, Ccl2, Ucn, and Gabra5), and regulation of neuron pro-
jection development (Bdnf, Hspb1, Il6, Ptpn5, Ankrd1) (Fig. 3d). Corticotropin-releasing factor (CRF) family 
contains four members (Crh, Ucn, Ucn2, and Ucn3) in mammals and binds to CRF receptors (Crhr1 and/or 
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Fig. 3 Evolutionary conserved and specific robust DEGs in rats and mice upon ScNI. (a) Summary of the 
protein clustering analysis between rat and mouse (left) and the number of DEGs in each category in rats and 
mice upon ScNI (right). (b) UpSet plots showed the relationship of robust DEGs belonging single-copy (left) 
or multiple-copy (right) between rats and mice. Fold-change and expression of additional 25 common robust 
DEGs (c) In rats and mice upon injury and GO enrichment (d). (e) Fold-change and expression of 42 rat-
preference candidates. (f) Fold-change and expression of 34 mouse-preference candidates. The expression level 
of genes in the injured DRG and control was indicated by the average and median of normalized expression 
values.
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Crhr2) involved in stress response46. It has been shown that Ucn2 is rapidly expressed at the neuromuscular 
junction (NMJ) after α-Latrotoxin induced NMJ degeneration and Ucn2-Crhr2 axis may be a novel role in NMJ 
regeneration47. We found a low expression of Ucn2 in the normal condition (sham), while dramatically increased 
in sciatic nerve (SN)33 at 1d post-ScNI (Supplementary Fig. 8). However, a relative low-expression and small 
change of Ucn2 in DRG tissue or neurons post-ScNI. Interestingly, different from the expression pattern of Ucn2, 
we found a low expression of Ucn in SN post-ScNI and showed robust up-regulation in DRG tissue and neuron 
(>80 fold-change) post-ScNI. Furthermore, the expression profiles of sensory neurons collected from plating 
in vitro and in vivo post-ScNI showed a larger change of Ucn expression in vivo than that from in vitro, while a 
larger change of Ucn2 expression in vitro than that from in vivo (Supplementary Fig. 8). These results suggested 
injury-induced Ucn and Ucn2 have undergone subfunction with distinct expression patterns and tissue-specific 
in response to ScNI. Except for other studied genes in nerve injury (Parp348, Gch149), we also noticed two genes 
(nucleic acid binding protein 1 (Nabp1) and six transmembrane epithelial antigen of the prostate 1 (Steap1)) 
featured with a robust up-regulation in DRG and a dramatic increase (Nabp1: 7.7-fold; Steap1: 114.5-fold in SN 
at 1d post-ScNI) in SN upon ScNI (Supplementary Fig. 9) while studies related their expression and function in 
axon injury and repair still be scarce.

Due to a small number of consistent down-regulated robust DEGs, we mainly focused on “species-preference” 
(here defined as the difference in gene expression change upon injury between rats and mice) up-regulated 
robust DEGs upon ScNI in rats and mice. We initially detected 334 genes from single-copy and 45 genes from 
multi-copy orthologs that showed mouse-preference robust up-regulated genes, and 106 genes (including 
1 gene up-regulated in rats while down-regulated in mice) from single-copy and 25 genes from multi-copy 
orthologs that showed rat-preference robust up-regulated genes (Fig. 3b and Supplementary Table 5 availa-
ble at Figshare). We found some immune and inflammation-related genes (e.g. Trem2, Fcgr2b) present in the 
“mouse-preference” group, which may be caused by the limited datasets (only three datasets including one with-
out biological replicate), the weak threshold (occurrence at least 50% of the compared groups), and un-balanced 
timepoints in rats, specifically 3d~7d post-injury when the proliferation of the immune cells (e.g. macrophage) 
in DRG11. Therefore, we only focused on those genes that featured a low expression or small changes in either 
mice or rats and integrated our previous microarray data of rat DRGs (1d, 4d, 7d,and 14d post-ScNI)30 and 
bulk RNA-seq of rat spinal cord injury dataset35 to avoid misinterpretation. Finally, we manually screened 42 
candidate rat-preference response DEGs and 28 of which could be well supported by the array data30 (Fig. 3e). 
We noticed rat-preference DEGs with dramatic changes upon injury included genes that have been reported and 
validated in rat PNI models, including Hamp50, Serpina3n51, Tgm152, Csrp353, Reg3b54, Vip52, Tslp55 and Atp2b4 
(PMCA4)56. Thirty-four mouse-preference response DEGs were further screened, including documented genes 
in mouse nerve injury models, Slc6a4/SERT157, Inhbb27, Fgf358,59, Plppr4/PRG-160, Gpr151, and Anxa10 (Fig. 3f).

