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Solar and wind power data from 
the Chinese State Grid Renewable 
Energy Generation Forecasting 
Competition
Yongbao Chen   1,2 ✉ & Junjie Xu1

Accurate solar and wind generation forecasting along with high renewable energy penetration in 
power grids throughout the world are crucial to the days-ahead power scheduling of energy systems. 
It is difficult to precisely forecast on-site power generation due to the intermittency and fluctuation 
characteristics of solar and wind energy. Solar and wind generation data from on-site sources are 
beneficial for the development of data-driven forecasting models. In this paper, an open dataset 
consisting of data collected from on-site renewable energy stations, including six wind farms and eight 
solar stations in China, is provided. Over two years (2019–2020), power generation and weather-related 
data were collected at 15-minute intervals. The dataset was used in the Renewable Energy Generation 
Forecasting Competition hosted by the Chinese State Grid in 2021. The process of data collection, 
data processing, and potential applications are described. The use of this dataset is promising for the 
development of data-driven forecasting models for renewable energy generation and the optimization 
of electricity demand response (DR) programs for the power grid.

Background & Summary
The usage of renewable energy is increasingly important to reduce carbon emissions and protect our environ-
ment. Currently, renewable energy penetration in the grid is increasing worldwide. The power supply must 
simultaneously match the demand; otherwise, power imbalance problems occur in the power grid. These 
problems hinder the continuous development of renewable energy1, and overgeneration problems occur2,3. As 
renewable energies such as solar energy and wind power are intermittent energy resources, it will be difficult for 
these energy sources to fully replace fossil energy in the foreseeable future. Energy storage and demand response 
(DR) are two promising technologies that can be utilized to alleviate power imbalance problems and provide 
more renewable energy in the power grid in the future4.

Despite implementing DR or designing an energy storage system, an accurate forecasting model for renew-
able energy generation is crucial to optimize the power system and allow more renewable energies to penetrate 
into the grid5. Without accurate and reliable forecasting of renewable energy generation, the maximum benefits 
from the energy management system cannot be realized. Usually, renewable energy generation forecasting can 
be categorized into four types based on the time horizon, i.e., very short term (less than 30 min), short term (30 
min-6 h), medium term (6–24 h) and long term (1–7 d)6. However, unlike forecasting the electrical consumption 
of a building, which is generally regular, forecasting renewable energy generation is notoriously difficult due 
to energy generation variability, which, according to previous studies, is deeply influenced by meteorological 
conditions7,8. Data-driven models such as machine learning algorithms have been well recognized in the field 
of big data science to deduct nonlinear relationships between independent and dependent variables9. Therefore, 
researchers have spent much effort on developing machine learning models. Machine learning algorithms such 
as generative adversarial networks (GANs), convolutional neural networks (CNNs), long short-term memory 
(LSTM) and ensemble methods are widely used8,10. GANs have been considered the most efficient algorithm to 
capture the intermittency and fluctuation characteristics of wind and solar energy generation in recent years11,12. 
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Fig. 1  Flow diagram of data-driven model development process for wind energy forecasting.

Fig. 2  Sensor architecture and data collection process of the wind farms.
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GANs is a promising architecture in renewable scenarios generation, owing to the ability to avoid complex 
feature extraction and cumbersome manual labeling process that are required in the conventional data-driven 
model12. Furthermore, GANs can effectively depict the inherent stochastic and dynamic characteristics of 
renewable resources with no need for statistical assumptions. All in all, GANs leverages the capabilities of deep 
learning and the power of data-driven techniques to address the difficulty of scenario generation.

The amount and quality of the dataset is the fundamental factor in the development of a data-driven fore-
casting model. Figure 1 shows the main diagram of developing a data-driven model for wind energy generation 
forecasting. Generally, there are two types of original datasets: simulated datasets and on-site collected datasets. 
The NREL Wind Integration Dataset is a widely used dataset13, and it provides simulated wind data from more 
than 126,000 land-based and offshore wind power production sites with a 2-km grid over the United States at a 
5-min resolution. Datasets derived by analyzing satellite imagery are also common and effective. Through this 
method, a large-scale (i.e., city- or country-scale) dataset can be obtained. Simulated datasets are usually based 
on assumptions that are not always in accordance with real situations. On-site measurements are usually more 
accurate, and they are also more appropriate for the development of forecasting modes for a specific location. 
However, these data are difficult to collect. Agee et al. reported over six years of solar energy production data at 
a 1-hour resolution from a residential building (328 m2) in Virginia, USA14. Zhang et al. presented the global 
offshore wind turbine dataset15. There is a platform called OpenStreetMap that is used to recreate new versions 
of wind and solar installation datasets16. Solar radiation information is an indispensable parameter in analyzing 
solar generation. Jiang et al. presented a twelve-year (2007–2018) hourly dataset with 5-km resolution of surface 
and diffuse solar radiation in China17. Furthermore, more dataset repositories can be found in the review in8.

