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Laparoscopy is an imaging technique that enables minimally-invasive procedures in various 
medical disciplines including abdominal surgery, gynaecology and urology. To date, publicly 
available laparoscopic image datasets are mostly limited to general classifications of data, semantic 
segmentations of surgical instruments and low-volume weak annotations of specific abdominal organs. 
the Dresden Surgical Anatomy Dataset provides semantic segmentations of eight abdominal organs 
(colon, liver, pancreas, small intestine, spleen, stomach, ureter, vesicular glands), the abdominal wall 
and two vessel structures (inferior mesenteric artery, intestinal veins) in laparoscopic view. In total, 
this dataset comprises 13195 laparoscopic images. For each anatomical structure, we provide over a 
thousand images with pixel-wise segmentations. Annotations comprise semantic segmentations of 
single organs and one multi-organ-segmentation dataset including segments for all eleven anatomical 
structures. Moreover, we provide weak annotations of organ presence for every single image. This 
dataset markedly expands the horizon for surgical data science applications of computer vision in 
laparoscopic surgery and could thereby contribute to a reduction of risks and faster translation of 
Artificial Intelligence into surgical practice.

Background & Summary
Laparoscopic surgery is a commonly used technique that facilitates minimally-invasive surgical procedures as 
well as robot-assisted surgery and entails several advantages over open surgery: reduced length of hospital stay, 
less blood loss, more rapid recovery, better surgical vision and, especially for robotic procedures, more intuitive 
and precise control of surgical instruments1,2. Meanwhile, a lot of the information in the image is not used, 
because the human attention is not able to process this immense amount of information in real time. Moreover, 
anatomical knowledge and medical experience are required to interpret the images. This barrier represents a 
promising starting point for the development of Artificial Intelligence (AI)-based computer-based assistance 
functions.

The rapidly developing methods and techniques provided by the usage of AI, more precisely the automated 
recognition of instruments, organs and other anatomical structures in laparoscopic images or videos, have the 
potential to make surgical procedures safer and less time-consuming3–6. Open-source laparoscopic image data-
sets are limited, and existing datasets such as Cholec807, LapGyn48, SurgAI9 or the Heidelberg Colorectal Data 
Set10 mostly comprise image-level annotations that allow the user to differentiate whether or not the structure 
of interest is shown in an image without giving information about its specific spatial location and appearance. 
However, such pixel-wise annotations are required for a variety of machine learning tasks for image recognition 
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in the context of surgical data science11. In a clinical setting, such algorithms could facilitate context-dependent 
recognition and thereby protection of vulnerable anatomical structures, ultimately aiming at increased surgical 
safety and prevention of complications.

One major bottleneck in the development and clinical application of such AI-based assistance functions is 
the availability of annotated laparoscopic image data. To meet this challenge, we provide semantic segmentations 
that provide information about the position of a specific structure by annotations of each pixel of an image. 
Based on video data from 32 robot-assisted rectal resections or extirpations, this dataset offers a total amount 
of 13195 extensively annotated laparoscopic images displaying different intraabdominal organs (colon, liver, 
pancreas, small intestine, spleen, stomach, ureter, vesicular glands) and anatomical structures (abdominal wall, 
inferior mesenteric artery, intestinal veins). For a realistic representation of common laparoscopic obstacles, it 
features various levels of organ visibility including small or partly covered organ parts, motion artefacts, inho-
mogeneous lighting and smoke or blood in the field of view. Additionally, the dataset contains weak labels of 
organ visibility for each individual image.

Adding anatomical knowledge to laparoscopic data, this dataset bridges a major gap in the field of surgical 
data science and is intended to serve as a basis for a variety of machine learning tasks in the context of image 
recognition-based surgical assistance functions. Potential applications include the development of smart assis-
tance systems through automated segmentation tasks, the establishment of unsupervised learning methods, or 
registration of preoperative imaging data (e.g. CT, MRI) with laparoscopic images for surgical navigation.

Methods
This dataset comprises annotations of eleven major abdominal anatomical structures: abdominal wall, colon, 
intestinal vessels (inferior mesenteric artery and inferior mesenteric vein with their subsidiary vessels), liver, 
pancreas, small intestine, spleen, stomach, ureter and vesicular glands.