We found potential roles of most genes have not been well explored in nerve injury although their dramatic 
and robust changes upon injury, such as Crisp3, Stac2, LOC688459 in rats and Tmem88b in mice (Fig. 4). Of 
rat-preference response genes, Serpina3n diverged in sequence between rat and mouse, showed a low expres-
sion in rats but a high expression in mice under the normal condition, and presented a distinct response upon 
injury in mice and rats (significant up-regulation in rats but small difference in mice, Fig. 3e). This gene has 
been validated up-regulated at mRNA level in rats and mice upon nerve injury but rats showed a larger differ-
ence and exogenous delivery in mice could attenuate neuropathic pain by inhibiting T cell-derived leukocyte 
elastase51. Different with the expression pattern of Serpina3n, we found two other peptidase/inhibitors (Serpinb2 
and Mmp3) showed low expression in rats and mice under the normal condition but robustly induced only in 
rats upon injury (Figs. 3e and 4). We also found five genes (Tgm1, Has1, Cdhr5, PCOLCE2, and Cldn4) involved 
in cell adhesion or ECM organization. Cldn4 belonging to the tight junction protein, has been shown to pro-
tect against acute lung injury61. We found some genes related with metabolism that showed rat-preference, 
including iron homeostasis (Hamp, Rasd1/Dexras1), tetrahydrobiopterin production (Spr, Dhfr)49, tyrosine 
(Hpd62), tryptophan (Tph2), and calcium homeostasis (Atp2b4/PMCA456). Hamp, induced by inflammation 
stimulus, has been validated up-regulation in rat DRG upon ScNI and could be transported into regenerating 
axons upon ScNI and effect neuroprotective by reducing iron in rat primary cortical neuron against hemin and 
iron-mediated neurotoxicity50,63. In addition, we also found genes related with oxidative stress (Hpd), inflam-
mation and immune response (Ptprh/SAP1, Lcp1, Reg3b, Serpina3n, Crisp3, Igsf23, Hpd, Thbd, Tslp) showed a 
rat-preference response (Fig. 4). Csrp3, previously regarded as a muscle-specific protein (known as MLP), has 
been proven as induced in rat retinal ganglion cells while neither in mouse retina nor in DRG neurons upon 
axotomy, indicating it’s a rat-specific injury response gene64. Different expression changes of MLP in mice and 
rats upon nerve injury allow an alternative experiment to confirm its role in promoting nerve regeneration by 
ectopic MLP expression in mice64. And further functional experiments confirmed the pro-regeneration role of 
Csrp3 by acting as a cross-linker, facilitating filopodia formation and increasing growth cone motility64.

Of mouse-preference candidates, we found genes related with inflammation and immune response (Gpr151, 
Anxa10, Cbr2, Tmem88b and Sectm1b), lipid (Plppr4/PRG-1, Hsd17b7, Liph and Lipn), cell death (Ppef1, Fgf3), 
calcium signaling (Camk1), cytoskeleton related (Epb41l4a), microtubule dynamics (Rgs20/RGSZ1), synaptic 
related (Arhgef15, Itpr1), and neuropeptide (Nts) were present (Fig. 4). Some genes showed specifically induced 
in mice upon injury, such as Lipn, Anxa10, Kcnk16, Fgf3, Slc6a4. Accumulated triglyceride storage lipids in 
neurons upon axotomy impede CNS regeneration65. Lipn, an acid lipase converting triacylglycerol into fatty 
acid, has been reported expressed in skin and involved in epidermal differentiation and low expression in other 
tissue66. Indeed, we found low expression of Lipn in DRG and spinal cord development. It could be robustly 
induced in injured neurons in mice at 3d~7d post-ScNI (Fig. 3f). Plppr4, a new neuronal phospholipid phos-
phatase, could attenuate phospholipid-induced axon collapse, promoting axon growth and regenerative sprout-
ing in the hippocampus60. Analysis expression of these lipid-related genes (Plppr4, Lipn, Liph, and Hsd17b7) in 
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rat DRGs or spinal cord upon PNS or CNS injury showed extremely low-expression or down-regulated expres-
sion patterns, indicating different responses upon injury in lipid metabolism between mouse and rat.