Although some solar and wind generation datasets have been made publicly available, few of them have 
focused on on-site wind farms and solar stations. Compared with simulated datasets, the on-site dataset is more 
meaningful for the development of a good generalization model. In developing a data-driven model to forecast 
renewable energy generation, feature variables such as wind speed and direction, solar irradiance and temper-
ature are important variables used to train and validate the model. The motivation of this paper is to provide an 

Fig. 3  Sensor architecture and data collection process of the solar stations.
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on-site collected dataset for a better understanding of renewable energy generation characteristics, which are 
influenced by meteorological conditions and system parameters. Therefore, data-driven models can be devel-
oped using the dataset. This dataset was collected from six wind farms and eight solar stations in China. Based 
on this approach, solar and wind power forecasting models can be conveniently trained and validated.

Wind farm name
Nominal generation 
output capacity (MW) Wind turbine model Detailed turbine information

Number of 
turbines

Farm site 1

75 GW1500/85

Capacity: 1500 kW

50
Hub height: 85.0 m

Rotor diameter: 87.0 m

Website: https://en.wind-turbine-models.com/turbines/1201-goldwind-gw-87-1500

24 H93 L-2.0mw

Capacity: 2000 kW

12
Hub height: 85.5 m

Rotor diameter: 93.0 m

Website: https://market.hzwindpower.com/?Service/Pro/Product24/2.html

Farm site 2 200 GW3000/110

Capacity: 3000 kW

67
Hub height: 120.0 m

Rotor diameter: 140.0 m

Website: https://en.wind-turbine-models.com/turbines/1738-goldwind-gw-140-3000

Farm site 3

49.5 UP86-1500

Capacity: 1500 kW

33
Hub height: 80.0 m

Rotor diameter: 86.0 m

Website: https://en.wind-turbine-models.com/turbines/292-united-power-up1500-86

49.5 UP82-1500

Capacity: 1500 kW

33
Hub height: 80.0 m

Rotor diameter: 82.0 m

Website: https://en.wind-turbine-models.com/turbines/292-united-power-up1500-86

Farm site 4

30 FD89A-1500

Capacity: 1500 kW

20
Hub height: 85.0 m

Rotor diameter: 89.0 m

Website: https://en.wind-turbine-models.com/turbines/2224-dongfang-fd89-1500-geared

36 FD116A-2000
Capacity: 2000 kW

18
Hub height: 90.0 m

Farm site 5 36 FD116A-2000
Rotor diameter: 116.0 m

18
Website: https://en.wind-turbine-models.com/turbines/2224-dongfang-fd89-1500-geared

Farm site 6 96 XE72

Capacity: 2000 kW

48
Hub height: 65.0 m

Rotor diameter: 70.7 m

Website: https://en.wind-turbine-models.com/turbines/616-xemc-ltd-xe72

Table 1.  Basic information on the wind turbines of each wind farm, which includes the wind turbine model 
and number and detailed information.

Wind farm data file Solar station data file

Heading name Shortened name Description Heading name Shortened name Description

Wind speed at height of x 
meters (m/s) WS_x The wind speed was recorded at x 

meters above the ground
Total solar irradiance 
(W/m2) TSI Solar power over all wavelengths per square 

meter

Wind direction at height of x 
meters (°) WD_x The wind direction was recorded 

at x meters above the ground
Direct normal irradiance 
(W/m2) DNI

The amount of solar radiation received per 
square meter by a surface that is always held 
perpendicular to the rays

Air temperature (°C) Air_T Air dry-bulb temperature at 1.5 
meters above the ground

Global horizontal 
irradiance (W/m2) GHI

The total amount of shortwave radiation 
received by a surface horizontal to the 
ground

