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Optical mapping compendium of 
structural variants across global 
cattle breeds
a. talenti  1 ✉, J. Powell1, D. Wragg1,2, M. Chepkwony3,4, a. Fisch5, B. R. Ferreira5, 
M. E. Z. Mercadante6, I. M. Santos7, C. K. Ezeasor8, E. t. Obishakin9,10, D. Muhanguzi  11, 
W. amanyire11, I. Silwamba12,13, J. B. Muma12, G. Mainda14, R. F. Kelly  1,2, P. toye  3, 
t. Connelley1,15,16 ✉ & J. Prendergast  1,15,16 ✉

Structural variants (SV) have been linked to important bovine disease phenotypes, but due to the 
difficulty of their accurate detection with standard sequencing approaches, their role in shaping 
important traits across cattle breeds is largely unexplored. Optical mapping is an alternative approach 
for mapping SVs that has been shown to have higher sensitivity than DNA sequencing approaches. The 
aim of this project was to use optical mapping to develop a high-quality database of structural variation 
across cattle breeds from different geographical regions, to enable further study of SVs in cattle. To do 
this we generated 100X Bionano optical mapping data for 18 cattle of nine different ancestries, three 
continents and both cattle sub-species. In total we identified 13,457 SVs, of which 1,200 putatively 
overlap coding regions. This resource provides a high-quality set of optical mapping-based SV calls that 
can be used across studies, from validating DNA sequencing-based SV calls to prioritising candidate 
functional variants in genetic association studies and expanding our understanding of the role of SVs in 
cattle evolution.

Background & Summary
Structural variants (SV) are a heterogeneous class of genetic variants involving large fragments of the genome 
(>50 bp)1. These variants include genomic insertions and deletions (InDels), inversions, duplications, translo-
cations and more complex rearrangements2. Single nucleotide polymorphisms (SNPs) have been the primary 
focus of studies trying to map genetic loci underlying important cattle phenotypes. However, there are multiple 
lines of evidence suggesting SVs likely underlie many important cattle traits3–6. As many as 25–29% of all protein 
truncating events are thought to be caused by an SV in humans1 and notably, despite being less well studied, 
SVs have already been tied to key livestock phenotypes. For example, a duplication of the CIITA class II major 
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histocompatibility complex transactivator gene in cattle has been tied to resistance to intestinal nematodes7 and 
a 12Kb copy number variant has been linked to mastitis in cattle8. Chromosomal translocations and duplications 
have been linked to skin pigmentation, a phenotype closely tied to environmental adaptation, and SVs across 
livestock species have been linked to phenotypes such as olfaction or resistance to adenocarcinoma-causing 
viruses9. Importantly SVs are responsible for approximately 5–10 times as many heritable nucleotide sequence 
differences between individuals than SNPs10. Unlike SNPs, that only effect a single basepair, and most often far 
from coding regions, SVs effect large regions and potentially multiple genes. Consequently, although smaller in 
number, any given novel SV event is more likely to have a phenotypic consequence.

The two most popular methods used to detect SVs are high-throughput sequencing (HTS) and array com-
parative genomic hybridisation (aCGH), both of which have been applied to European cattle11–14, but with few 
studies performed in other cattle breeds15–17. Each technology has advantages and limitations. aCGH involves 
measuring binding to probes covering the reference genome, and therefore it can only detect relative copy num-
ber changes between sample pairs and cannot for example detect novel insertions. Resolution is also limited. A 
major advantage of HTS approaches is that theoretically they can detect SVs at base-pair resolution. However, 
accurate calling of SVs from HTS data has proven to be difficult for a number of reasons including poor refer-
ence assemblies, chimeric reads, aligners penalising reads that don’t match the reference and the difficulties of 
sequencing and mapping to repetitive regions. This is exemplified by the generally poor agreement between SV 
callers even when run across the same samples18,19. Approaches using long reads and de novo assembly can still 
have true positive rates as low as 77%, even when using simulated data20.