Temporal expression signatures of DEGs upon PNi. Four datasets and one dataset explored 
time-series of expression profiles of DRG upon ScNI (including timepoints, 9 h, 12 h, 1d, 3d, 4d,and/or 7d) and 
SNI (1d, 3d,and 7d) respectively. To understand gene expression patterns of DEGs upon injury, we employed the 
Mfuzz package to cluster DEGs into eight groups for each dataset (major clusters were shown in Fig. 5a and all 
clusters were shown in Supplementary Fig. 10; Supplementary Table 6 available at Figshare). Atf3 and Gap43 are 
well-known two markers for neurons at injured and regenerating states respectively. We found Atf3 and Gap43 
present in the groups with expression patterns significantly up-regulated at as early as 1d and 3d respectively 
(Fig. 5a). Of the Atf3 contained clusters, we found other five genes present in these five datasets, including RAGs 
(Klf667, Nfil3, Flrt3) and other genes (Vash2, Srxnh1). Vash2 (vasohibin-2), a component of tyrosine carboxypepti-
dase, regulates neuron differentiation by affecting detyrosinated α-tubulin levels68. We also found that its expres-
sion decreased along the spinal cord and DRG development. Srxn1 (Sulfiredoxin1), an endogenous antioxidant 
protein, could prevent cell oxidative stress and has been reported as up-regulation in cerebral ischemia/reperfu-
sion (I/R) injury with neuroprotective effects69. Analysis of other well-known pro-regenerative TFs (e.g. Crem, 
Myc, Smad1, Sox11, Jun, Fig. 5a) indicated that expression of these genes also presented initiation up-regulation 
at 1d upon injury (called “pre-regenerative” phase as we described before30), suggesting 1d is a key timepoint 
for regenerative-related transcriptional reprogramming. We also found three TFs (Arid5a, Zfp367, and Csrnp1) 
discussed above showed co-occurrence and presented a similar expression pattern with those pro-regenerative 
TFs (Fig. 5a), supporting their importance in axonal injury. We also checked other known RAGs (e.g. Il6, Hspb1, 
Adcyap1, Cckbr, Npy, Ecel1) in each cluster from each dataset and showed most RAGs were up-regulated at 1d 
and/or 3d~7d (Fig. 5a). Next, we explored the relationship of clusters among five datasets. Considering the high 
membership of genes belonging to the cluster from SRP134051 and including the corresponding control group 
in each injured timepoint, we selected it as a reference and calculated the overlapped genes from each cluster 
between this reference and other datasets (only connected gene number ≥10 was shown among major clusters, 
Fig. 5b and Supplementary Table 7 available at Figshare). The result showed a high consistency of clusters between 
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Fig. 5 Clustering analysis of five time-series datasets reveals expression patterns of genes related with pre-
regeneration and regeneration. (a) Major gene clusters in five time-series datasets. Major clusters with genes 
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were shown. Expression patterns of all clusters in each dataset were shown in Supplementary Fig. 10. Each line 
indicated a gene and color indicated membership values. (b) Gene relationship of other four time-series datasets 
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the reference and other datasets, specifically in mice (Fig. 5b). To explore the potential functions of genes in these 
clusters, we conducted a functional enrichment analysis of genes in the clusters from the reference dataset. The 
results showed genes with expression decreased upon injury (cluster(cls) 8 of the reference dataset) were involved 
in the regulation of ion transport and synaptic signaling (Fig. 5c). Genes (e.g. Il6, Vgf and other pro-regenerative 
TFs) with high expression at 1d (cls2 and cls3) showed most enriched in terms regulation of MAPK cascade, 
regulation of response to external stimulus, and regulation of glia cell proliferation (Fig. 5c). Genes (e.g. Sprr1a, 
Gpr151, Nts, Gal, Stmn4, Plau, Abca1, Npy) in the cluster contained Gap43 (cls1) were most enriched in actin 
cytoskeleton reorganization while genes (e.g. Aif1(IBA1), Cd68, Trem2, P2ry6) with another similar trend (cls6) 
were mostly involved in immune and inflammatory response (Fig. 5c), suggesting 3d/4d was a key timepoint for 
regeneration and inflammation and also the importance of neuron-immune contribution to axonal regeneration.