Atmosphere (hpa) Air_P Atmosphere at 1.5 meters above 
the ground Air temperature (°C) Air_T Air dry-bulb temperature at 1.5 meters above 

the ground

Relative humidity (%) Air_H Air relative humidity at 1.5 meters 
above the ground Atmosphere (hpa) Air_P Atmosphere at 1.5 meters above the ground

Power output(MW) — The total wind power generation Relative humidity (%) Air_H Air relative humidity

Power (MW) — The total solar power generation

Table 2.  Description of the feature variables. While all variables are included, not all of them are required to 
develop a data-driven model.
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Methods
Wind farms and solar stations are generally equipped with a supervisory control and data acquisition (SCADA) 
system that connects hardware and software for monitoring, controlling and analyzing processes such as data 
visualization, alarm function, fault detection and emergency offload. A detailed introduction of the SCADA 
system can be found in18. The data of these six selected wind farms and eight solar stations were collected using 
SCADA systems. The facilities’ basic information and the nominal output capacity are listed in Tables 1, 4. 
The sensor architecture of the monitor systems for wind farms and solar stations are presented in Fig. 2 and 
Fig. 3, respectively. Data were accessed through the remote monitor platform and downloaded as.xlsx files by 
the authorized owner. The nominal power output capacity of these selected wind farms ranged from 36 MW to 
200 MW, and the capacity of these selected eight solar stations ranged from 30 MW to 130 MW.

To cover different climate zones and geographic locations, the selected solar stations and wind farm sites 
included areas in North, Central, and Northwest China, and the terrain included deserts, mountains and plains. 
It should be noted that all the original datasets were obtained and provided by a third-party, the Chinese State 
Grid, and the data collection process was out of the authors’ control.

Data Records
In this section, the data types and the structure of the dataset, which can be downloaded from Figshare19 or 
GitHub (https://github.com/Bob05757/Renewable-energy-generation-input-feature-variables-analysis), are 
described. In the following subsections, the solar and wind data files are presented to guide users. There are two 
folders in the data repository; one is the folder that contains the original data with no data preprocessing, and 
the other folder contains data that was preprocessed based on the methods in The processing of the missing data 
and outliers subsection.

Wind power generation.  Wind power generation data are in the wind_farms folder, which includes six 
Microsoft Excel files. The real-time power generation and weather conditions are recorded in these files. The basic 
information about each wind farm is listed in Table 1.

In each Excel file, two years (2019–2020) of data, which included on-site weather conditions and power 
generation, with a time granularity of 15 minutes were recorded. Table 2 describes the meaning of the column 
headings. The wind speed at different height levels was recorded, and the speed at the wheel hub of the wind 
turbine was the most important factor for predicting power generation.

Wind farm name Statistics
Power output 
(MW)

Wind speed at the height 
of wheel hub (m/s)

Wind Direction at the 
height of wheel hub (°)

Air temperature at 1.5 
meters above the ground (°C)

Relative humidity at 1.5 
meters above the ground (%)

