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Size-fractionated microbiome 
observed during an eight-month 
long sampling in Jiaozhou Bay and 
the Yellow Sea
Jianchang Tao   1,2,3, Wenxiu Wang1,2,3, JL Weissman4, Yongyu Zhang   5, Songze Chen1,2,3, 
Yuanqing Zhu1,3, Chuanlun Zhang1,2,3 & Shengwei Hou   1,2,6 ✉

Jiaozhou Bay is a typical semi-enclosed bay with a temperate climate imposed by strong anthropogenic 
influence. To investigate microbial biodiversity and ecosystem services in this highly dynamic coastal 
environment, we conducted a monthly microbial survey spanning eight months at two stations 
in the bay and the open Yellow Sea starting in April 2015. This report provides a comprehensive 
inventory of amplicon sequences and environmental microbial genomes from this survey. In total, 
2,543 amplicon sequence variants were obtained with monthly relative abundance profiles in three 
size fractions (>2.7 μm, 2.7–0.7 μm, and 0.7–0.22 μm). Shotgun metagenomes yielded 915 high-
quality metagenome-assembled genomes with ≥50% completeness and ≤5% contamination. These 
environmental genomes comprise 27 bacterial and 5 archaeal phyla. We expect this comprehensive 
dataset will facilitate a better understanding of coastal microbial ecology.

Background & Summary
The global importance of microorganisms in biogeochemical cycling and climate change has been widely rec-
ognized1. Microbes play a central role in the marine food web by mediating carbon flow to upper trophic lev-
els2, and are proposed to be responsible for the massive accumulation of recalcitrant dissolved organic carbon 
(rDOC) in the global ocean3,4. Seawater contains a contiguous body of particles, which have a predominant 
influence on microbial community assemblages. For instance, microbial community composition on particles 
was found to be consistently similar throughout the water column on a global scale5, and the size of particles 
may also play an important role in shaping microbial assemblage and community functioning6.

Particle niche partitioning suggests different trophic strategies. Free-living microbial communities are 
repeatedly observed to be distinct from particle-associated assemblages in both epipelagic7–9 and bathypelagic 
oceans10,11. Microbes colonizing particles were found to be phylogenetically conserved11 and metabolically more 
active than free-living ones12,13. Although there are plenty of studies showing that the rapid community response 
to particulate organic matters or nutrients is frequently associated with an altered microbial life strategy14–17, it 
is also evident that ecological interactions can complicate the interpretation18, particularly at finer phylogenetic 
resolutions19. Thus, it would be desirable to gain a better understanding of microbial particle association in both 
evolutionary and ecological aspects.

Coastal and estuarine environments are dynamic systems suffering from multiple anthropogenic stresses. 
Jiaozhou Bay (JZB) is such a typical semi-enclosed inlet of the Yellow Sea under strong and long-lasting human 
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impact. Substantial allochthonous organic matter is transported into the bay via several adjoining rivers, in addi-
tion to particles and pollutants released by a broad range of marine aquaculture farms20,21, causing eutrophication 
and frequent seasonal algal blooms in the past decades22. A systematic survey of microbial communities associ-
ated with different sizes of particles is required to better understand microbial driven biogeochemical cycles in 
this specific system. Here we carried out a monthly microbial sampling starting from April 2015 for eight months 
at two stations, in the bay (station A53) and the connected open Yellow Sea (station D710) (Fig. S1). Detailed sam-
ple metadata including environmental factors can be found in the supplementary Table 1. Seawater samples were 
consecutively filtered through three pore-sized filters to collect microorganisms colonizing in the corresponding 
fractions (Fig. 1). After DNA extraction, samples collected in September 2015 and March 2016 were subjected 
to metagenomic sequencing, and samples collected in the first 8 months were subjected to amplicon sequencing 
(Fig. 1). Eukaryotic phytoplankton as approximated by chloroplast 16S rDNA sequences dominated the >2.7 μm 
size fraction (11%–76%), though cyanobacteria (mainly Synechococcus) could occasionally accounted for :17% 
of all 16S rDNA reads in late summer (Fig. 2a). Alphaproteobacteria and Gammaproteobacteria were two most 
abundant phyla in the <2.7 μm size fractions (Fig. 2a). Bacteroidota and Actinobacteriota dominated the 0.7–
0.22 μm fraction, each accounting for 4.7%–26% and 3.5%–23% of total amplicon reads on average, respectively 
(Fig. 2a). Although one should realize that the filtration cutoff does not provide an exact size exclusion since 
smaller microbes could be clogged in filters of the larger fraction, here microbial communities could be mainly 
partitioned into three clusters corresponding to the size fraction they primarily occupied as shown in the NMDS 
analysis (Fig. 2b). And all the three clusters were significantly influenced by temperature, Chl-a, and TN (total 
nitrogen) (p < 0.05, Fig. 2b).