Sexual dimorphism of DEGs upon nerve injury. Sexual dimorphism of transcriptional changes in 
mouse or rat DRG at early or late upon nerve injury has been reported in several independent studies15,16,23,26. We 
re-analyzed four publicly available RNA-seq datasets from three studies15,23,26, including rats (14d post-ScNI) and 
mice (1d post-ScNI, and 28d post-SNI for strains (B10.D2 and BALB/c)). We performed the analysis by compari-
son between females and/or males with control and/or injury (Fig. 6a). We found a larger number of DEGs in the 
ScNI model (>800) than that in the SNI model (<400), and a larger number (>2-fold) of male DEGs than female 
DEGs in the ScNI model while a small difference (<2-fold) of that in the SNI model (28d) (Fig. 6b). Another 
study investigated sex difference in response to SNI in rat and showed large DEGs in injury group while also a 
small difference in number of DEG in female and male injury group compared to the control16. We found four 
male-specific genes (located in chromosome Y; Uty, Eif2s3y, Kdm5d, and Ddx3y (Ddx3 for rat) were commonly 
present in the top 10 male up-regulated DEGs (ranking by π-value) compared with female in control or injury 
groups (Fig. 6b). Then, we used these four genes to infer sex in other datasets discussed in this study. Except for 
four studies (including one bulk sequencing of neurons18 (SRP182089) that was not separately discussed in this 
section), we showed that most studies employed males or at least mixed females and males in a study, but also 
existed three studies with inconsistent sex composition in other biological replicates or other treatment in a study 
(Supplementary Fig. 11). This may cause detected DEGs not only affected by treatment (e.g. injury in a study) 
but also sex itself differences. For example, the injury group from the study21 (SRP253717) was males but the 
control group was females and the most ranking down-regulated DEGs were male-specific genes (Uty, Eif2s3y, 
Kdm5d, and Ddx3y, Supplementary Fig. 2). Notably, we found larger sex-related DEGs in rats (692 genes) than 
in mice (≤10 genes) implicated by the small number of DEGs by comparing females and males in the control 
group (Fig. 6b,d). We divided these DEGs into three groups with a focus on DEGs related “injury-only” (Fig. 6d). 
Analysis of “injury-only” genes featured differential expression (consistent up/down-regulation) in females and 
males with injury treatment compared to the corresponding control group without any difference regarding sex. 
We found a strong significant correlation between these “injury-only” genes between females and males (r > 0.95 
and p-value < 0.0001, Fig. 6d and Supplementary Table 8 available at Figshare), such as Gadd45a, Mmp16, Stmn4, 
Flrt3 (Fig. 6e).

Next, we focused on the difference in either females or males in responses to injury. Considering the late 
injured timepoints (28d) and the small number of DEGs upon SNI injury, we only focused on two ScNI datasets. 
We divided DEGs of either female or male-preference based on their LFC and split into eight groups based on 
a 1.5-fold change and performed enrichment analysis (Fig. 6f and Supplementary Table 9 available at Figshare). 
The result showed genes up-regulated in males but not females in rats were mostly enriched in terms related with 
regulation of membrane potential axonogenesis while down-regulated in males but not females were mostly 
enriched in the extracellular matrix organization (Fig. 6f). Unlike in rats, genes with up-regulation in mouse 
males but not females were mostly enriched in terms related with positive regulation of response to external 
stimulus and positive regulation of cytokine production while down-regulated in male-only showed synapse 
organization axonogenesis were mostly enriched (Fig. 6g). The difference between rats and mice in sexual dif-
ference upon injury may be also related with their injured timepoints that the former was 14d post-ScNI (injury 
repair) while the latter was 1d post-ScNI (injury response).

