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Global soil moisture data fusion 
by triple Collocation analysis from 
2011 to 2018
Qiuxia Xie  1,2, Li Jia  2 ✉, Massimo Menenti2,3 & Guangcheng Hu2

Surface Soil Moisture (SSM) information is needed for agricultural water resource management, 
hydrology and climate analysis applications. temporal and spatial sampling by the space-borne 
instruments designed to retrieve SSM is, however, limited by the orbit and sensors of the satellites. 
We produced a Global Daily-scale Soil Moisture Fusion Dataset (GDSMFD) with 25 km spatial resolution 
(2011~2018) by applying the Triple Collocation Analysis (TCA) and Linear Weight Fusion (LWF) methods. 
Using five metrics, the GDSMFD was evaluated against in-situ soil moisture measurements from ten 
ground observation networks and compared with the prefusion SSM products. Results indicated that 
the GDSMFD was consistent with in-situ soil moisture measurements, the minimum of root mean 
square error values of GDSMFD was only 0.036 cm3/cm3. Moreover, the GDSMFD had a good global 
coverage with mean Global Coverage Fraction (GCF) of 0.672 and the maximum GCF of 0.837. GDSMFD 
performed well in accuracy and global coverage fraction, making it valuable in applications to the global 
climate change monitoring, drought monitoring and hydrological monitoring.

Background & Summary
Information on Surface Soil Moisture (SSM) plays a key role for many practical applications, such as agricul-
tural water management, global weather forecasts, hydrology and natural disasters monitoring. SSM is also 
an important variable in water and energy exchanges at the atmosphere/land-surface interface1,2. Since 1970s 
active and passive microwave remote sensing instruments and algorithms to retrieve near-surface soil mois-
ture (top 5 cm depth), have improved to make it possible to monitor global SSM with sufficient accuracy and 
spatio-temporal resolution3–5. Active sensors mainly include the Advanced Scatterometer (ASCAT) onboard 
the Meteorological Operational Satellite-A/B (MetOp-A/B) (2007-present) and the radar onboard Soil Moisture 
Active and Passive mission (SMAP) (2015-present). Passive sensors mainly include the Tropical Rainfall 
Measuring Mission’s (TRMM) Microwave Imager (TMI) (1997–2015), the Advanced Microwave Scanning 
Radiometer-Earth Observing System (AMSR-E) onboard Aqua satellite (2002~2011), the Coriolis satellite 
WindSat (2003–2012), the Soil Moisture and Ocean Salinity (SMOS) (2010-present)6, the MicroWave Radiation 
Imager (MWRI) of FenYun-3B (FY3-B) (2011–2019) and FenYun-3C (FY3-C) (2014-present) satellites, the 
Advanced Microwave Scanning Radiometer-2 (AMSR-2) of Global Change Observation Mission 1st - Water 
“SHIZUKU” (GCOM-W1) (2012-present) and the radiometer onboard SMAP (2015-present).

Based on observations of active/passive microwave remote sensing instruments, many global SSM products 
such as AMSR-E, AMSR-2, ASCAT, SMOS, SMAP and the European Space Agency-Climate Change Initiative 
(ESA-CCI) were produced and evaluated using in-situ soil moisture measurements and airborne observa-
tions3,7–9. Particularly, the in-situ soil moisture measurements from the International Soil Moisture Network 
(ISMN) and simulated SSM data by land surface models were used for this purpose. However, previous stud-
ies found that no global active/passive SSM products performed superior to other products everywhere and 
performance seemed to depend on land cover10. In addition, there are gaps in the global SSM products due to 
incomplete coverage of satellite orbits and retrieval errors. These shortcomings limited these soil moisture data 
for long-time applications in, e.g., agricultural drought monitoring and water resources management.

Data fusion to merge different global SSM data product seems the most effective solution to overcome the 
shortcomings identified above11. Data fusion can integrate multiple remote sensing data sets and knowledge into 
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a better data product12. Examples of such algorithms are the Linear Weight Fusion (LWF), non-Linear WF, mul-
tiple linear regression, artificial neural network, Copula-based data fusion and least square method-based image 
fusion13–16. The LWF algorithm, combining data sets linearly based on the weight values of components to be 
fused, is the most practical and well understood fusion algorithm17. The key to the LWF algorithm is to calculate 
the weight values of the different components on the basis of the correlations or errors of different components. 
At present, Triple Collocation Analysis (TCA) method is one of the most popular methods for estimating ran-
dom errors in soil moisture retrievals without reliable ground observations18. TCA was first proposed to estimate 
ocean wind speed errors and to correct ocean wind speed19, and subsequently used to estimate uncertainties in 
remote sensing retrievals of, e.g., soil moisture and leaf area index20. Therefore, it will be potential by merging 
of existential soil moisture based on the combing algorithm of TCA and LWF methods for improvement of the 
global SSM product with 25 km SGR.

Here, we present a novel global daily-scale SSM product (i.e., GDSMFD) with 25 km SGR in good accuracy 
and global coverage using the easiest and well understood LWF method to merging SMOS, FY3-B, ASCAT, 
ESA-CCI and SMAP SSM products (i.e. SMOS SSM retrieved using L-MEB algorithm, FY3-B SSM retrieved 
using the soil moisture retrieval algorithm based on Qp roughness model, ASCAT SSM retrieved using the SWI 
algorithm based on change monitoring method, ESA-CCI SSM retrieved using the data fusion procedure and 
SMAP SSM retrieved using SCA-V algorithm). We calculated the pixel-wised weight values of the SM values 
from SMOS, FY3-B, ASCAT, SMAP SSM and ESA-CCI SSM products based on TCA. We applied a strategy that 
first SMOS, FY3-B and ASCAT SSM products from 2011 to 2018 were merged using the TCA LWF method to 
produce the 1st merged SSM product which is further merged with SMAP-SSM and ESA-CCI-SM products to 
obtain the 2nd merged SSM product for 2015~2018 (SMAP-SSM available from 2015) by using the same TCA 
LWF method (Fig. 1). The above two merged SM datasets composed our time series of fusion SM data between 
2011–2018.

Methods
Global soil moisture fusion data preparation. Five satellite surface soil moisture products including 
three passive microwave soil moisture products (i.e., SMOS-IC, FY3-B and SMAP), one active microwave soil 
moisture products (i.e., ASCAT) and one merged soil moisture product (i.e., ESA-CCI) were used in this study to 
generate the merged dataset (Table 1), the details are described below.

SMOS satellite launched in November 2009 by ESA carries the Microwave Interferometric Radiometer 
with Aperture Synthesis (MIRAS), a synthetic aperture microwave radiometer to observe the dual-polarized, 
multi-angular brightness temperature in L band (1.4 GHz) and designed to retrieve global SSM at 3~5 cm 
soil depth with high accuracy21. In this study, we used the new global SMOS-IC L3 SSM product with 25 km 
EASE 2.0 SGR generated by the Institut National de la Recherche Agronomique-Centre d’Etudes Spatiales de la 
Biosphère (INRA-CESBIO) (http://bec.icm.csic.es/data/data-access/)22,23. The SMOS-IC L3 SSM retrieval algo-
rithm was based on the L-MEB to make soil moisture retrieval as independent as possible from auxiliary data 
such as the Leaf Area Index (LAI) and Normalized Difference Vegetation Index (NDVI)23,24. The SMOS-IC L3 
SSM algorithm considered pixels as homogeneous avoiding uncertainties related to auxiliary data sets that were 
used to characterize the pixel heterogeneity in e.g. forest areas, which different from SMOS L2 SSM25. Compared 
to SMOS L2 SSM products, the SMOS-IC L3 SSM product is more robust in reducing the effect of vegetation 
and surface roughness23.