Optical mapping (OM), a light microscope-based method that labels and physically locates specific motifs 
in the genome21, offers an alternative protocol to accurately detect large SVs. OM molecules can be consistently 
hundreds of Kb long, allowing for the detection of complex rearrangements undetectable using HTS. Despite 
the limitation of not being able to detect the actual sequence of the identified SVs, as well as missing smaller SVs, 
OM has a very high sensitivity and specificity, allowing for the generation of high-quality catalogues of SVs in 
individuals22. A study in humans successfully used OM reads to identify SVs in a total of 26 genomes revealing 
population-specific patterns of structural variation23.

In this study, we generated the first catalogue of cattle OM data for 18 animals from 9 different global breeds, 
and three continents, to better characterise common SVs across the cattle pan-genome. This data is a particularly 
valuable resource of SVs for the cattle species to intersect with other datasets, for example, for the validation of 
SV calls from other approaches23,24.

Methods
Sample preparation. We selected a set of 18 cattle across 9 divergent European, African and Indian breeds 
representative of Indicine, Sanga and Taurine ancestries (Table 1). Blood was collected by jugular venipuncture 
into EDTA vacutainers. Somatic recombination in B cells and T cells means the Ig and TCR loci in these cell types 
will be highly heterogenous, confounding accurate reconstruction of germline SVs at these loci from whole blood 
samples. Consequently, after the erthyrocyte lysis, monocytes were purified from the leukocytes using a MACS 
positive selection protocol with an anti-bovine SIRPα mono-clonal antibody (ILA-2425). Agarose plugs contain-
ing 5 × 105–1 × 106 of isolated monocytes were prepared using the Bionano Blood and cell culture DNA isolation 

Sampling Continent Sampling Country Group Breed ENA project ID ENA sample ID

S. America Brazil Indicine Nelore
PRJEB52551 ERS11891755

PRJEB52551 ERS11891754

Africa Kenya Indicine Boran
PRJEB52551 ERS11891767

PRJEB52551 ERS11891766

Africa Nigeria Indicine White Fulani
PRJEB52551 ERS11891768

PRJEB52551 ERS11891769

Africa Zambia Indicine Angoni
PRJEB52551 ERS11891764

PRJEB52551 ERS11891765

Africa Uganda Sanga Ankole
PRJEB52551 ERS11891756

PRJEB52551 ERS11891757

Africa Zambia Taurine Barotse
PRJEB52551 ERS11891762

PRJEB52551 ERS11891763

Africa Nigeria Taurine N’Dama
PRJEB47998 ERS8452869

PRJEB47998 ERS8452868

Europe United Kingdom Taurine Hereford
PRJEB52551 ERS11891760

PRJEB52551 ERS11891761

Europe United Kingdom Taurine Holstein-Friesian
PRJEB52551 ERS11891759

PRJEB52551 ERS11891758

Table 1. Description of the samples. Table describing the breeds and ancestry of samples, with the continent 
and country of origin. The identifiers, as well as the ENA accession codes, for each of the two animals sampled 
per breed are also reported.
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kit (Bionano Genomics, San Diego, US) according to the manufacturer’s instructions and the extracted DNA 
used for analysis on the Bionano Saphyr platform to generate ~100X optical mapping coverage of each genome.

Bionano Solve optical mapping processing. OM reads were filtered using the filter_SNR_dynamic.
pl script with default parameters included with the Solve workflow, and then processed through the Bionano 
Solve26 pipeline (v3.3_10252018) using two different releases of RefAligner to overcome bugs preventing the 
successful assembly of the reads (version 7915.7989rel and 10330.10436rel). We generated the reference CMAP 
for the ARS-UCD1.2 genome with the Y chromosome from the 1000 bulls genome project (https://sites.ual-
berta.ca/~stothard/1000_bull_genomes/) using fa2cmap_multi_color.pl (default options and specifying DLE1 as 
the enzyme). The resulting data were imported into the Bionano Access (v1.6) software, and single-sample SVs 
were filtered using the recommended thresholds for SVs generated using Bionano Solve prior to v1.6.0 with the 
sizes recommended to achieve 90% sensitivity27: minimum insertion size of 5Kb, minimum deletion size of 5Kb, 
minimum inversion size of 100Kb, and minimum duplication size of 150 kb.