Farm site 1

Mean 23.4 6.4 217.0 8.5 37.6

Minimum 0.0 0.0 0.0 −24.1 0.0

Maximum 98.1 30.2 358.5 36.1 93.1

Standard deviation 24.1 3.9 85.4 13.4 18.9

Farm site 2

Mean 72.7 7.5 206.8 8.7 33.4

Minimum 0.0 0.0 0.0 −24.5 0.0

Maximum 201.2 28.8 359.8 37.6 97.6

Standard deviation 55.7 5.7 87.0 13.2 7.1

Farm site 3

Mean 18.1 4.0 179.1 17.4 58.5

Minimum 0.0 0.0 0.0 −14.3 0.0

Maximum 94.3 36.9 360.0 36.3 94.3

Standard deviation 22.6 3.3 110.5 9.9 23.8

Farm site 4

Mean 17.4 5.5 147.3 13.8 80.7

Minimum 0.0 0.0 0.0 −3.8 0.0

Maximum 64.6 31.1 356.8 35.3 100.0

Standard deviation 20.0 3.9 120.7 8.2 18.8

Farm site 5

Mean 6.7 4.7 184.9 13.6 69.9

Minimum 0.0 0.0 0.0 −9.9 0.0

Maximum 35.4 26.2 358.6 35.8 100.0

Standard deviation 10.1 3.1 113.2 8.9 32.2

Farm site 6

Mean 28.8 8.1 94.0 21.2 78.6

Minimum 0.0 0.0 0.0 0.0 0.0

Maximum 114.4 23.8 360.0 37.1 99.4

Standard deviation 28.0 3.8 91.2 6.4 10.9

Table 3.  Statistics of the wind farms. The mean, minimum, maximum and standard deviation of each variable 
are presented.
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The statistics of each wind farm can be seen in Table 3. The nominal wind generation capacity varied from 
36 MW to 200 MW, and the average real output ranged from 6.7 MW to 72.7 MW. The wind speed at the height 
of the wheel hub varied from 0 m/s to 36.9 m/s, and the yearly average was approximately 6.0 m/s. The air tem-
perature varied from −24.5 °C to 37.6 °C, and the yearly average was 8.5 °C. Weather conditions at different 
height levels showed a similar trend. Generally, the wind speed was seasonal, showing higher speeds during 
summertime and lower speeds during wintertime.

Solar energy generation.  Solar power generation data are in the solar_stations folder, which includes eight 
Excel files. The weather condition data and real-time power generation data were recorded in these files. The 
power generation and PV panel information of each solar station are listed in Table 4. Similar to the wind genera-
tion dataset, two years (2019–2020) of data with a time granularity of 15 minutes were recorded. Table 2 describes 
the meaning of column headings. The nominal solar generation capacity varied from 30 MW to 130 MW, and the 
average real output ranged from 4.2 MW to 29.8 MW. The statistics of each solar station can be seen in Table 5.

Technical Validation
In this section, the visualization of the data, which includes the processing of missing data, outliers, and correla-
tion analysis of the influencing feature variables, is presented to clarify the data quality.

The processing of the missing data and outliers.  The missing data include variables that were zero, 
null, ‘NA’, ‘0.001’, ‘−99’, and ‘–’. The outliers included weather variables that remained unchanged over a long time, 
atmosphere values that were equal to zero, and the values that were unreasonably high or low. Table 6 shows the 
rate of outliers and missing data in the original dataset.

Solar station 
name

Nominal generation 
output capacity (MW) PV panel model Manufacturer and product websites

Number of PV 
panels installations

Station site 1 50 NA NA NA

Station site 2 130 NA NA NA

Station site 3 30 CS6U-325P MFR: Canadian Solar Inc.
Website: https://cn.csisolar.com/module/ 27995

Station site 4 130 NA NA NA

Station site 5 110 JNMP60-255
MFR: Jinneng Clean Energy Technology Co.,Ltd.
Website: https://www.jinergy.com/site/
assembly/78

36828

Station site 6 35 SUN2000-50KTL-C
MFR: Huawei Technologies Co., Ltd.
Website: https://support.huawei.com/enterprise/
en/digital-power/sun2000-pid-7551590

703

Station site 7 30 NA NA 60

Station site 8

0.93 HR-260P-18/Bbd MFR: Hareon Solar Technology Co., Ltd. Links: 
out of service

3567

1.92 HR-265P-18/Bbd 7234

0.15 GCL-M6/60G280
MFR: Golden Concord Group System Integration 
Technology Co., Ltd.
Website: https://www.gclsi.com/en/modules

541

4.62 YL260P-29b

MFR: Yingli Green Energy Holding Co., Ltd.
Website: http://www.solardesigntool.com/
components/module-panel-solar/Yingli-
Solar/3844/YL260P-29b/specification-data-sheet.
html

17782

6.96 JC260 M-24/Bb
MFR: ReneSola Co., Ltd.
Website: http://www.solardesigntool.com/
components/module-panel-solar/Renesola/2138/
JC260 M-24-Bb/specification-data-sheet.html

26763

1.56 CS6K-260P-PG
MFR: Canadian Solar Inc.
Website: https://cn.csisolar.com/module/

5986

6.47 CS6K-255P-PG 25383

0.30 CS6K-250P-PG 1211

2.32 TSM-260PC05A

MFR: Trina Solar Co., Ltd.
Website: http://www.solardesigntool.com/
components/module-panel-solar/Trina-
Solar/1728/TSM-260-PC-PA05A/specification-
data-sheet.html

8908

4.24 SYP260P
MFR: Risen Energy Co., Ltd.
Website: https://en.risenenergy.com/index.
php?c=category&id=18

16326

0.53 JMPV-
HM6VBM2/60-340

MFR: Solargiga Energy holding Co., Ltd.
Website: https://www.solargiga.com/
productcenter/Component.html