FY3-B launched on November 5, 2010, was the second polar-orbiting satellite of the FY3 meteorological 
satellite series and carried the MWRI operating at 5 frequencies, i.e., 10.65, 18.7, 23.8, 36.5 and 89 GHz, and 
Horizontal (H) and Vertical (V) polarization. MWRI is one of the eleven instruments onboard the FY3-B sat-
ellite and measures the exitance of the earth-atmosphere system26. In this study, we used the daily FY3-B SSM 
product with 25 km SGR and a nominal sensing soil depth of 2 cm and applying a retrieval algorithm including 

Fig. 1 Overview of the two-triplet merging approach from global-scale original SSM products (SMOS, FY3-B, 
ASCAT, ESA-CCI and SMAP) to final merged SSM products (1st and 2nd merged SSM products).

Products Versions Period
Sensor 
types Used Band SGR Unit Algorithms Main reference

SMOS-IC L3 2010~2018 Passive 1.41 GHz 25 km cm3/cm3 L-MEB Wigneron et al.23

FY3-B L2 2011~2018 Passive 10.7 GHz 25 km cm3/cm3 Qp Shi et al.27

ASCAT V3.0 2007~2018 Active 5.3 GHz 0.1° % TU-Wien Wagner et al.29

SMAP L3 2015~2018 Passive 1.41 GHz 9 km cm3/cm3 SCA-V Jackson37

ESA-CCI V4.5 1978~2018 / / 0.25° cm3/cm3 Merged Gruber et al.20

Table 1. Information on five active and passive microwave SSM products used in this study.
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an improved Qp surface roughness model developed by Shi et al.27. This product was provided by the National 
Satellite Meteorological Center (NSMC) of China (http://satellite.nsmc.org.cn/PortalSite/Default.aspx). The 
improved Qp model reduces the effect of surface roughness on the soil moisture retrieval. An empirical vege-
tation opacity model using Vegetation Water Content (VWC), assumed to depend only on LAI was applied to 
correct the effect of vegetation on FY3-B/MWRI brightness temperature observations27.

ASCAT sensors onboard the MetOp-A and MetOp-B launched by ESA since 2006 are real aperture radar 
sensors operating in C band (5.255 GHz) using vertical polarization antennas to measure global radar backs-
catter at 25 km SGR with 1~3 days revisit time. In this study, we used the daily ASCAT SSM product with 
10 km SGR released by the Copernicus Global Land Service (CGLS) based on the SWI algorithm developed by 
the Vienna University of Technology (https://land.copernicus.eu/global/products/swi)28. The SWI algorithm is 
based on a simple soil moisture infiltration model proposed by Wagner et al.29 to estimate profile soil moisture 
from ASCAT backscatter observations29. ASCAT product has eight SWI layers according to different T values 
(i.e., 1, 5, 10, 15, 20, 40, 60 and 100). In the SWI algorithm, the T value is a function (T = L/C) of L (the depth 
of the soil layer) and C (the area-representative pseudo diffusivity constant) parameters, which means a high T 
describes a deeper soil layer if the soil water diffusivity is constant. Therefore, this study used the SWI data of the 
first layer (T = 1) so that each pixel value represents the degree of saturation (%) with a nominal sensing depth 
of 1~5 cm.

ESA-CCI V4.5 SSM product was developed by ESA in 2010 using the TCA-LWF algorithm applied to either 
backscatter coefficient or brightness temperature retrieved with three active sensors, i.e., European Remote 
Sensing-1/2 (ERS-1/2), MetOp-A/ASCAT, and MetOp-B/ASCAT, and seven passive sensors, i.e. Nimbus-7’s 
Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave-Imager (SSM/I), TRMM, 
AMSR-E, AMSR-2, WindSat, and SMOS15,20,30–33. Currently, it is one of the most widely used SSM data products 
in the world (https://esa-soilmoisture-cci.org/). The three soil moisture data products based on the measure-
ments by active instruments were retrieved using the same soil moisture retrieval algorithm, i.e., the change 
detection method developed by the Vienna University of Technology (TU-Wien) WARP v5.5, from backscat-
ter coefficient observed by ERS-1/2, MetOp-A/ASCAT, and MetOp-B/ASCAT, then were merged using the 
TCA-LWF algorithm. The seven SSM data products based on the measurements by microwave radiometers were 
retrieved using the same soil moisture retrieval algorithm, i.e., the LPRM developed by National Aeronautics 
and Space Administration (NASA), from brightness temperature observed by SMMR, SSM/I, TRMM, AMSR-E, 
AMSR2, WindSat and SMOS, then were merged using the TCA-based LWF algorithm. Finally, the active and 
passive merged data products were blended into one final dataset. In this study, we merged the final combined 
dataset with SMOS, ASCAT, FY3-B and SMAP SSM products.

SMAP was launched by NASA in January 2015 and includes a L-band (1.26 GHz) radar and a L-band (1.41 
GHz) radiometer. This unique near-polar sun-synchronous satellite monitors global SSM in the top 5 cm 
soil and freeze/thaw state with higher accuracy, coverage and resolution than previous microwave systems34. 
Currently, there are three SMAP SSM products with 3 km, 9 km, and 36 km SGR available. The L-band radar 
with higher SGR (1~3 km) stopped working after 11 weeks of operation, however. Therefore, only SMAP SSM 
products with 9 km and 36 km SGR are available from 2015 to the present. In this study we used the enhanced L3 
SMAP SSM product assuming a 5 cm soil sensing depth with 9 km EASE 2.0 SGR released by the Nation Snow 
& Ice Data Center (NSIDC) (http://nsidc.org/data/)35. This product is a daily composite of the enhanced SMAP 
L2 half-orbit SSM data with 9 km SGR, retrieved from SMAP L1 interpolated brightness temperature data with 
36 km SGR using the SCA-V algorithm36–38.

Soil moisture validation data preparation. In-situ soil moisture measurements collected at a total 
311 sites of the International Soil Moisture Network (ISMN) (https://ismn.geo.tuwien.ac.at/en/), specifically 
10 contributing networks, i.e. CTP_SMTMN, RSMN, AMMACATCH, DAHRA, BIEBRZA_S-1, MySMNet, 
REMEDHUS, HOBE, USCRN and OZNET, with dense sites in 9 countries, i.e. Poland, Spain, China, Malaysia, 
Romania, Benin, Niger, Mali, Senegal, USA, Australia and Denmark were used to verify the TCA assumptions 
and evaluate SMOS, FY3-B, ASCAT, ESA-CCI, SMAP satellite SSM products and the merged SSM product 
developed by this study using the TCA-LWF algorithm (Table 2 and Fig. 2)39–49. These 311 sites are part of 10 
networks distributed in five continents: Asia, Europe, Africa, North America and Australia. Particularly, in the 
CTP_SMTMN in China, there are about 20 sites in a pixel of the SSM product with 25 km SGR. The mean value of 
the in-situ soil moisture data in a pixel of the SSM products was considered as the true value of soil moisture. Also, 
we used the ESA-CCI L4 global 2015 Land Cover (LC) map with 300 m SGR to identify the land cover type of 
each in-situ soil moisture measurement site (http://www.esa-landcover-cci.org/). The soil moisture measurements 
are obtained at different soil depths, i.e., 5 cm, 10 cm, 20 cm and 40 cm. In this study, we used the in-situ soil mois-
ture measurements at 5 cm soil depth, approximately consistent with the nominal sensing depth of microwave 
SSM L-band instruments.