Video recording. Between February 2019 and February 2021, video data from a total of 32 robot-assisted 
anterior rectal resections or rectal extirpations performed at the University Hospital Carl Gustav Carus Dresden 
was gathered and contributed to this dataset. The majority of patients (26/32) were male, the overall average age 
was 63 years and the mean body mass index (BMI) was 26.75 kg/m2 (Table 1). All included patients had a clinical 
indication for the surgical procedure. Surgeries were performed using a standard Da Vinci® Xi/X Endoscope with 
Camera (8 mm diameter, 30° angle, Intuitive Surgical, Item code 470057) and recorded using the CAST-System 
(Orpheus Medical GmbH, Frankfurt a.M., Germany). Each record was saved at a resolution of 1920 × 1080 pixels 

Age (years) 63 ± 9

BMI (kg/m2) 26.8 ± 3.0

Sex

Female 6 (18.8%)

Male 26 (81.3%)

Indication

Rectal cancer 31 (96.9%)

Other 1 (3.1%)

Distance from anocutaneous line

<6 cm 14 (43.8%)

6–11 cm 13 (40.6%)

≥12 cm 5 (15.6%)

Surgical resection technique

LAR, TME/PME 19 (59.4%)

ISR, TME 5 (15.6%)

APR, TME 3 (9.4%)

AR, PME 5 (15.6%)

UICC stage

0 1 (3.1%)

I 10 (31.3%)

IIA 5 (15.6%)

III 1 (3.1%)

IIIA 2 (6.3%)

IIIB 8 (25.0%)

IIIC 2 (6.3%)

IVA 3 (9.4%)

Table 1. Patient characteristics. For age and BMI, mean ± standard deviation are displayed. For all other 
data, the table gives total numbers and proportions of the entire cohort (32 patients). Abbreviations: 
abdominoperineal resection (APR), anterior resection (AR), body mass index (BMI), intersphincteric resection 
(ISR), low anterior resection (LAR), partial mesorectal excision (PME), total mesorectal excision (TME), Union 
for International Cancer Control (UICC).
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in MPEG-4 format and lasts between about two and ten hours. The local Institutional Review Board (ethics 
committee at the Technical University Dresden) reviewed and approved this study (approval number: BO-EK-
137042018). The trial, for which this dataset was acquired, was registered on clinicaltrials.gov (trial registration 
ID: NCT05268432). Written informed consent to laparoscopic image data acquisition, data annotation, data 
analysis, and anonymized data publication was obtained from all participants. Before publication, all data was 
anonymized according to the general data protection regulation of the European Union.

Temporal annotation of videos. The surgical process was temporally annotated by one medical student 
with two years of experience in robot-assisted rectal surgery (MC, FMR) using b<>com *Surgery Workflow 
Toolbox* [Annotate] version 2.2.0 (b<>com, Cesson-Sévigné, France), either during the surgery or retrospec-
tively, according to a previously created annotation protocol (Supplementary File 1), paying particular interest to 
the visibility of the abovementioned anatomical structures. Ubiquitous organs (abdominal wall, colon and small 
intestine), intestinal vessels, and vesicular glands were not specifically annotated temporally.