Discussion
Understanding the mechanism of axon regeneration, including the intrinsic growth ability and permissive 
microenvironment (e.g. extracellular matrix) of injured neurons upon PNS has provided insights into possible 
strategies for the treatment of CNS injury1,70. Transcriptomic studies of rodent DRGs (mainly mouse and rat) 
upon PNI have provided valuable insights into the transcriptional programs: downregulating genes related with 
neuronal activity (e.g. ion channel) along with neuronal maintenance genes; while upregulating pro-growth 
transcriptional factors and growth-associated proteins1. Though bulk transcriptome or single-cell transcriptome 
of post-mortem human DRGs have been studied as well as compared with mice71,72, human DRGs upon PNI 
still lack. As the most used pre-clinical animal models, although extensive studies have explored genome-wide 
expression profiles in either rats or mice DRG at tissue and/or single-cell levels upon PNI and several studies 
have indicated distinct expression signatures of individual genes between rats and mice in response to PNI51,64, 
systematic integration and comparison of response changes at the genome-wide molecular level still be limited. 
Understanding molecular similarity and difference in DRGs upon PNI across species may provide important 
new targets for translational approaches to treat nerve injury and NP. To achieve this, we firstly collected and 
performed a universal and systematic analysis by integrating public bulk RNA-seq on rat and/or mouse DRGs 
upon PNI and interpreted by integrating other datasets (e.g. spinal cord development34 and injury35, sciatic nerve 
upon crush injury33, high-coverage single-cell RNA-seq of sensory neurons14) and established a web application 
for convenient access data (DRGProfile).
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Fig. 6 A relatively large number of DEGs in males responding to sciatic nerve injury and identification of 
four male-specific markers expressed in DRG. (a) Schema of compared groups. (b) Manhattan plots showed 
DEGs in four compared groups. Orange points indicated significantly up-regulated genes while green indicated 
significantly down-regulated genes. Gene ranking was ordered based on π-value. Top 15 up-regulated and top 
5 down-regulated genes were labeled. Four male-specific markers were shaded. (c) Expression of four male-
specific markers in four datasets. (d) Upset plots of the relationship of DEGs identified from four compared 
groups in each dataset. (e) Venndiagram of common injury genes in rats and mice. (f,g) Scatter plots of male- or 
female-preference DEGs in rat and mice upon ScNI. Eight clusters with distinct colors were divided based on 
the cutoff of fold-change (1.5, red dotted lines). Number shaded with colorful boxes indicated DEG numbers in 
each cluster. Importantly enriched GO terms in a cluster were shown.

https://doi.org/10.1038/s41597-022-01783-8


1 2Scientific Data |           (2022) 9:666  | https://doi.org/10.1038/s41597-022-01783-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

We found a large number of DEGs upon SpNI while a relatively smaller number of DEGs in ScNI and SNI 
models. Further, we found a relatively larger number of DEGs in neurons than tissue upon the ScNI, except for 
a study that contained inconsistently sex composition21 (female in injury groups while male in control groups) 
and two sexual studies15,26, suggesting sex difference in response to ScNI is important and should be attended in 
designing the experiment. Analysis of occurrence frequency of top-ranking genes showed that some well-known 
genes (e.g. Gpr151, Fgf3, Serpina3n, Vip, Hamp) present species-specific manner. Cross-validation of multiple 
datasets across species, injury models, and similar or distinct injured timepoints, allowed us to screen robust 
injury response genes. We found a small number of down-regulated genes (Vstm2d) and identified 53 robust 
up-regulated genes. Most of them have been functionally explored, specifically those injury-induced genes that 
featured a dramatic change upon injury (e.g. Atf3, Sprr1a, Npy, Cckbr, Ecel1, Gal, Flrt3). In addition, we also 
noticed three less-studied TFs (Arid5a, Zfp367, and Csrnp1) with low expression but robust up-regulation upon 
PNI in rats and mice. Besides, these three TFs also showed up-regulated in the spinal cord after CNS injury, 
specifically Arid5a and Csrnp1 that significantly up-regulated at as early as 3 h, suggesting their roles acting as 
a stress response regulator. Further temporal analysis showed the similar expression patterns of these three TFs 
with other pro-regenerative TFs (e.g. Atf3, Sox11, Jun, Myc) that robustly up-regulated at 1d when previously 
defined as the pre-regeneration stage30. These evidences highlighted their importance in axon regeneration. 
Except for the discussion of robust DEGs, we also screened candidate genes presenting species-preference man-
ners (e.g. Hamp, Serpina3n, Csrp3, Reg3b, Vip, Crisp3, Stac2, LOC688549 in rats; Tmem88b, Gpr151, Anxa10, 
Cbr2, Plppr4, Lipn, Fgf3, Nts, Slc6a4 in mice). Analysis of these species-preference genes showed that distinct 
inflammation and immune response mechanism may exist between mouse and rat in response to injury and 
required further functional exploration. Specifically, we found lipid-related genes present in mouse-preference 
genes, including lipase (Lipn, Liph) and lipid phosphate phosphatase (Plppr4). A difference in lipid-related genes 
in Schwann cells from mouse and human after traumatic injury was also reported32. Reducing damaged elevated 
triacylglycerol and lipid phosphates promote axon regeneration32,60. Robust up-regulation of lipase and Plppr4 
may benefit axon regeneration in mice upon injury. Besides, we also explored the expression patterns of DEGs 
by cross-validation and highlighted two important timepoints for regeneration initiation (1d) and regenerating 
stages (3d) based on the available time-series expression profile. Finally but not the least, we identified four 
male-specific makers which could be used to infer the sex of public RNA-seq of rodent DRGs.