We identified the land cover type at the sites described above by applying the ESA-CCI L4 2015 global 
LC map with 300 m SGR (Fig. 2). The land cover types of ESA-CCI LC data were defined using the United 
Nations-Land Cover Classification System (UN-LCCS) which considers 40 classes. The 311 ISMN sites were 
distributed mainly in 8 classes (Fig. 2), with most sites being located in grassland and cropland areas, followed 
by shrub, tree and mosaic cropland/natural vegetation (tree, shrub and grass) (37). In the REMEDHUS net-
work of Spain, there were 24 sites, among which 16 sites were located in herbaceous cover area. In the RSMN 
network of Romania, 20 sites were distributed mainly in the rainfed cropland and herbaceous cover area. In the 
BIEBRZA_S-1 network of Poland, 28 sites were mainly in rainfed cropland and grassland, others in shrubland 
or herbaceous cover, flooding, fresh/saline/brackish water area. In the CTP_SMTMN network, the land cover of 
56 out of 57 sites was grassland. In the MySMNet network of Malaysia, 4 out of 7 sites were in the mosaic nature 
vegetation (tree, shrub, herbaceous >50%)/ cropland (<50%). In DAHRA and AMMA-CATCH networks of 
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Africa, out of 8 sites, 2 sites were in the broadleaf deciduous tree (15~40%), 2 sites in shrubland and 2 sites in 
grassland. In HOBE 11 out of 32 sites are located in raining cropland, while the remaining ones were concen-
trated in tree and mosaic cropland/natural vegetation in the USCRN, 45 out of 115 were in grassland and 24 sites 
were in shrub land. In OZNET, 8 out of 20 were in rained cropland, 4 in shrub land and 5 in mixed vegetation. 
Overall, 116 of the 311 ISMN sites were in grassland, 93 in cropland, 30 in shrub land, 21 in tree and the remain-
ing ones were in mosaic cropland/natural vegetation (tree, shrub and grass).

triple collocation analysis. At present, the TCA method is one of the most widely used evaluation meth-
ods for satellite SSM products in the absence of in-situ soil moisture measurement data50. The evaluation of errors 
in satellite SSM data products using TCA is based on three assumptions: a) soil moisture retrievals are linearly 
related to the true soil moisture value; b) the errors on each SSM retrieval are uncorrelated with the true soil mois-
ture; and c) errors within each selected triplet of SSM retrievals are uncorrelated with each other20.

The retrieved soil moisture (SM, cm3/cm3) in each pixel can then be expressed as a linear relationship 
between the true soil moisture value (t, cm3/cm3) and random error (ε) as follows50:

α β ε= + ∗ +tSM (1)

Where α and β are the coefficients.
The covariance ( ′SM SMCov( )i j ) of two SSM products (SMi and SMj) is then:
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Where σt
2 is the variance of true soil moisture value (t, cm3/cm3); Cov(SMi′ SMj) is the covariance matrix of 

paired data products, with three pairs in each triplet when applying TCA (Eq. 3) (Table 3).
In each triplet, three soil moisture datasets were retrieved using different algorithms and from different data 

sources. Accordingly, it was assumed that zero error cross-correlation between each pair of soil moisture data 
sets was nihil, i.e., Cov(εi, εj) = 0, i ≠ j, and that the error - on “true” soil moisture and the error on each soil mois-
ture dataset i.e., Cov(t, εi) = 0 were orthogonal. Based on these assumptions, Eq. 2 can be rewritten as:
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Since there are six unique terms (Q11, Q12 = Q21, Q13 = Q31, Q22, Q23 = Q32, Q33) in the 3 × 3 covariance matrix 
(Eq. 3), we can obtain six equations but seven unknowns ( , , , , , , t1 2 3 1
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θθ

θ σ
=








≠

+ =






=
=

ε

Q
i j

i j
i
j

,

,
, 1, 2, 3

1, 2, 3 (5)
ij

i j

i i
2 2

In Eq. 5, there are six equations and six unknowns. Therefore, a unique value for each unknown can be cal-
culated. Finally, the error variance values on the three independent SSM products in each triplet (Table 3) 
(σ σ σε ε ε, ,1 2 3) can be estimated as:

Networks Countries N Instruments Obs. Depth Period (dd/mm/yy) References

CTP_SMTMN China 57 5TM/EC-TM 5 cm 01/08/2010~19/09/2016 Yang et al.40

RSMN Romania 20 5TM (0~1) 5 cm 09/04/2014~15/05/2020 Sandric et al.41

AMMACATCH Benin, Niger, Mali 7 CS616 5 cm 01/01/2006~31/12/2018 Pellarin et al.42

DAHRA Senegal 1 Theta Probe ML2X 5 cm 04/07/2002~01/01/2016 Tagesson et al.43

BIEBRZA_S-1 Poland 28 GS-3(0~1) 5 cm 23/04/2015~01/12/2018 Musial et al.44

MySMNet Malaysia 7 Water Scout SM100 5 cm 31/05/2014~31/12/2015 Kang et al.45

REMEDHUS Spain 24 Stevens Hydra Probe 5 cm 15/03/2005~01/01/2020 Martínez-
Fernández et al.46

HOBE Denmark 32 Decagon 5TE 5 cm 08/09/2009~13/03/2019 Bircher et al.47

USCRN USA 115 Stevens Hydra probe II Sdi-12 5 cm 15/11/2000~26/10/2020 Bell et al.48

OZNET Australia 20 Stevens Hydra Probe 5 cm 12/09/2001~27/08/2018 Young et al.49

Table 2. Information on in-situ soil moisture measurements used in this study (N: the number of sites).
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The linear weight fusion (LWF) method. The key in the LWF method is to estimate the weight value 
of each pixel of each SSM product. When the soil moisture values of three SSM products in 1st or 2nd step of the 
merging procedure are available, the weight values of three SSM products (w1, w2, w3) can be calculated by using 
the estimated error variance values on three SSM products from Eq. 6 as:

Fig. 2 Distribution of in-situ soil moisture measurement stations and LC characteristics of the networks listed 
in Table 2.

Steps Pairs Results

Triplet 1

SMOS, FY3-B

1st merged SSM productSMOS, ASCAT

FY3-B, ASCAT

Triplet 2

1st merged SSM, ESA-CCI

2nd merged SSM product1st merged SSM, SMAP

ESA-CCI, SMAP

Table 3. Pair strategy of SMOS, FY3-B, ASCAT, SMAP and ESA-CCI for covariance estimation in the 1st and 
2nd merging procedures.
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When the soil moisture values of only two of three SSM products in 1st or 2nd step of the merging procedure 
are available, the weight values of two of three SSM products are re-estimated by using the estimated error vari-
ance values on two of the three SSM products from Eq. 6 as:
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When only one soil moisture values of the three SSM data products in 1st step or 2nd step is available, the 
weight value of one of three SSM products is equal to 1 and weight = 0 for the two remaining SSM products. In 
this study, the scheme to estimate the weight values of three SSM products in 1st and 2nd steps is summarized 
in Table 4. When the temporal coverage of one or more data sets in the triplet is lower, TCA results are often 
considered unreliable. Therefore, the minimum number of valid samples in each pixel for each triplet in the 
time-series was set at 10051.

The TCA–LWF method was used to merge the SSM data products in each triplet (Table 3). This method is 
simple and feasible, and the error attributes of every SSM product that are estimated using TCA algorithm are 
considered. By using the calculated weight values of three SSM products (w1, w2, w3) (Table 4), three SSM prod-
ucts (SM1, SM2, SM3) can be merged by calculating their weighted average as:

SM w w wSM SM SM (9)f 1 1 2 2 3 3= ∗ + ∗ + ∗

Based on preliminary assessment analysis of the satellite SSM products, the ESA-CCI SSM product has better 
performance in accuracy and effective coverage area than AMSR-2, AMSR-E, WindSat and TRMM/TMI SSM 
products3,9,10,26,52. Therefore, this was the reason that the ESA-CCI SSM product was selected and used in the 2nd 
triplet to obtain the 2nd merged (final) SSM. To limit the complexity of the merging procedure, i.e., the number 
of unknowns, we split it into two steps, each dealing with three SSM data products to get finally a single merged 
product from the SMOS, FY3-B, ASCAT, ESA-CCI, and SMAP SSM products. In the first step, the SMOS, 
FY3-B, and ASCAT SSM products are merged by using a LWF algorithm to obtain the 1st merged SSM product 
from 2011~2018. Second, the latter is merged with the ESA-CCI and SMAP SSM products by using the same 
algorithm i.e., the LWF algorithm from 2015~2018. The specific flow chart of SSM product fusion using the LWF 
algorithm is shown in Fig. 3.