Metagenomes were both assembled individually or co-assembled for each size fraction, and 915 
non-redundant and purified environmental metagenomic-assembled genomes (MAGs) with ≥50% complete-
ness and ≤5% contamination were obtained (Supplementary Table 3: MAGs info.), comprising 27 bacterial 
and 5 archaeal phyla (Figs. 3, 4). Among these MAGs, 469 have a completeness score of ≥75%, and 183 are 
near complete (≥90%). Bacterial MAGs were mainly from Proteobacteria (247 MAGs belonging to 20 orders 
of Alphaproteobacteria and 267 MAGs belonging to 21 orders of Gammaproteobacteria), Bacteroidota (179 
MAGs out of 8 orders), and Actinobacteriota (57 MAGs out of 8 orders) (Fig. 3). Archaeal MAGs were mainly 
Marine Group II archaea (MGII), include 17 MGIIa MAGs and 3 MGIIb MAGs (Fig. 4). All the 14 MAGs of 
Cyanobacteriota are in the order of Synechococcales A, 11 of them are Synechococcus, and 3 are Cyanobium.

This monthly microbial survey at two contrasting stations provides a comprehensive and valuable database 
for studying microbial community succession and nutrient cycling of coastal marine environments.
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Fig. 1  Bioinformatics workflow for amplicon and metagenomic data analysis. After sampling and filtration, 
microbial genomic DNA was extracted and libraries were prepared for amplicon and metagenomic sequencing. 
For amplicon data analysis, reads were quality controlled, denoised, and clustered using plugins of the 
QIIME2 suite. For metagenomic data analysis, preliminary MAGs were obtained after read quality control, 
metagenomic assembly and binning, then subjected to genome refinement and dereplication. The final MAGs 
were taxonomically classified and were used for further analysis. Detailed data processing steps, software, and 
parameters can be found in the Methods section.
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Methods
Sampling and physicochemical analyses.  Samples were collected at two stations (Fig. S1) in 2015 (April, 
June, July, September, and December) and 2016 (January, March, and October) in JZB and the Yellow Sea on the 
“Innovation” research vessel operated by the Institute of Oceanography, Chinese Academy of Sciences. Microbial 
cells were collected onto three different pore-sized filters, e.g., 2.7 μm (Whatman GF/D 1823-047), 0.7 μm 
(Whatman GF/F 1825-047) and 0.22 μm (Millipore GTTP04700), by sequentially filtering 4-L seawater collected 
at 0.5 m depth using a CTD sampler (Sea-Bird). Additionally, 1-L seawater was directly filtered through a 0.7 μm 
pore-sized filter for particulate organic carbon (POC) measurement using a Shimadzu TOC-VCPH analyzer, and 
50-ml seawater was sampled to measure the concentrations of dissolved organic carbon (DOC) and total nitrogen 
(TN) using a Shimadzu TOC-L Analyzer23. All filters and water samples were stored at −20 °C. Environmental 
parameters, including water temperature, salinity, and Chl-a concentration, were measured by the conductivi-
ty-temperature-depth (CTD) probe on board. Concentrations of specific nutrients, including the total nitrate, 

− − −NO PO SiO, ,2 4
3

3
2 , and +NH4 , were measured using a SEAL AutoAnalyzer 3 automatic continuous flow analyzer 

in the lab.