Filtered smap format files were converted to vcf format using smap_to_vcf_v2.py and sorted with bcftools 
(v1.10.228). The resulting SVs were screened using bcftools and retained if 1) they had successfully been geno-
typed, 2) their size was >1Kb and 3) their quality was > = 20. The latter filtering largely removed all transloca-
tions, duplications, and complex events due to these having either very low (<1) or nil quality values.

We then defined the total amount of non-redundant reference sequence involved in a high-quality deletion. 
For each deletion, we calculated the central point in the genomic region affected by the SV:

=
+ + −

Center
POS abs CIPOS END abs CIEND( ) ( )

2

Where POS is the initial position, END is the end position, CIPOS is the confidence interval of POS and CIEND 
is the confidence intervals of END. Having defined the central point of the region, we defined the initial and final 
positions of the SV as:

BPI Center abs SVLEN BPE Center abs SVLEN( )
2

; ( )
2

= − = +

Where BPI and BPE are the limits of the SV and SVLEN is the size of the SV.
We then concatenated the regions for all the individuals, sorted them and merged them using bedtools sort 

and bedtools merge29 to remove any redundancies among the regions.
Following filtering, we merged the resulting variants within samples using SURVIVOR (v1.0.72) accounting 

for the SV type and collapsing those whose break points were within 1 kb. We represented the intersection of 
SVs across individuals by extracting the support vectors generated by SURVIVOR2 at merging time, and plotted 
them using the UpSet function from the R30 package ComplexHeatmap31 (v2.8.0). We extracted the support 
value (i.e. how many animals present a specific SV) and SV size for each variant in the combined VCF and tested 

Sample Deletions Insertions Duplications
Inversion 
breakpoints

Interchr. 
translocation 
breakpoints

Intrachr. 
translocation 
breakpoints Total

Insertion/
Deletion 
ratio

Angoni 1 4349 4505 45 91 13 4 9007 1.036

Angoni 2 4387 4673 64 100 11 7 9242 1.065

Ankole 1 4314 4324 67 111 10 8 8834 1.002

Ankole 2 3911 3984 66 101 8 5 8075 1.019

Barotse 1 3971 4044 42 52 11 6 8126 1.018

Barotse 2 4199 4159 67 106 7 9 8547 0.990

Boran 1 4935 5087 56 113 15 6 10212 1.031

Boran 2 4990 5007 68 138 6 14 10223 1.003

Hereford 1 2465 2380 43 41 11 4 4944 0.966

Hereford 2 2435 2437 77 88 9 7 5053 1.001

Holstein 1 2756 2759 48 52 15 18 5648 1.001

Holstein 2 2702 2801 59 76 9 5 5652 1.037

N’Dama 1 3411 3481 92 125 10 13 7132 1.021

N’Dama 2 3005 3082 67 86 6 8 6254 1.026

Nelore 2 5294 5508 58 113 11 5 10989 1.040

Nelore 1 5420 5499 96 136 15 18 11184 1.015

White 
Fulani 1 4467 4642 54 114 11 3 9291 1.039

White 
Fulani 2 4782 4805 41 45 17 14 9704 1.005

Table 2. Raw number of structural variants (SVs) and type detected in the different samples. This table 
summarises the number of raw SVs detected in each sample, and their classification (e.g. insertion, deletion, 
duplication, inversion and inter- and intra-chromosomal translocation).
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whether the SVs found in one individual only (support = 1) were significantly larger than those shared among 
individuals (support >1) by performing a Wilcoxon signed-rank test in a custom R script.