Prior to the fusion of the SMOS, FY3-B, ASCAT, ESA-CCI and SMAP datasets using TCA-based LWF 
algorithm, unit conversion, abnormal pixel removal, masking and resampling were applied to these five SSM 
products. All SSM products, i.e., SMOS, FY3-B, ASCAT, ESA-CCI, and SMAP SSM, were resampled to a con-
sistent SGR i.e., 25 km by interpolation of adjacent pixels. In addition, the soil moisture units of SMOS, FY3-B, 
ESA-CCI and SMAP are the same, i.e., volumetric soil water content (cm3/cm3), but ASCAT SSM is expressed as 
saturation (%). To keep consistent units. i.e. volumetric soil water content, cm3/cm3, we used the global porosity 
data with 1-degree SGR, released by the Goddard Earth Sciences Data and Information Services Center (GES 
DISC), were used to convert the ASCAT SWI product to volumetric soil water content (cm3/cm3)53. After res-
ampling and unit conversion, the range of ASCAT SSM was 0–1.0 cm3/cm3, i.e., the same as SMAP. For SMOS 
product, the abnormal SMOS SSM values >1.0 or <0 cm3/cm3, caused by the L-MEB retrieval algorithm, were 
removed, so that the range of SMOS SSM was 0~1.0 cm3/cm3, i.e., the same as ASCAT and SMAP. The ranges of 
ESA-CCI and FY3-B SSM values were 0~0.6 cm3/cm3 and 0~0.5 cm3/cm3. Moreover, in order to keep soil mois-
ture information from SMOS, FY3-B, ASCAT, ESA-CCI and SMAP SSM products as possible, the rescaling and 
masking processes were not implemented for these five original SSM products, but only for the final 1st merged 
and 2nd merged SSM products. The SSM values >0.6 cm3/cm3 in the 1st merged and 2nd merged SSM products 
were replaced using the saturated soil water content data released by the Land-Atmosphere Interaction Research 
Group at Sun Yat-sen University. The water bodies and permanent snow and ice according to the ESA-CCI L4 
global LC map were masked in the final 1st merged and 2nd merged SSM products.

Metrics for evaluation. In this study, the Mean Absolute Error (MAE, cm3/cm3), Root Mean Square Error 
(RMSE, cm3/cm3), Relative Bias (RB), correlation coefficient (R) and Global Coverage Fraction (GCF) were used 
to compare and assess the 1st and 2nd merged SSM products, as well as the SMOS, FY3-B, ASCAT, ESA-CCI, 
SMAP:
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Merge Steps SMOS FY3-B ASCAT Weight values Result

Triplet 1

× × × w1 = w2 = w3 = 0

1st merged SSM product

О × × w1 = 1, w2 =  w3 = 0

× О × w2 = 1, w1 = w3 = 0

× × О w3 = 1, w1 = w2 = 0

О О × w1 and w2 by Eq. 8, w3 = 0

× О О w2 and w3 by Eq. 8, w1 = 0

О × О w1 and w3 by Eq. 8, w2 = 0

О О О w1, w2 and w3 by Eq. 7

1st merged SSM ESA-CCI SMAP Weight values Result

Triplet 2

× × × w1 = w2 = w3 = 0

2nd merged SSM product

О × × w1 = 1, w2 =  w3 = 0

× О × w2 = 1, w1 = w3 = 0

× × О w3 = 1, w1 = w2 = 0

О О × w1 and w2 by Eq. 8, w3 = 0

× О О w2 and w3 by Eq. 8, w1 = 0

О × О w1 and w3 by Eq. 8, w2 = 0

О О О w1, w2 andw3 by Eq. 7

Table 4. Scheme to assign the weight values of three SSM products in 1st and 2nd steps (×: soil moisture value of 
SSM product is not available; О: soil moisture value of SSM product is available).

Fig. 3 Flowchart of work-flow to merge the SMOS, FY3-B, ASCAT, ESA-CCI, and SMAP SSM products using 
TCA method.
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where SMD
E  (cm3/cm3) is the estimated soil moisture value on day D; SM D

O  (cm3/cm3) is the in-situ measured soil 
moisture on day D; N is the number of measurements.

Data Records
Global daily-scale soil moisture fusion dataset (GDSMFD) based on TCA-LWF (2011–2018) is publicly avail-
able at the National Tibetan Plateau Data Center (https://doi.org/10.11888/Terre.tpdc.271935)54.This dataset 
contains global daily-scale soil moisture fusion data with a spatial grid resolution of 25 km, in cm3/cm3, from 
January 1, 2011 to December 31, 2018. These data are stored in TIFF format with one file per day. Each file is 
named as “Fusion_SMOS_FY3B_ASCAT_ESACCI_SMAP_V1_yymmdd.tif ”, where “yy” represents the year, 
“mm” represents the month and “dd” represents the day.

technical Validation
Verification of TCA assumptions. The SMOS, FY3-B, and ASCAT were used to generate the 1st merged 
data product in the first step (Table 3), then combined the latter with SMAP and ESA-CCI in the second step 
(Table 3). TCA assumes independent errors of each pair of datasets. So, in each triplet, we selected soil moisture 
products generated with algorithms as different as possible, because algorithm similarity may lead to correlated 
errors on the SSM datasets (Table 3). In triplet 1, SMOS SSM product was retrieved using the L-MEB algorithm 
from the MIRAS passive microwave brightness temperature observations with L band (1.4 GHz) and multi-angles 
(0~55°), FY3-B SSM product was estimated using the Qp- algorithm from the MWRI passive microwave bright-
ness temperature observations with X band (10.65 GHz) and single incidence angle (55°), while the ASCAT SSM 
product was retrieved using the SWI algorithm from active microwave backscattering observations in C band 
(5.255 GHz) and multi-angular observations (25~65°). In triplet 2, the 1st merged SSM product was estimated 
using TCA-based LWF algorithm from SMOS, FY3-B and ASCAT SSM products, while SMAP SSM product 
was retrieved using the SCA-V algorithm from L band (1.4GHz) and single incidence angle (40°) and the ESA-
CCI SSM product was derived from seven passive microwave SSM products (SMMR, SSM/I, TRMM, AMSR-E, 
AMSR-2, and SMOS) using the LPRM algorithm, and three active microwave SSM products (ERS-1/2, MetOp-A/
ASCAT, and MetOp-B/ASCAT) using the change detection algorithm.

In Eq.  2 to Eq.  3, Cov(ε i, ε j) = 0 when i ≠ j (zero error cross-correlation) and Cov(t, ε i) = 0 
(error-orthogonality) were assumed. To verify quantitatively the assumptions of TCA when the pairing strat-
egy of SMOS, FY3-B, ASCAT, SMAP and ESA-CCI (i.e., Table 3) was used to apply the TCA algorithm, the 
in-situ soil moisture measurement data of CTP_SMTMN, RSMN, DAHRA, BIEBRZA_S-1, MySMNet and 
REMEDHUS networks were considered the “true” SSM values, i.e., the t in Eqs. 1~3). To calculate the errors on 
the SSM products, i.e., the ε in Eq. 1, first, the linear function SSM = α + β*t between the in-situ soil moisture 
measurement and soil moisture product was fitted and the values of the α and β parameters were obtained. 
Second, the rescaled “true” values (SSM′) were calculated using in-situ soil moisture measurements based on the 
fitted linear equation. Finally, according to Eq. 1, the ε values of each soil moisture product were expressed as 
ε = SSM−SSM′ (Table 5) i.e., the difference between the original satellite SSM soil moisture product value and 
the rescaled “true” values.