Surgery index
Abdominal 
wall Colon

Inferior 
mesenteric 
artery

Intestinal 
veins Liver Pancreas

Small 
intestine Spleen Stomach Ureter

Vesicular 
glands Total

01 — — — — 83 80 — 5 — 83 — 251

02 — — — — 64 55 — — 70 52 — 241

03 63 57 61 61 90 61 56 64 84 85 55 737

04 59 66 56 — 36 82 51 75 52 54 69 600

05 61 58 — 49 14 74 58 91 58 55 56 574

06 59 53 44 — — — 57 — — — 54 267

07 61 52 58 58 — 42 57 — 44 71 — 443

08 — — — — — 52 — 28 18 — — 98

09 68 56 57 58 — — 55 — — — — 294

10 58 61 — 40 — — 60 — 43 — 61 323

11 56 68 56 56 40 64 58 71 87 58 64 678

12 64 58 56 46 5 61 57 85 84 90 55 661

13 — — — — 83 — — 81 — — 62 226

14 56 68 50 52 — — 51 54 — — 55 386

15 — — — 80 — — 72 — — — 152

16 58 64 57 55 — 9 60 66 45 43 47 504

17 53 57 56 57 — 81 57 — 77 48 59 545

18 61 59 58 60 44 64 57 — 78 65 59 605

19 58 55 51 42 — — 53 — — 62 56 377

20 51 62 53 56 42 91 56 45 86 66 66 674

21 52 57 54 59 47 88 50 50 44 75 72 648

22 59 63 56 59 9 56 60 64 79 70 — 575

23 53 63 — 49 — — 58 83 78 — 58 442

24 52 63 57 64 8 32 52 74 41 25 70 538

25 54 54 56 50 56 — 51 — 63 — 55 439

26 50 56 57 52 10 28 54 78 74 71 63 593

27 — — — — — 51 — 14 57 — — 122

28 — 58 42 — 83 — — — — 72 — 255

29 — 66 55 44 62 51 — — 71 — 62 411

30 — — — — 86 — — — 31 57 — 174

31 — — — — 81 51 — 16 66 73 — 287

32 — — — — — — — 75 — — 75

Total 1206 1374 1090 1067 1023 1173 1168 1191 1430 1275 1198 13195

Median 
number of 
segments 
(range)

1 (1–7) 2 (1–9) 1 (1–5) 1 (1–6) 1 (1–5) 3 (1–10) 2 (1–7) 1 (1–4) 1 (1–5) 1 (1–4) 1 (1–9)

Mean % 
background 
(SD)

74% (14%) 88% (7%) 98% (2%) 99% (1%) 80% (18%) 97% (3%) 84% (10%) 97% (4%) 95% (6%) 99% (1%) 97% (4%)

Table 2. Distribution of images in the dataset per organ and surgery. For each surgery and organ, the total 
number of images in the dataset is given. Moreover, this table summarizes the median number of segments and 
the mean proportion of non-segmented background per organ. Abbreviation: standard deviation (SD).
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Frame extraction. To achieve a highly diverse dataset, videos from at least 20 different surgeries were con-
sidered for each anatomical structure. From each considered surgical video, up to 100 equidistant frames were 
randomly selected from the total amount of video data displaying a specific organ. As a result, this dataset con-
tains at least 1000 annotated images from at least 20 different patients for each organ or anatomical structure. 
The number of images extracted and annotated per organ and surgery as well as the number of segments and the 
mean proportions of non-segmented background per organ are listed in Table 2.

For anatomical structures without a temporal annotation (abdominal wall, colon, intestinal vessels, small 
intestine and vesicular glands), sequences displaying the specific organ were selected and merged manually 
using LossLessCut version 3.20.1 (developed by Mikael Finstad). Random frames were extracted from the 
merged video file using a Python script (see section “Code availability”). The extraction rate (extracted frames 
per second) was adjusted depending on the duration of the merged video to extract up to 100 images per organ 
per surgery. Images were stored in PNG format at a resolution of 1920 × 1080 pixels.

For liver, pancreas, spleen, stomach and ureter, temporal annotations served as a basis for the frame-extraction 
process using the abovementioned Python script. Based on a TXT file with temporal annotations of organ pres-
ence, equidistant frames were extracted from respective sequences for each organ as outlined above.

Fig. 1 Overview of the data acquisition and validation process. Based on temporal annotations of 32 rectal 
resections, three independent annotators semantically segmented every single image with regard to the pixel-
wise location of the respective organ. These segmentations were merged and individual segmentations were 
reviewed alongside the merged segmentation by a physician with considerable experience in minimally-
invasive surgery, resulting in the final pixel-wise segmentation (left panel). Moreover, every single image was 
classified with regard to the visibility of all individual anatomical structures of interest by one annotator and 
independently reviewed (right panel).
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The resulting frames were audited and images that were not usable (e.g. the organ is not visible because it is 
concealed completely by an instrument, the complete field of view is filled with smoke, severely limited visibility 
due to a blurred camera) were excluded manually.

No automated filtering processes were applied to specifically select or avoid images (e.g. based on mutual 
information). To maintain the variability inherent to intraoperative imaging, no image preprocessing steps such 
as adaptation of image intensity or contrast, or window size) were performed. Images were directly extracted from 
the videos recorded during surgery, converted into PNG (lossless). These images were then directly annotated.