Finally, we defined which of the final set of SVs were found to potentially affect a gene. We ran VEP v10532 
to predict which SVs were likely to disrupt a gene’s function, with the options --sift b (both preditions score and 
term), --nearest symbol (report the gene symbol), and --distance 200 (200 bp up and downstream consequence 
prediction). Those variants presenting coordinates referring to the negative strand (end position smaller than 
initial position) were manually fixed through an in-house script. We then investigated which SVs putatively 
overlap a coding region annotated in the cow genome by intersecting merged SVs with coding sequence inter-
vals. Intersecting genes were investigated with FUMA33 to identify enriched gene ontologies and gene sets using 
all 35,142 gene elements with a unique Entrez gene ID as the background list.

Data Records
The datasets presented here are stored at ENA under analysis IDs PRJEB4799834 and PRJEB5255135. The data 
are uploaded in Bionano BNX format compatible with downstream analyses. The output of the Solve work-
flows can be downloaded from Zenodo (https://doi.org/10.5281/zenodo.651699336 and https://doi.org/10.5281/
zenodo.651717237). The raw and filtered VCF files, converted using smap_2_vcf_v2.py, can be found on Zenodo 
with https://doi.org/10.5281/zenodo.685487938.

Fig. 1 Histogram of the structural variant (SV) sizes. Histogram of the size of the identified SVs in bins of 5Kb.

Fig. 2 Upset plot of the structural variants. Upset plot of the structural variants by individual for the 40 sets 
containing the most SVs.
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technical Validation
assembly statistics and SV calling. We aligned the Saphyr optical mapping reads to the ARS-UCD1.2 
genome39, expanded with the BTau5 Y chromosome generated by the 1000 bulls genome project, using Bionano 
Solve (v3.3 and 3.5) to assemble the genome maps and call SVs. The two NDama samples had previously been 
used to validate SVs using graph genome approaches28.

Workflow metrics are provided in Supplementary Table 1, summarising key metrics for the analysis of these 
samples in comparison to the recommended values from Bionano40.

Unfiltered molecules had average read lengths of 131.9–219.8 Kb (recommended >150 Kb) and molecule 
N50s ranged from 185.2–361.9 Kb across the samples (recommended >150 Kb). Following molecule filtering, 
all samples were within the recommended average length (245.5–383.1, recommended >230 Kb) and molecule 
N50 (245.0–426.5, recommended >230 Kb), and only 1 sample (Angoni 1) was slightly below the recommended 
label density (13.1–16.4, recommended 14–17). Importantly all samples passed the recommended values for 
the effective coverage of the reference (72.5–128.2, recommended >70) and of average confidence (30.1–43.2, 
recommended >20).

All samples also generated assemblies with high genome map N50s for both the diploid (71.7–85.0, recom-
mended >50) and haploid (71.3–84.5, recommended >50) assemblies. Despite the low proportion of assembled 
contigs aligning to the reference genome (0.14–0.25, recommended >0.70), the high uniquely aligned length by 
reference length (0.835–0.906, recommended >0.85) shows the presence of long assembled contigs. The con-
tigs present a high fraction of molecules aligned (0.77–0.94, recommended >0.80), effective coverage assembly 
(37.7–66.7, recommended >40) and average confidence (38.5–51.3, recommended >20).

Overall, 1 sample had 11 metrics within the recommended values, 6 had 12 metrics within the recommended 
values, 9 had 13 metrics within the recommended values and 2 had 14 metrics within the recommended values.

0
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1e+04 1e+05 1e+06
Structural Variant absolute log10(size)

de
ns
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Support 1 >1

Fig. 3 Density plot of the size of the structural variants found in only one (support = 1) or in more than one 
(support >1) sample. The strip of lines below the X axis shows the individual variant sizes, the vertical lines 
indicate the mean variant size, in each of the group.