From Table 5, all absolute Cov(t, εi) and Cov(t, εj) values of triplet 1 and 2 are less than 0.00029 cm6/cm6, and 
most of Cov(t, εi) and Cov(t, εj) only are approximately 0. All Cov(εi, εj) values of triplet 1 and 2 are less than 
0.00352 cm6/cm6. The minimum value of Cov(εi, εj) equal to 0.00049 cm6/cm6, occurred in the pair ESA-CCI 
and SMAP SSM. Comparing the absolute Cov(t, εi) (or Cov(t, εj)) and Cov(εi, εj) values, the absolute Cov(t, εi) 
(or Cov(t, εj)) are significantly lower than the Cov(εi, εj) values i.e., the influence of error non-orthogonality is 
smaller than the error cross-correlation. In addition, the R2 values between errors of each pair of soil moisture 
products in triplet 1 and 2 are lower. Only the R2 values between ESA-CCI and SMAP, SMOS and ASCAT are 
higher, 0.215 and 0.139 respectively. Therefore, in this study the estimated Cov(εi, εj), Cov(t, εi) and Cov(t, εj) 
values using in-situ measurements when the pair strategy of SMOS, FY3-B, ASCAT, SMAP and ESA-CCI (i.e., 
Table 3) was used to apply the TCA algorithm were negligible suggesting the TCA assumptions did apply to our 
data.

Global-scale weight comparison. First, we calculated the weight values of SMOS, FY3-B and ASCAT 
SSM products based on TCA (Eqs. 1~8), and merged these three SSM products by applying the linear weight 
fusion method with the weight values to get the 1st merged SSM product (Table 4). Then, we used the first merged 
SSM product, ESA-CCI, and SMAP SSM in the same way. The global-scale weight distribution maps of SMOS, 
FY3-B, ASCAT, ESA-CCI, and SMAP SSM products are compared and shown in Fig. 4.

In different areas, the weight values of SMOS, FY3-B, and ASCAT have a large spatial variability (Fig. 4). 
There are some areas without data because of less sample points used in TCA calculation in triplet 1 or 2 and 
permanent snow, ice and water bodies. In Australia and northern Africa, the weight value of FY3-B is higher 
than that of SMOS and ASCAT, which means that FY3-B is a dominant SSM product in Australia and North 
Africa when merging SMOS, FY3-B, and ASCAT SSM products. The RMSE of FY3-B SSM calculated by TCA 
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(Eq. 6) is lower than that of SMOS and ASCAT. In northern Asia, northern America and eastern South America, 
the weight values of SMOS are higher than that of FY3-B and ASCAT and SMOS is a dominant SSM product 
in the merging process. In general, SMOS and FY3-B are dominant SSM products in the first merging pro-
cess. Comparing weight values of the 1st merged SSM product, ESA-CCI, and SMAP SSM, the weight values 
of ESA-CCI and SMAP are higher than that of the 1st merged SSM product. Especially, in Australia, Asia, and 
most of America, the weight values of ESA-CCI are higher but lower than SMAP in most of northern Africa. 
The weight values of 1st merged SSM product are lower in most of areas (Fig. 4D). Lower weight value does rep-
resent that the RMSE values of 1st merged SSM product estimated based on TCA are higher than RMSE values 
of ESA-CCI and SMAP SSM products. There maybe are more potential errors in 1st merged SSM data. In 2nd 
merged SSM data, the large errors of 1st merged SSM data may be reduced by using lower weight values of 1st 
merged SSM data.

Global-scale comparison of SSM products. We compared the spatial distribution of global SMOS, 
FY3-B, ASCAT, ESA-CCI, SMAP, the 1st and 2nd merged SSM products on August 1, 2015 (Fig. 5). The areas of 
permanent snow, ice and water bodies were filtered and masked in the global SSM products using the ESA-CCI 
L4 2015 global LC map with 300 m SGR. Besides, we quantitatively compared the GCF values (Eq. 14) of SMOS, 
FY3-B, ASCAT, ESA-CCI, SMAP, the 1st and 2nd merged SSM products from 2011 to 2018 (Table 6 and Fig. 6).

Missing values in the 2nd merged SSM product are significantly less than in SMOS, FY3-B, ASCAT, ESA-CCI, 
and SMAP SSM (Fig. 5). The 2nd merged SSM product has almost complete coverage around the globe. In north-
ern Asia and America, the values of the 2nd merged SSM product are lower than the 1st merged SSM. In northern 
Africa the 2nd merged SSM is lower than the ESA-CCI SSM. In northern Asia, most values of SMOS, ESA-CCI, 
SMAP, and 2nd merged SSM are in the range of 0.05~0.35 cm3/cm3, while most values of the ASCAT and 1st 
merged SSM are >0.35 cm3/cm3. There are many missing values in the FY3-B SSM in northern Asia (Fig. 5B). In 
northern Africa, the values of the 2nd merged SSM and SMAP SSM data products are between 0.03 and 0.15 cm3/
cm3, while the ESA-CCI SSM is in the range of 0.05~0.20 cm3/cm3.

The GCF of the 1st and the 2nd merged SSM is higher than that of SMOS, FY3-B, ASCAT, ESA-CCI, and 
SMAP (Fig. 6), since gaps in a component data set are filled using retrievals in the remaining components of a 
triplet. The mean and maximum GCF of the 2nd merged SSM product are the highest ones, i.e., 0.67 and 0.84 
respectively (Table 6). Clearly, the GCF of all SSM data products is highest in the rainy season from June to 
September and lowest in the dry season in January, especially for ASCAT, ESA-CCI, SMAP, 1st and 2nd merged 
SSM. The intra-annual GCF amplitude of SMOS and FY3-B SSM is smaller than that of ASCAT, ESA-CCI, 
SMAP, 1st and 2nd merged SSM. The GCF of SMOS SSM fluctuates up and down around 0.25. Comparing with 
GCF values of SMOS, ASCAT and SMAP retrieved from observations of single satellite sensor, the GCF of 
FY3-B were the lowest, and the max GCF of FY3-B was only 0.31. Overall, in terms of global coverage, the 1st 
and 2nd merged SSM products were improved using the TCA- LWF algorithm, particularly the 2nd merged SSM 
product.

Comparison with in-situ measurements. We used the mean value of in-situ measurements within a sat-
ellite SSM pixel as the reference to evaluate the satellite SSM products. We compared the SMOS, FY3-B, ASCAT, 
ESA-CCI, SMAP, the 1st and 2nd merged SSM with in-situ soil moisture measurements from 2014 to 2018 (Figs. 7, 8). 
In CTP_SMTMN (China), AMMA-CATCH (Benin, Niger, Mali, and DAHRA (Senegal) the soil moisture measure-
ments from 2015 to 2016 show a clear seasonality with higher SM in the rainy season and lower in the dry season. 
The seasonality was also very clear in BIEBRZA_S-1 (Poland), HOBE (Denmark) and REMEDHUS (Spain), where 
the soil moisture was higher in winter and lower in summer especially in BIEBRZA_S-1. In RSMN (Romania) and 
MySMNet (Malaysia) there was no clear seasonality from 2014 to 2017. In RSMN and HOBE the soil moisture 
from 2014 to 2018 fluctuated around 0.2 cm3/cm3 and 0.25 cm3/cm3 respectively. In USCRN (USA) and OZNET 
(Australia), there were many situations when the soil moisture increased sharply from 2015 to 2018, possibly in 
response irrigation. Overall, the 2nd merged SSM product could capture the soil moisture dynamic characteristics 
caused by rainfall or irrigation, especially in CTP_SMTMN, REMEDHUS and OZNET, and was basically consistent 
with the temporal variability of in-situ soil moisture.