Fig. 2 Sample images of each anatomical structure. The figure displays a raw image (left column), the three 
pixel-wise annotations and the merged annotation (middle column) as well as the final reviewed segmentation 
(right column). The three annotations are shown as red, green and blue lines. The merged version and the final 
reviewed segmentation are displayed as white transparent surfaces.
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The resulting dataset includes over 1000 images from at least 20 surgeries for each anatomical structure (Fig. 1).

Semantic segmentation. For pixel-wise segmentation, we used 3D Slicer 4.11.20200930 (https://www.
slicer.org) including the SlicerRT extension, an open-source medical image analysis software12. The anatomi-
cal structures were manually semantically segmented with the Segment Editor function using a stylus guided 
tablet computer running Microsoft Windows. The settings made during segmentation were “scissors”, opera-
tion “fill inside”, shape “free form”, slice cut “symmetric”. As a guideline we generated a segmentation proto-
col that describes inclusion criteria for each considered anatomical structure in detail (Supplementary File 2). 
Each individual image was semantically annotated according to this guideline by three medical students with 
basic experience in minimally-invasive surgery. Thus, exactly one specific anatomical structure was finally seg-
mented in each image (e.g. the colon was pixel-wise annotated in each of the 1374 colon images). In addition, one 
multi-organ-segmentation dataset was created out of the 1430 stomach frames. The stomach dataset was chosen 
for this purpose because these images very often show various organs, such as the colon, small intestine or spleen 
as well as the abdominal wall. Subsequently, the three individual annotations were automatically merged (see 
section “Code availability”). Individual annotations alongside merged segments were reviewed and adjusted by a 
physician with three years of experience in minimally-invasive surgery. Figure 1 gives an overview over the image 
generation and verification process. Example annotations are provided in Fig. 2.

Weak labeling. Weak labels provide information about the visibility of different anatomical structures in the 
entire image. Weak labels were annotated by one medical student with basic experience in minimally-invasive 
surgery and reviewed by a second one in each frame (Fig. 1).

The complete dataset is accessible at figshare13.

Data Records
The Dresden Surgical Anatomy Dataset is stored at figshare13. Users can access the dataset without prior reg-
istration. The data is organized in a 3-level folder structure. The first level is composed of twelve subfolders, 
one for each organ/anatomical structure (abdominal_wall, colon, inferior_mesenteric_artery, intestinal_veins, 
liver, pancreas, small_intestine, spleen, stomach, ureter and vesicular_glands) and one for the multi-organ dataset 
(multilabel).

Each folder contains 20 to 23 subfolders for the different surgeries that the images have been extracted from. 
The subfolder nomenclature is derived from the individual index number of each surgery. Each of these fold-
ers contains two versions of 5 to 91 PNG-files, one raw image that has been extracted from the surgery video 
file and one image that contains the mask of the expert-reviewed semantic segmentation (black = background, 
white = segmentation). The raw images are named imagenumber.png, (e.g. image23.png), the masks are named 
masknumber.png (e.g. mask23.png). In the multilabel folder there are separate masks for each of the considered 
structures visible on the individual image (e.g. masknumber_stomach.png). The image indices always match for 
associated images.

Each surgery- and organ-specific folder furthermore contains a CSV file named weak_labels.csv that contains 
all information about the visibility of the eleven regarded organs in the respective images. The columns in these 
CSV files are ordered alphabetically: Abdominal wall, colon, inferior mesenteric artery, intestinal veins, liver, 
pancreas, small intestine, spleen, stomach, ureter and vesicular glands.

Additionally, the folders anno_1, anno_2, anno_3 and merged can be accessed from the surgery- and 
organ-specific subfolders. These folders contain the masks generated by the different annotators and the auto-
matically generated merged version of the masks, each in PNG format.