In summary, this study provided an important and integrated genome-wide landscape for gene expression 
change in rodent DRGs upon PNI, and cross-validation highlighted some less-studied TFs or genes involved in 
axon injury and regeneration for further investigation. More importantly, it provided new insights into evolu-
tionarily conserved and specific molecular expression signatures upon injury which will greatly contribute to 
the neuroscience community. Besides, integrated resources of DRG expression upon PNI across species may 
provide new targets for translational approaches to treat nerve injury and NP.

Methods
Data collection. We searched keywords “dorsal root ganglion” and “injury” on the GEO or Sequence Read 
Archive (SRA) database for collecting public expression profiles of high throughput sequencing (RNA-seq) (last 
accessed on Dec 2021). Only datasets with public literature and mouse or rat models were discussed in this study. 
Sample information in each study was carefully and manually checked by confirming in the original paper and 
details were shown in (Supplementary Tables 1 and 2).

identification of orthologous relationship of protein-coding genes between mouse and 
rat. Protein sequences were firstly retrieved from NCBI (rat: mRatBN7.2) and Gencode (mouse: vM27) 
databases. The longest protein sequence for those genes with multiple isoforms was selected as the representa-
tive sequence for each gene. OrthoFinder pipeline73 was employed to detect orthologous relationships between 
mouse and rat with default parameters except for BLAST as an aligner for comparative analysis. Those genes 
with single-copy orthologous relationship or the same gene nomenclature were selected for comparison between 
mouse and rat in response to nerve injury.

RNA-seq analysis. We performed the re-analysis of the public RNA-seq datasets using the uniform refer-
ence annotation and pipeline as we described in Xu et al.74. Simply as follows: FastQC software was used to check 
quality including adapter sequences and base quality distribution and then trimmed with Trimmomatic75 (v0.38). 
HISAT276 (v2.1.0) was used to align clean reads against the reference genome with default parameters and the 
experiment type (stranded or not) was determined by RSeQC package77 (v4.0.0). To quantify gene expression, 
we employed the featureCount program implemented in SubRead package78 (v1.6.2) to call read count and then 
was normalized into RPKM (Reads Per Kilobase of transcript per Million reads mapped) or FPKM (Fragments 
Per Kilobase of transcript per Million reads mapped) in a single-end or paired-end sequencing mode. For differ-
entially expressed genes (DEGs) compared to the control group (sham-operated or naïve), we employed DESeq. 
2, and genes with |log2

fold-change| ≥ log2
1.5 and adjusted P-value ≤ 0.05 were defined as DEGs of datasets with bio-

logical replicates. For datasets without replicates, we employed CORNAS79 and genes with |log2
fold-change| ≥ log2

1.5. 
Only injury time points with significant up-regulation of Atf3 were kept in the analysis of this study. Gene ranking 
was performed by calculating the π-value (-log10