In CTP_SMTMN and RSMN, the 2nd merged SSM product was more consistent with in-situ soil moisture 
measurements especially from April to September. In winter from October to March of next year, however, the 
2nd merged SSM underestimated the soil moisture compared with the in-situ measurements. The 1st merged 
SSM underestimated soil moisture in winter and largely overestimated in summer. In these areas the ESA-CCI 

Pairs (i, j) Cov(t, εi) Cov(t, εj) Cov(εi, εj) R2

Triplet 1

SMOS, FY3-B 2.87*10−04 −2.48*10−05 4.88*10−04 0.005

SMOS, ASCAT 2.87*10−04 −2.77*10−07 2.66*10−03 0.139

FY3-B, ASCAT −2.48*10−05 −2.77*10−07 1.74*10−03 0.081

Triplet 2

1st merged SSM, ESA-CCI −7.46*10−08 8.37*10−08 8.46*10−04 0.014

1st merged SSM, SMAP −7.46*10−08 1.71*10−07 2.15*10−03 0.054

ESA-CCI, SMAP 8.37*10−08 1.71*10−07 3.52*10−03 0.215

Table 5. Covariance (cm6/cm6) and correlation values between errors of each pair of soil moisture products in 
triplet 1 and 2 (i.e., the Cov(εi, εj) and R2 values of Eq. 2), and covariance values between in-situ soil moisture 
measurements and errors of soil moisture products (i.e., the Cov(t, εi) and Cov(t, εj) values of Eq. 2).
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SSM product performed better than SMOS, FY3-B, ASCAT, SMAP and the 1st merged SSM. In AMMA-CATCH 
and DAHRA most SSM retrievals from 2014 to 2017 were largely overestimated, especially in the rainy season, 
except SMOS and SMAP SSM. In these areas, most SMOS SSM retrievals underestimated soil moisture. The 
SMAP SSM was more consistent with in-situ soil moisture measurements, although part of the SMAP retrievals 
were overestimated. In the BIEBRZA_S-1 area, almost all SSM retrievals from 2015 to 2017 were underesti-
mated. In the BIEBRZA_S-1 area from 2015 to 2017, the mean in-situ soil moisture was larger than 0.4 cm3/
cm3 and the highest soil moisture measurement was as high as about 0.8 cm3/cm3. The in-situ soil moisture 
measurements, therefore, may not be reliable here. In the MySMNet area, most SMOS SSM retrievals were 
underestimated. There were many missing soil moisture retrievals in FY3-B SSM data product in the MySMNet 
area. The reason may be the limited FY3-B MWRI observation range and the soil moisture retrieval algorithm 
applied to the FY3-B radiometric data. The ESA-CCI and SMAP SSM largely overestimated the soil moisture 
compared with the in-situ measurements.

Overall, in the MySMNet area from 2014 to 2016 all SSM retrievals performed badly against in-situ soil mois-
ture measurements, while performed better in the REMEDHUS area. ESA-CCI, SMAP and the 2nd merged SSM 
were more consistent with in-situ soil moisture measurements. The SMOS SSM product largely underestimated 
soil moisture from 2014 to 2018, especially in the rainy season. In the same period the ASCAT SSM underes-
timated in the rainy season and overestimated soil moisture in the dry season. Overall, in the CTP_SMTMN, 
RSMN, and REMEDHUS areas, the ESA-CCI, SMAP and 2nd merged SSM was more consistent with in-situ soil 
moisture measurements.

We applied the MAE (Eq. 10), RMSE (Eq. 11), RB (Eq. 12) and R (Eq. 13) metrics to evaluate the SMOS, 
FY3-B, ASCAT, ESA-CCI, SMAP, the 1st and 2nd merged SSM against the in-situ soil moisture measurements at 
the selected sites from the ISMN (Table 7).

The 2nd merged and the SMAP SSM were more consistent with the CTP_SMTMN and RSMN soil moisture 
measurements. The lowest MAE, RMSE, RB values, and highest R-value were 0.028 cm3/cm3, 0.036 cm3/cm3, 
0.019, and 0.861 respectively. In the AMMA-CATCH and DAHRA networks of Africa, the FY3-B, SMAP, and 
SMOS SSM retrievals were more consistent with in-situ soil moisture measurements than ESA-CCI, 1st and 2nd 
merged SSM. The MAE value was lowest for SMAP, i.e., 0.024 cm3/cm3. The RMSE and RB values of SMOS were 
the lowest, i.e., 0.038 cm3/cm3 and 0.083 respectively. The R-value was highest for FY3-B/MWRI, i.e., 0.770. 

Fig. 4 Weight values of SMOS (A), FY3-B (B), ASCAT (C), the 1st merged SSM (D), ESA-CCI (E), and SMAP 
(F) SSM products based on TCA.
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The 2nd merged SSM was more consistent than ESA-CCI with the AMMA-CATCH and DAHRA soil moisture 
measurements. In BIEBRZA_S-1 and MySMNet networks, the difference between soil moisture measurements 
and all SSM retrievals was very large. Especially, in the BIEBRZA_S-1 network, all SSM products performed 
very badly, largely underestimating measured soil moisture. In the REMEDHUS network, the ESA-CCI, SMAP, 
and 2nd merged SSM were more consistent with soil moisture measurements. The MAE and RMSE were lowest 
for ESA-CCI, i.e., 0.038 cm3/cm3 and 0.049 cm3/cm3 respectively. The RB value was lowest for the 2nd merged 
SSM, i.e., −0.013, while the R-value was highest for SMAP, i.e., 0.803. In HOBE, USCRN and OZNET networks, 
although the MAE and RMSE values of 2nd merged SSM were slightly larger than ESA-CCI SSM, the MAE and 
RMSE values of 2nd merged SSM were clearly less than SMOS, FY3-B, ASCAT, 1st merged and SMAP SSM.

Overall, in the 10 networks CTP_SMTMN, RSMN, AMMA-CATCH, DAHRA, BIEBRZA_S-1, MySMNet, 
REMEDHUS, HOBE, USCRN and OZNET, the mean values of MAE, RMSE and BR values of the 2nd merged 
SSM were lower than SMOS, FY3-B, ASCAT, ESA-CCI, SMAP and 1st merged SSM (Table 7). For example, the 
mean of all MAE values of 2nd merged SSM was 0.094 cm3/cm3 less than 0.120 cm3/cm3 of SMOS, 0.132 cm3/

Fig. 5 Global SSM data products on August 1st, 2015: SMOS (A), FY3-B (B), ASCAT (C), 1st merged SSM (D), 
ESA-CCI (E), SMAP (F) and 2nd merged SSM (G).

GCF SMOS FY3-B ASCAT 1st merged SSM ESA-CCI SMAP 2nd merged SSM

Min 0.049 0.002 0.328 0.360 0.170 0.022 0.278

Max 0.363 0.310 0.745 0.820 0.596 0.501 0.837

Average 0.291 0.195 0.567 0.616 0.398 0.308 0.672

Table 6. Min, max and mean GCF of global SMOS, FY3-B, ASCAT, ESA-CCI, SMAP, 1st and 2nd merged SSM 
products from 2011 to 2018.
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cm3 of FY3-B, 0.114 cm3/cm3 of ASCAT, 0.110 cm3/cm3 of 1st merged SSM, 0.105 cm3/cm3 of ESA-CCI and 
0.105 cm3/cm3 of SMAP. Although, the mean value (0.633) of all R values of 2nd merged SSM was less than 
ESA-CCI (0.645) and SMAP (0.697), it was higher than SMOS (0.502), FY3-B (0.260), ASCAT (0.573) and 
1st merged SSM (0.564). In addition, except the MySMNet and BIEBRZA_S-1 networks, the 2nd merged SSM 
was more consistent with soil moisture measurements than the 1st merged SSM. It should be noted that in 
AMMA-CATCH and DAHRA networks, the SMOS and SMAP SSM retrievals from observations by a single 
microwave radiometer were more consistent with in-situ soil moisture measurements than the ESA-CCI, 1st 
and 2nd merged SSM. Overall, the 2nd merged SSM was more consistent than ESA-CCI with in-situ soil moisture 
measurements at most sites.

To improve our validation study on GDSMFD product, we have expanded significantly the soil moisture 
reference data set used for this purpose (see the Supplementary file). We used soil moisture retrievals based on 
the area-scale airborne radiometer observation by SCA-V (Single Channel Algorithm-Vertical polarization) 
soil moisture retrieval algorithm. Also, we used two global-scale merged soil moisture data, i.e., the NNsm 
and RSSSM data products based on the neural network fusion algorithm. We deemed potentially confusing to 
mix the validation against actual soil moisture measurements with the comparison with retrievals and other 
data products. Accordingly, the comparison of our merged soil moisture data of this study with the airborne 

Fig. 6 Daily GCF during 2011~2018 of global SMOS, FY3-B, ASCAT, ESA-CCI, SMAP, 1st and 2nd merged SSM 
(2015~2018 only).