Organ A1 A2 A3 A4 A5 A6 Merged

Abdominal Wall 0.91 (0.10) — — 0.96 (0.04) 0.91 (0.09) — 0.97 (0.03)

Colon — 0.92 (0.04) 0.88 (0.10) 0.97 (0.02) 0.93 (0.04) 0.92 (0.05) 0.96 (0.03)

Inferior mesenteric artery 0.62 (0.10) — — 0.91 (0.03) 0.87 (0.04) — 0.91 (0.03)

Intestinal veins 0.80 (0.05) — — 0.93 (0.03) 0.84 (0.04) — 0.91 (0.03)

Liver 0.91 (0.06) 0.93 (0.03) 0.98 (0.01) — — — 0.94 (0.04)

Pancreas 0.80 (0.04) — 0.95 (0.01) 0.95 (0.01) — — 0.98 (0.01)

Small intestine 0.92 (0.05) — — 0.99 (0.01) 0.95 (0.03) — 0.98 (0.02)

Spleen — — 0.97 (0.01) 0.97 (0.01) 0.92 (0.02) — 1 (0)

Stomach — — 0.95 (0.02) 0.92 (0.04) 0.93 (0.03) — 0.99 (0.01)

Ureter 0.77 (0.03) — 0.88 (0.02) — 0.85 (0.02) — 0.87 (0.03)

Vesicular glands 0.84 (0.03) — — 0.95 (0.01) 0.92 (0.01) — 0.94 (0.01)

Multi label 0.95 (0.03) — 0.96 (0.04) — 0.73 (0.22) — 0.92 (0.06)

Table 3. Comparison of the different annotators and their merged annotation to the final annotation. Each cell 
contains the F1 score and the normalized Hausdorff distance in parentheses.
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technical Validation
To merge the annotations of the three different annotations for each image in the dataset, the STAPLE algo-
rithm14, which is commonly used for merging different segmentations in biomedical problems, was applied. 
Each annotator received the same weight. The merged annotations were then, together with the original seg-
mentations of the annotators, uploaded to a segmentation and annotation platform called CVAT (https://github.
com/openvinotoolkit/cvat)15 hosted at the National Center for Tumor Diseases (NCT/UCC) Dresden. The phy-
sician in charge of reviewing the data could then log-in, select the most appropriate annotations for each image 
and, if necessary, adjust them.

To evaluate the extent of agreement between the segmentations of the individual annotators and the merged 
annotation with the final annotation of each image, we computed two standard metrics for segmentation 
comparison16:

•	 F1 score, which showcases the overlap of different annotation with a value of 0 to 1 (0: no overlap, 1: complete 
overlap)

•	 Hausdorff distance, a distance metric, which calculates the maximum distance between a reference anno-
tation and another segmentation. Here we have normalized the Hausdorff distance via the image diagonal, 
resulting in values between 0 and 1, which 0 indicates that there is no separation between the two segmenta-
tions and 1 meaning there is a maximum distance between the two.

The results of this comparison can be found in Table 3, sorted according to the different tissue types. The 
table shows that for most organs there is no large discrepancy between the merged annotations and the final 
product, with most F1 scores being over 0.9 indicating a large overlap and the low value for the Hausdorff 
distance indicating that no tendencies for over or under-segmentation were present. Only the F1 score for the 
ureter class seems to indicate that the expert annotator had to regularly intervene, though the difference still 
seems to be minimal as indicated by the low Hausdorff distance.

Most annotators also seemed to regularly agree with the final annotation, though not always with the same 
degree as the merged annotation, justifying the fusion via STAPLE. Similar to the merged annotations, there 
were larger discrepancies in regard to the ureter class. Generally though, at least two annotators seemed to 
largely agree with the expert annotations.

Usage Notes
The provided dataset is publicly available for non-commercial usage under the Creative Commons Attribution 
CC-BY. If readers wish to use or reference this dataset, they should cite this paper.

The dataset can be used for various purposes in the field of machine learning. On the one hand, it can be 
used as a source of further image material in combination with other, already existing datasets. On the other 
hand, it can be used to create organ detection algorithms working either with weak labels or with semantic 
segmentation masks, for example as a basis for further development of assistance applications17. Proposed 
training-validation-test splits as well as results of detailed segmentation studies are reported in a separate 
publication 18.

Code availability
The scripts for frame extraction, annotation merging, and statistical analysis, as well as the results of the statistical 
analysis are made public on https://gitlab.com/nct_tso_public/dsad and via https://zenodo.org/record/6958337#.
YvIsP3ZBxaQ. All code is written in python3 and freely accessible.
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