DNA extraction and metagenomic sequencing.  Samples taken in September 2015 and March 2016 
were also selected for metagenomic sequencing to investigate microbial community disturbances during marine 
aquaculture farming and spring algal blooms. DNA was extracted for filter samples taken from the two months 
using FastDNA SPIN for soil kit (MP Biomedicals, LLC) according to the user manual. DNA materials were 
then sheared by a Covaris M220 Focused-ultrasonicator (Covaris, Woburn, MA, United States), and the result-
ing ~350 bp long fragments were further purified using MinkaGene Gel Extraction Kit (mCHIP, Guangzhou, 
China). Illumina libraries were constructed from about 100 ng DNA using NEB Next UltraTM DNA Library Prep 
Kit for Illumina (New England Biolabs, United States) according to the manufacturer’s instructions. Sequencing 
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Fig. 2  Relative abundance of ASVs in three size fractions (a) and NMDS ordination of samples based on Bray-
Curtis dissimilarity matrix (b). ASVs were color-coded according to their phyla, and those with total relative 
abundances of <5% in all 37 samples were grouped into Others. Hatched bars represent missing samples. 
Environmental factors were fit to the ordination using the envfit function in the vegan R package. Only factors 
with a significance level of <0.05 were shown. Detailed abundance data can be found in Supplementary Table 2, 
and associated environmental factors can be found in Supplementary Table 1.
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was performed on an Illumina Hiseq X-Ten platform using the 2 × 150 bp paired-end chemistry at Magigene 
Biotechnology (Guangzhou, China).

16S rDNA sequencing.  The V4 variable regions of 16S rDNA were amplified for 37 samples using  
the pair of universal prokaryotic primers 515FB (GTGYCAGCMGCCGCGGTAA) and 806RB 
(GGACTACNVGGGTWTCTAAT)24. The PCR mixture contained 25 μl of 2× Premix Taq DNA polymerase 
(TaKaRa), 0.2 mM of each primer, 20 μl of ddH2O, and 3 μl of template DNA in a total volume of 50 μl. Thermocycling 
steps were as follows: an initial denaturation step for 30 s at 94 °C, followed by 30 amplification cycles of 94 °C for 30 s, 
58 °C for 30 s and 72 °C for 30 s, and a final elongation step at 72 °C for 30 s. Indexed PCR products were pooled and 
purified using the EZNA Gel Extraction Kit (Omega, USA) to remove primer dimers, and sequenced on the MiSeq 
platform (2 × 300 PE, Illumina) at MajorBio Biotechnology (Shanghai, China). Raw reads were analyzed using the 
Quantitative Insights into Microbial Ecology (QIIME2, version 2020.8) software suite with the demux, DADA2 and 
feature-table plugins25. Features with a total abundance of less than 10 across all samples, or those only present in one 
sample were discarded. Since sequencing depth was sufficient (Fig. S2), we subsampled the sequencing depth to the 
minimum sequence number of all samples, and reported a final ASV (Amplicon Sequence Variant) abundance table 
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Fig. 3  Phylogenomic placement of JZB bacterial MAGs. The maximum likelihood tree was reconstructed based 
on the concatenated alignments of 119 single-copy marker genes extracted from 890 JZB bacterial MAGs and 
2656 reference genomes. The total number of MAGs recovered for each phylum was given in the parenthesis 
after the phylum name. Nodes with bootstrap values >0.5 were labeled in the dendrogram using filled black 
circles with sizes proportional to the validity from 0.5 to 1. Five archaeal genomes in the Euryarchaeota phylum 
were used as the outgroup to root the tree. Detailed MAG taxonomy assignment, associated with completeness 
and contamination information can be found in Supplementary Table 3.
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with an even depth across samples (Supplementary Table 2). ASV taxonomy was assigned by the feature-classifier 
plugin using Naive Bayes against the SILVA v138 99% dereplicated reference database (https://www.arb-silva.de/ngs).