1559

Table 4.  Power generation and PV panel information of each solar station, which includes the solar panel 
model and number and detailed information.
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There are many different approaches to preprocessing data, and users can use any appropriate methods that 
they are familiar with or proficient in. We suggest an upward/downward completion or a linear interpolation 
approach for the data samples where small steps (e.g., less than 10 steps) are missing. A moving average method 
can be considered when intermittent time steps (e.g., less than 100 steps) are missing; however, for long-term 
(e.g., more than 100 steps) missing data cases, the removal of these samples is recommended. In addition, the 
on-site dataset should not be adopted if the missing data rate is larger than a specific rate (i.e., 20%) of the total 

Solar station name Statistics
Power output 
(MW)

Total solar 
irradiance (W/m2)

Direct normal 
irradiance (W/m2)

Global horizontal 
irradiance (W/m2) Air temperature (°C)

Solar station site 1

Mean 9.7 266.4 93.3 67.7 13.1

Minimum 0.0 0.0 0.0 0.0 −18.2

Maximum 48.3 1359.0 980.0 989.0 41.2

Standard deviation 13.7 368.0 200.8 111.2 14.3

Solar station site 2

Mean 19.6 169.6 122.4 78.3 13.7

Minimum 0.0 0.0 0.0 0.0 −13.9

Maximum 109.4 1041.9 751.8 561.8 40.5

Standard deviation 28.0 248.4 179.2 117.6 12.1

Solar station site 3

Mean 5.2 81.1 111.1 66.3 —

Minimum 0.0 0.0 0.0 0.0 —

Maximum 29.9 1117.0 893.0 656.0 —

Standard deviation 8.1 205.8 199.1 98.9 —

Solar station site 4

Mean 16.5 150.1 138.9 20.8 18.6

Minimum 0.0 0.0 0.0 0.0 −5.3

Maximum 114.7 1237.4 1010.3 151.0 49.8

Standard deviation 27.5 253.5 210.6 31.5 10.3

Solar station site 5

Mean 14.5 164.3 147.9 115.0 17.8

Minimum 0.0 0.0 0.0 0.0 −6.6

Maximum 99.6 1467.0 1962.0 1208.0 39.5

Standard deviation 23.9 273.5 234.9 203.1 9.6

Solar station site 6

Mean 6.4 244.1 216.0 54.1 20.6

Minimum 0.0 0.0 0.0 0.0 2.9

Maximum 31.2 1365.4 1179.8 296.2 36.7

Standard deviation 9.2 355.9 338.0 69.4 5.8

Solar station site 7

Mean 5.4 206.8 — — —

Minimum 0.0 0.0 — — —

Maximum 29.8 3262.0 — — —

Standard deviation 8.0 300.5 — — —

Solar station site 8

Mean 4.2 163.2 142.0 21.2 18.0

Minimum 0.0 0.0 0.0 0.0 −8.0

Maximum 29.4 1214.5 1056.7 157.9 47.6

Standard deviation 6.5 245.4 213.5 31.9 8.6

Table 5.  Statistics of solar stations. The mean, minimum, maximum and standard deviation of each variable are 
presented.

Wind farm data file Solar station data file

Farm site Total sample size Missing data and outliers’ rate Station site Total sample size Missing data and outliers’ rate

Site 1

70176

1.58% Site 1
70176

0.09%

Site 2 0.45% Site 2 4.50%

Site 3 1.39% Site 3 52608 78.25%

Site 4 3.25% Site 4

70176

13.26%

Site 5 5.13% Site 5 13.41%

Site 6 0.27% Site 6 1.96%

Site 7 4.48%

Site 8 69408 6.15%

Table 6.  Missing data and outlier rate of the dataset. Missing data include variables that were zero, null, ‘NA’, 
‘0.001’, ‘-99’, and ‘--’ in the data_original folder.
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dataset; for example, at solar station site 3, most of the total solar irradiance points were outliers after August 1st, 
2019. Figure 4 shows the boxplot of one key feature variable of wind and solar generation (missing data points 
were dropped before plotting the boxplot). The outliers can be seen in this figure. We provided both the original 
and processed dataset in the repository so that users can process the missing data and outliers using their own 
rules or use the processed dataset directly. It is worth noting that we only processed missing data such as ‘NA’, 
‘0.001’, ‘-99’, and ‘--’ in the data files of data_processed folder, and the used approach was the simplest upward/
downward completion. The outliers shown in Fig. 4 could be removed or not according to the data user them-
selves because these data points are classified as outliers by a specific criterion that the data is outside 1.5 times 
the interquartile range (IQR) including above the upper quartile (Q3 + 1.5*IQR) and below the lower quartile 
(Q1-1.5*IQR). Owing to the fluctuated characteristics of renewable energy, actually, some outliers in Fig. 4 
could be a meaningful data point for developing a data-driven forecasting model.