(adjusted P-value) × log2
(Fold-change)) in those datasets with biological 

replicates (if adjusted P-value < 1e−20 then adjusted P-value was set to 1e-20). For those datasets without bio-
logical replicates, gene ranking was ordered by log2

(Fold-change). The top 15 ranking genes in each comparison were 
extracted and then calculated their frequency of occurrence in models (spared nerve injury, sciatic nerve injury, 
and spinal nerve injury) from mice and rats separately. Then ggwordcloud R package was used for visualization 
of the frequency of top 15 ranking genes in four groups. The visualization of DEGs in each compared group was 
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shown as a manhattan plot using the ggplot2 package. Heatmap visualization of LFC or expression values were 
conducted using the ComplexHeatmap package80.

identification of robust DEGs upon injury. To screen robust injury-related genes, we selected genes pres-
ent in most of the compared groups in each injury model of rats or mice (e.g. 50%). For each DEG, we assigned 
distinct weights for up- (+1) and down-regulation (−1) in each comparison and summed them into a single 
score within a group (spared nerve injury or sciatic nerve injury from mice; sciatic nerve injury or spinal nerve 
injury from rats) as follows:

∑=



−

=
=

x
up

down
score x

1 ( )
1( )

;ij i j
N

ij1

where xij is the weight of a DEG (i) in the comparison (j) in a group and scorei is the summed weights of the DEG 
(i) in all comparisons (N) in a group.

To screen robust up- and down-regulated genes, DEGs with a |score|≥50% × N were defined as robust.

Expression pattern analysis. Five studies investigated time-series profiles of DRG upon injury during the 
first week with at least three injury time points. To systematically understand expression patterns of DEGs and 
increase reliability, we employed the Mfuzz package81 to cluster DEGs into eight groups for each time-series data-
set. Visualization of gene relationship in each cluster between SRP134051 and other datasets was performed using 
the NGenomeSyn (https://github.com/hewm2008/NGenomeSyn). To explore the potential functions of genes in 
each cluster, clusterProfiler82 was used to perform functional enrichment analysis.

Web-based resource construction. To provide an easy exploration of gene expression change in diverse 
DRG profiles in this study, we used the shiny package and R program to build a website for convenient access 
(http://121.41.67.1:3838/DRGProfile/ and Figshare83).

Data availability
All sequencing data of DRG tissue/neurons following peripheral nerve injury discussed in this study could be 
freely retrieved from the public SRA database under accessions: D1 (SRP002416)19,84, D2 (SRP044030)17,85, D3 
(SRP034868)29,86, D4 (SRP125336)23,87, D5 (SRP109547)26,88, D6 (SRP268785)11,89, D7 (SRP056393)27,90, D8 
(SRP044619)13,91, D9 (SRP134051)20,92, D10 (SRP182089)18,93, D11 (SRP200823)28,94, D12 (SRP055201)4,95, D13 
(SRP154895)10,96, D14 (SRP102543)12,97, D15 (SRP332955)15,98, D16 (SRP157873)22,99, D17 (SRP253717)21,100, D18 
(SRP061708)14,101, D19 (SRP115543)25,102, D20 (SRP133622)24,103, D21 (SRP125336)23,87. For additional datasets 
supporting our conclusions: spinal cord injury (OEP000369)35,104, spinal cord development (SRP168574)34,105, 
sciatic nerve (SRP113121)33,106, single-cell sequencing of DRG neurons (SRP061708)14,101 and culture adult DRG 
neurons within 24 h after plating and embryonic DRG neurons (SRP055201)4,95. Uniformly processed gene 
expression profiles and visualization of genes of this study were easily accessed at our web-based DRGProfile 
(http://121.41.67.1:3838/DRGProfile/) as well as at the Figshare database83. To support data sharing and 
reusability, all fully processed individual datasets are available in the Figshare83. In addition, Supplementary 
Tables 2–9 are also available at the Figshare83 associated with this article.

Code availability
The bioinformatics pipeline (reads trimming, mapping, quantification and differential expression) with a detailed 
list of command lines, and data and source code of DRGProfile shinyApp, were deposited on the repository 
Figshare83.
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