Microbial community clustering analysis.  Non-metric multidimensional scaling (NMDS) based on 
Bray-Curtis distance was used to compare the differences in microbial community composition across samples, and 
environmental factors were fitted to the NMDS axes using the envfit method with 999 Monte Carlo tests using the 
vegan R package. Only factors with a significance level of <0.05 were included in the NMDS figure (Fig. 2b).

Sequence quality control and metagenomic assembly.  HiSeq generated raw reads were first trimmed 
by Trim Galore v0.5 using default settings to remove adaptors and low quality (below Q20) regions, and the final 
read quality was assessed using FastQC v0.11.8. Trimmed reads longer than 20 bp were used as clean reads for 
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Fig. 4  Phylogenomic placement of JZB archaeal MAGs with completeness and contamination information. The 
maximum likelihood tree was reconstructed based on the concatenated alignments of 117 single-copy marker 
genes extracted from 25 JZB archaeal MAGs (in red) and 68 reference genomes (in black). The total number of 
MAGs recovered for each phylum was given in the parenthesis after the phylum name. Nodes with bootstrap 
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from 0.5 to 1. Five Pelagibacter genomes were used as the outgroup to root the tree. Detailed MAG taxonomy 
assignment, associated with completeness and contamination information can be found in Supplementary 
Table 3.
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downstream analyses. All 10 metagenomic samples collected in September 2015 and March 2016 were assem-
bled individually using megahit v.1.1.326, with the following parameters:–presets meta-sensitive and–min-count 
1–k-list 25, 29, 39, 49, 59, 69, 79, 89, 99, 109, 119, 129, 141. In addition, a co-assembly step was done for samples 
from the same size fraction. Final assemblies were evaluated using Quast v.4.6.327.

MAG generation, refinement, purification, and taxonomy assignment.  Individually assembled 
and co-assembled contigs longer than 1 kb were subjected to metagenomic binning using BASALT28, which 
employed MetaBAT v2.12.129, Maxbin v2.2.430 and CONCOCT v1.1.031 to make original bins, then compared 
these raw bins across assemblies to obtain a set of refined non-redundant MAGs. In addition, these MAGs were 
further refined using MAGpurify v2.1232 to remove contaminations using the “phylo-markers”, “tetra-freq”, 
“gc-content”, “known-contam” and “clade-markers” modules. Genome quality was assessed using CheckM 
v1.0.1133, and MAGs with completeness higher than 50% and contamination lower than 5% were further derep-
licated using dRep v2.6.234 at 98% identity. The quality of MAGs was assessed by prok-quality35 following the 
MIMAG standards36. Taxonomies of dereplicated MAGs were assigned using GTDB-Tk v0.1.6 based on the 
GTDB v86 database37,38.

Phylogenomic tree construction.  Universal bacterial or archaeal single-copy marker genes used by the 
GTDBtk v1.7 were identified and extracted from both JZB MAGs and closest relative genomes in the GTDB v89 
database. Only marker genes found in ≥30 genomes were selected to build the bacterial and archaeal phylog-
enomic trees. Protein sequences of selected marker genes were first aligned using MUSCLE (v3.8.31)39, and then 
trimmed using trimAl (v1.4)40 with the “-automated1” option. The concatenated alignment sequences were used 
as the input of FastTree v2.1.141 to build phylogenomic trees with the “-gamma-lg” option. And the resulting trees 
were visualized using iTOL online server (https://itol.embl.de).

Data Records
Raw reads of 16S rDNA and metagenome generated in this study have been deposited in the National Center 
for Biotechnology Information BioProject database with the project ID PRJNA82387042 and PRJNA82390843. 
Contigs, MAGs and supplementary files have been deposited at figshare44.

Technical Validation
All raw data processing steps, software and parameters used in this study were described in the Methods section. 
The quality of the genomes was also assessed by CheckM, and genomic statistics can be found in the supple-
mentary tables.

Code availability
All versions of third-party software and scripts used in this study are described and referenced accordingly in the 
Methods sections for ease of access and reproducibility.
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