Correlation analysis.  In developing a data-driven forecasting model, selecting the proper input feature var-
iables can improve the forecasting performance; therefore, correlation analysis is important for selecting the 
variables. Wind speed and solar radiation are the most important factors for generating wind and solar power, 
respectively. The Pearson correlation coefficient (PCC) is a measure of linear correlation between two sets of data. 
We found that the PCC between wind speed and power output in the wind dataset is much higher than other 
parameters, such as temperature and pressure (see Fig. 5). Similarly, in the solar dataset, total solar irradiance has 
the highest PCC with the power output, as shown in Fig. 6.

Fig. 4  Boxplots of the key features of wind farms and solar stations. Before plotting these boxplots, the 
missing data, such as ‘-99’ and ‘null’, were dropped. Although there are several feature variables in the dataset, 
we selected the most important one to show the quartiles and outliers. In subplot (a), the wind speed at hub 
height is presented, and in subplot (b), the total solar irradiance is presented. The Jupyter notebook on the data 
processing and visualization can be found in the GitHub repository (https://github.com/Bob05757/Renewable-
energy-generation-input-feature-variables-analysis).
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Usage Notes
The data preprocessing methods for the missing data and outliers impact the forecasting performance of 
machine learning models. The dataset was used for the Chinese State Grid Renewable Energy Generation 
Forecasting Competition. On-site weather conditions such as wind speed, wind direction, and solar radiation 
are the main input feature variables that influence the generation of power. For the wind generation power fore-
casting case, wind speed is the main factor. For the solar energy generation case, solar radiation variables are 
the main factors. Many machine learning algorithms, such as GANs, LightGBM, SVM, random forest, CNNs, 
and LSTM, can be developed using this dataset to predict wind and solar energy generation in the short term 
in the future (e.g., one day or one week). It is worth noting that forecasting weather data is required when the 
developed model is used to perform forecasting tasks.

The selection of the input feature variables is important for developing a model. Generally, more dimensions 
of input feature variables could improve the forecasting performance owing to more information being taken 
into consideration. However, some variables are highly correlated, such as wind speed, at different height levels.

In the process of training and validating our model, we found that the implementation of data classification 
technology can improve forecasting accuracy. As shown in Fig. 7, the wind speed and solar radiation change 

Fig. 5  Pearson correlation coefficient of different variables of the wind farms. WS_x (i.e., wind speed at different 
heights) has the highest PCC with respect to power. The hub height is different for each model of the wind 
turbine, so WS_cen represents different heights. The hub heights are 85 m, 120 m, 80 m, 85 m/90 m, 90 m, and 
65 m for wind farm sites 1, 2, 3, 4, 5, and 6, respectively.
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seasonally. Several classification methods are suggested, including seasonal classification, classification by wind 
speed, and classification by the intensity of solar radiation. When we make the classification, each classification 
label should have a similar sample size. Table 7 shows one of the classifications by wind speed examples in the 
case of forecasting wind power generation.

Another application of this dataset is the beneficial implementation of DR programs in the grid. For power 
grids, especially a distributed energy system, renewable energy is intermittent, so the demand side should be 
coordinately managed with power generation. With the forecasting of days-ahead renewable energy generation, 
energy management and control systems can be further optimized.

Fig. 6  Pearson correlation coefficient of different variables of the solar stations. Generally, TSI has the highest 
PCC with respect to power.

https://doi.org/10.1038/s41597-022-01696-6


1 1Scientific Data |           (2022) 9:577  | https://doi.org/10.1038/s41597-022-01696-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

Code availability
All the code and processing scripts used to produce the results of this paper were written in Python, Jupyter 
lab. Links to scripts and data for analysis can be found in the GitHub repository (https://github.com/Bob05757/
Renewable-energy-generation-input-feature-variables-analysis).
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