Fig. 7 Temporal evolution of in-situ, SMOS, FY3-B, ASCAT, ESA-CCI, SMAP, the 1st and 2nd merged 
SSM in the seven reference areas ((A) CTP_SMTMN; (B) RSMN; (C) AMMA-CATCH and DAHRA; (D) 
BIEBRZA_S-1; (E) MySMNet; (F) REMEDHUS; (G) HOBE; (H) USCRN; (I) OZNET).
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retrievals and the NNsm and RSSSM data products are presented in the document on supplementary materials. 
Comparing with the airborne radiometer observation-based soil moisture data, the 2nd merged soil moisture 
product had better performance in term of consistence with the airborne radiometer observation-based soil 
moisture data than FY3-B, ASCAT, ESA-CCI and 1st merged soil moisture products. In addition, the spatial 
distribution pattern of GDSMFD product has basically consistent spatial pattern with vegetation coverage data 
in global scale, and also is same with NNsm and RSSSM products.

Usage Notes
We present a global daily-scale soil moisture fusion dataset generated through the TCA-LWF. It is possible that 
in any given pixel only one or two of SMOS, FY3-B and ASCAT SSM is available for 1st merged SSM data, or only 
one or two of 1st merged SSM, ESA-CCI and SMAP SSM data is available for the 2nd merged SSM data. Therefore, 
it is helpful to note the spatial distribution of SSM data products for use and further improvement of the merged 
SSM generated by this study in future. Taking August 1st, 2015 as an example, we produced the distribution 
flags of SMOS, FY3-B and ASCAT SSM data for the 1st merged SSM product (Fig. 9A), and the distribution 
flags of the 1st merged SSM, ESA-CCI and SMAP SSM data for the 2nd merged SSM product (Fig. 9B). The areas 
where SMOS, FY3-B and ASCAT SSM data overlap are smaller than the areas where either SMOS and FY3-B or 
FY3-B and ASCAT SSM data do (Fig. 9A). In addition, there are many areas where only ASCAT SSM is avail-
able (Yellow areas in Fig. 9A). In these areas, the errors in the 1st merged SSM data are only due to errors in the 
ASCAT SSM data. In the 2nd merged SSM data, there are many areas with overlapping coverage (Deep blue areas 
in Fig. 9B) by the 1st merged SSM, ESA-CCI and SMAP and by the 1st merged SSM and ESA-CCI (Green areas in 
Fig. 9B). In northern South America and central Africa (Red areas in Fig. 9B), there is only the 1st merged SSM 
data available i.e., in these areas the errors of 2nd merged SSM data only come from the 1st merged SSM data.

In addition, although the final 2nd merged SSM product has better performance in accuracy than SMOS, 
FY3-B, ASCAT, SMAP and even than ESA-CCI SSM (Fig. 6 and Table 7), there are overestimations or underes-
timations against in-situ soil moisture measurements especially with the data collected in the AMMA-CATCH 
and DAHRA, BIEBRZA_S-1 and MySMNet networks. According to the LWF algorithm (Eqs. 7~9), the errors 
leading to overestimations or underestimations in the final 2nd merged SSM are from SMOS, FY3-B, ASCAT, 
ESA-CCI and SMAP SSM. Therefore, for further improvement of the merged SSM product generated by this 
study, it is also necessary to discuss the potential error sources in SSM data products, which is dealt with in the 
following sections.

errors derived from eSA-CCi SSM. We found that the SMOS, FY3-B and SMAP SSM retrievals from 
observations by a single microwave radiometer were more consistent with in-situ soil moisture measurements in 
AMMA-CATCH and DAHRA than the ESA-CCI SSM (Figs. 7 and 8). Most soil moisture values of ESA-CCI SSM 

Fig. 8 Scatter plots of SSM retrievals: SMOS (A), FY3-B (B), ASCAT (C), ESA-CCI (D), SMAP (E), 1st merged 
(F) and 2nd merged (G) versus in-situ soil moisture measurements vs at: (1) CTP_SMTMN, (2) RSMN, (3) 
AMMA-CATCH and DAHRA, (4) BIEBRZA_S-1, (5) MySMNet, (6) REMEDHUS, (7) HOBE, (8) USCRN, (9) 
OZNET.
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are overestimated compared with in-situ soil moisture measurements in AMMA-CATCH and DAHRA especially 
in the rainy season. The calculated RMSE value (0.104 cm3/cm3) of ESA-CCI SSM (Table 7) is higher than the 
RMSE values of SMOS, FY3-B and SMAP, i.e., 0.038, 0.065 and 0.043 cm3/cm3 respectively. In addition, most 
ESA-CCI SSM weight values were lower, less than 0.3 or even less than 0.1 in northern Africa, than the SMAP 
SSM weight values, which were higher than 0.3 (Fig. 4). The weight values were calculated by Eqs. 7 and 8 with 
the RMSE values estimated using TCA and decrease with increasing RMSE. In the ESA-CCI SSM data product, 
all the SSM retrievals with passive microwave data such as AMSR-E, SMOS and AMSR-2 SSM were done with 
the same retrieval algorithm i.e., LPRM. Some authors indicated however, that the AMSR-E, AMSR-2 and SMOS 
SSM retrievals with LRPM overestimated the soil moisture, and were inconsistent with in-situ soil moisture meas-
urements9,26,55–57. For example, Cui et al.26 found that the AMSR-2 SSM retrieved using LPRM largely overesti-
mated the soil moisture with bias >0.09 cm3/cm3 in the Little Washita Watershed and REMEDHUS networks. It 
was also indicated that the vegetation optical depth was overestimated by LPRM leading to overestimation of soil 
moisture retrieved using LPRM26. In AMMA-CATCH and DAHRA network, the main land cover type is shrub-
land with sparse vegetation and low vegetation optical depth. Accordingly, one of the reasons of overestimation of 
ESA-CCI SSM data in northern Africa is the overestimation of vegetation optical depth by LPRM. Therefore, in 

Indies Networks SMOS FY3-B ASCAT 1st merged SSM ESA-CCI SMAP 2nd merged SSM

MAE

CTP_SMTMN 0.102 0.120 0.102 0.098 0.070 0.074 0.064

RSMN 0.107 0.100 0.109 0.075 0.032 0.028 0.028

ACD 0.033 0.053 0.063 0.059 0.088 0.024 0.048

BIEBRZA_S-1 0.381 0.156 0.298 0.276 0.338 0.303 0.287

MySMNet 0.091 / 0.087 0.094 0.181 0.207 0.152

REMEDHUS 0.075 0.065 0.071 0.071 0.038 0.049 0.040

HOBE 0.134 0.282 0.135 0.141 0.060 0.071 0.072

USCRN 0.094 0.138 0.095 0.095 0.079 0.099 0.085

OZNET 0.064 0.138 0.067 0.080 0.061 0.086 0.072

Mean 0.120 0.132 0.114 0.110 0.105 0.105 0.094

RMSE

CTP_SMTMN 0.124 0.140 0.115 0.114 0.080 0.090 0.075

RSMN 0.126 0.120 0.150 0.098 0.041 0.036 0.036

ACD 0.038 0.065 0.086 0.075 0.104 0.043 0.069

BIEBRZA_S-1 0.410 0.221 0.340 0.315 0.360 0.331 0.313

MySMNet 0.109 / 0.108 0.109 0.186 0.216 0.161

REMEDHUS 0.093 0.082 0.082 0.083 0.049 0.058 0.051

HOBE 0.188 0.291 0.155 0.161 0.074 0.085 0.087

USCRN 0.112 0.158 0.112 0.114 0.092 0.111 0.101

OZNET 0.082 0.175 0.083 0.099 0.076 0.109 0.088

Mean 0.142 0.157 0.137 0.130 0.118 0.120 0.109

RB

CTP_SMTMN 0.382 0.290 0.258 0.258 0.180 0.058 0.053

RSMN 0.437 0.200 0.400 0.048 0.065 0.019 0.068

ACD 0.083 0.553 0.573 0.561 0.671 0.185 0.493

BIEBRZA_S-1 −1.895 −0.379 −1.122 −0.907 −1.596 −1.280 −1.372

MySMNet −0.468 / 0.075 0.272 0.516 0.522 0.382

REMEDHUS −0.449 −0.449 −0.187 −0.257 0.125 −0.283 −0.013

HOBE −0.119 0.572 0.315 0.330 0.010 0.056 0.126

USCRN −0.274 0.273 −0.076 0.001 0.112 0.053 0.081

OZNET −0.039 0.459 0.189 0.229 0.133 0.255 0.141

Mean −0.260 0.190 0.047 0.059 0.024 −0.046 −0.005

R

CTP_SMTMN 0.639 0.560 0.806 0.819 0.790 0.824 0.766

RSMN 0.497 0.110 0.266 0.493 0.772 0.821 0.861

ACD 0.644 0.770 0.595 0.590 0.699 0.750 0.718

BIEBRZA_S-1 0.293 −0.028 0.371 0.319 0.445 0.528 0.331

MySMNet 0.385 / 0.646 0.635 0.599 0.450 0.398

REMEDHUS 0.637 0.372 0.744 0.729 0.708 0.803 0.691

HOBE 0.155 −0.162 0.540 0.499 0.541 0.696 0.633

USCRN 0.522 0.015 0.455 0.366 0.528 0.627 0.573

OZNET 0.743 0.443 0.736 0.626 0.720 0.775 0.730

Mean 0.502 0.260 0.573 0.564 0.645 0.697 0.633

Table 7. MAE (cm3/cm3), RMSE (cm3/cm3), RB and R values of SMOS, FY3-B, ASCAT, ESA-CCI, SMAP, the 
1st and 2nd merged SSM against in-situ soil moisture measurements from ISMN. (ACD: AMMA-CATCH and 
DAHRA networks).
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areas with low vegetation, the LPRM soil moisture retrieval may not be the most accurate. The LPRM may lead to 
errors introduced into the ESA-CCI product, because LPRM does not perform well in global SSM retrieval with 
microwave radiometers. So, it is not unlikely that errors caused by LPRM in the ESA-CCI SSM data product were 
introduced in our 2nd merged SSM data.

errors derived from ASCAT SSM. The GCF of ASCAT SSM is higher than SMOS, FY3-B, SMAP and even 
than ESA-CCI (Fig. 6). There are many areas where only ASCAT SSM is available (Fig. 9). Therefore, ASCAT SSM 
plays an important role in our 1st and 2nd merged SSM data, especially in the 1st merged SSM. From ASCAT SSM 
product retrieved using SWI algorithm with C-band observations (5.3 GHz) gave a worse performance (Table 7) 
than SMOS, FY3-B and SMAP SSM and overestimated soil moisture compared with the in-situ measurements 
in the CTP_SMTMN, RSMN, AMMA-CATCH and DAHRA, MySMNet networks. Other studies drew simi-
lar conclusions, i.e. although ASCAT SSM was correlated with in-situ soil moisture data, there was an issue of 
overestimation against in-situ soil moisture measurements9. One possible cause leading to overestimation in the 
ASCAT SSM could be errors in the global soil porosity data with 1-degree SGR used to convert the ASCAT SSM 
from degree of saturation (%) into volumetric soil moisture content (cm3/cm3)10,58,59. In this study, the adopted 
soil porosity data (Fig. 10) was estimated using equations developed by Saxton and Rawls (2006), who took sand, 
clay, silt, and organic matter as input. In most areas of the globe soil porosity is between the 0.4 and 0.5 (Fig. 10). 
There are a few areas such as the northern Asia and northern North America where soil porosity is higher than 
0.5 and there almost no areas where soil porosity is less than 0.35 (Fig. 10). In the future, if the soil porosity data 
will be corrected using in-situ clay, silt, and organic matter fractions, ASCAT SSM might be improved and might 
also lead to improvement in our 1st and 2nd merged SSM product.

errors derived from SMoS, FY3-B and SMAp SSM. Although the soil moisture retrieval algorithms 
of SMOS, FY3-B and SMAP SSM products are different, they are based on the same radiative transfer equation 
(Table 8), i.e. the zero-order radiative transfer τ-w model60. The difference between these soil moisture retrieval 
algorithms is that the applied parameters of the zero-order radiative transfer model to get best SSM retrieval are 

Fig. 9 Distribution flags of SMOS, FY3-B, ASCAT, ESA-CCI and SMAP SSM data on August 1, 2015 in: (A) the 
1st merged SSM data; (B) the 2nd merged SSM data.
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different. The disparities in brightness temperature, soil roughness model, vegetation optical depth, soil temper-
ature, vegetation canopy temperature, vegetation single scattering albedo, soil dielectric model lead to the differ-
ence between SMOS, FY3-B and SMAP SSM56. These main inputs to the retrieval algorithms of SMOS, FY3-B 
and SMAP SSM also produce errors, which are transferred to our 1st and 2nd merged SSM data. Further detailed 
analysis of the error sources in the SMOS, FY3-B and SMAP SSM data would be helpful to improve the merged 
SSM data products described in this study.

Code availability
The codes used for Global Daily-scale Soil Moisture Fusion Dataset (GDSMFD) are available in National Tibetan 
Plateau Data Center (https://doi.org/10.11888/RemoteSen.tpdc.271988)61.
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Fig. 10 Global soil porosity map53.

Foundational model Zero-order radiative transfer model (i.e.,τ−w model)

Algorithm L-MEB for SMOS Qp model for FY3-B SCA-V for SMAP

Brightness temperature (TB) 1.4 GHz with muti-angles (2.5 ± 2.5 to 
62.5 ± 2.5°) 10.65 and 36.5 GHz Interpolated TB at 1.41GHz using the Backus-

Gilbert method

Soil roughness model

QHN model:
Q = 0;
NH-p = NV-p = −1 (low vegetation);
NH-p = 1, NV-p  = −1 (V-p), (forest);
H: from LUT based on IGBP (0.02 ≤ H ≤ 0.3)

Qp model:
The coefficients of Qp model are estimated 
using simulated data from AIEM

QHN model:
Q = 0;
N = 2;
H: from LUT based on IGBP (0.083 ≤ H ≤ 0.160)

Vegetation optical depth (τ) τ is retrieved in L-MEB with soil moisture 
simultaneously

τ = b × VWC/cosθ:
VWC: from an empirical function of LAI;
θ: the incident angle.

τ = b × VWC:
b: from LUT based on IGBP (0 ≤ b ≤ 0.13);
VWC: from the nonlinear function of NDVI

Soil temperature (Ts) from ECMWF (Level 1~3) from an empirical linear function of TB at 
36.5 GHz

from the GMAO-GEOS-FP (Level 1: 5~15cm 
and Level 2: 15–35 cm)

Canopy temperature (Tv) from ECMWF (Level 1: top 0–7 cm) Tv = Ts Tv = Ts

Single scattering albedo (w) from LUT based on IGBP (0.06 ≤ w ≤ 0.12) w = 0 from LUT based on IGBP (0 ≤ w ≤ 0.07)

Soil dielectric model Mironov et al. / Mironov et al.

Table 8. Main inputs of the retrieval algorithms of SMOS, FY3-B and SMAP SSM. *Q, H and N are the 
parameters of QHN model; H-p: Horizontal-polarization; V-p: Vertical-polarization; IGBP: the International 
Geosphere-Biosphere Programme; ECMWF: the European Center for Medium range Weather Forecasting; 
AIEM: the Advanced Integral Equation Method; VWC: the Vegetation Water Content; LAI: the Leaf Area 
Index; NDVI: the Normalized Difference Vegetation Index; GMAO-GEOS-FP: the Goddard Modelling and 
Assimilation Office-Goddard Earth Observing System (model)-Forward Processing; LUT: Look-Up-Table.
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