Fig. 4 Gene set enrichment of genes potentially impacted by an SV. FUMA results showing the proportion of 
genes in sets, their enrichment and the heatmap of the genes in each for A) Hallmark gene sets and B) curated 
gene sets.
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The Bionano Solve workflow identified a number of SV in each sample, ranging from 4,944 to 11,184 for a 
Hereford and Nelore, respectively (Tables 2). This mirrors the evolutionary distance of each sample from the 
reference genome, with the European taurine possessing fewer SVs (4,944–5,652) than the other samples, and 
an African taurine N’Dama possessing the least among the non-European individuals (N = 6,254). Relative SV 
numbers consequently broadly mirror prior expectations. Similar numbers of insertions and deletions were 
detected within each sample (insertion/deletion rate ranging between 0.966 and 1.065; Supplementary Table 1).

Variant statistics. SVs were filtered using Bionano Access, excluding SVs with unknown dosages, and 
retaining those larger than 1 Kb and with a quality > 20. SVs for each individual were then combined using 
SURVIVOR2 if the breakpoints were within 1 Kb, i.e. below the effective resolution of the approach2. This process 
allowed us to select a catalogue of 13,457 SVs across the genome, containing 8,262 insertions, 5,191 deletions 
and 4 inversions (see Supplementary Table 2 and 3 for the details on the type of SV identified). No duplications, 
inverted duplications and translocations passed the quality filtering. The imbalance in the number of insertions 
and deletions retained following filtering likely reflects the different sensitivity and specificity of optical map-
ping to detect the different classes of SVs41. The X chromosome appears to have more insertions than any other 
chromosome. This though is likely due partly to the difficulty of accurately calling SVs on the sex chromosomes, 
especially in males where effective coverage is halved (8 males among the samples). Further manual curation is 
therefore likely needed when working with the sex chromosomes. Consistent with results from previous studies24, 
most of the post-filtering insertions and deletions identified fell into the smaller classes, though 1,796 SVs (403 
deletions, 1,389 insertions and 4 inversions) of over 50 Kb in length were identified (Fig. 1). While many SVs did 
not pass our stringent screening, they can still be recovered individually and included in future studies focusing 
on specific regions of the genome.

These SVs longer than 1 Kb and of high quality involve a total of 2,656 unique regions, for an estimated total 
of over 90 Mb of non-redundant bases (Supplementary Table 4). This number is comparable to what has been 
seen for novel sequences (i.e. insertions) using graph genome approaches, where an extra 70 Mb and 116 Mb of 
novel sequence were reported on 5 and 4 cattle reference genomes, respectively24,42. After merging the filtered 
variants from all the samples, most of the SVs were found to be private to an individual (Fig. 2), consistent with 
what has been observed in previous studies1. Individuals of indicine ancestry (Nelore and Boran) carry almost 
twice as many SVs relative to the Hereford reference as taurine individuals, further highlighting that the current 
reference poorly represents these breeds (Fig. 2).

Interestingly, we find that SVs only found in one animal (support = 1; n = 7,445, mean SV 
length = 85,954.23 bp) are generally larger (Wilcoxon rank-sum test P-value = 8.99 * 10−37) than the SVs found 
in more than one animal (support > 1; n = 6,012, mean SV length = 27,747.17 bp, Figs. 1, 3). The list of all SVs, 
with their position, support and size, are reported in Supplementary Table 5.

Finally, we investigated whether any of the high-quality SVs potentially impact annotated genes. VEP suc-
cessfully processed 12,999 out of 13,457 SVs (see HTML report on GitHub). Some variants were too large to be 
successfully processed by VEP, and other were called as incomplete by VEP. Of these, 6,946 were intergenic, and 
the remaining 5,934 overlapped 5,780 genes and 17,386 transcripts, suggesting the potential for functional vari-
ants among the SVs detected. A total of 1,200 SVs putatively overlap a coding sequence. These coding sequences 
are included in a total of 884 unique gene elements in the cow annotation (Ensembl v105), and of these 483 
have an associated gene name (Supplementary Table 6). A total of 292 out of 483 genes had an ID recognized 
by FUMA33. These 292 genes belong to a number of gene sets such as the Hallmark bile acid metabolism and 
interferon γ and α response sets (Fig. 4a), as well as the olfactory receptor curated gene set (Fig. 4b). All gene set 
results from FUMA are reported in Supplementary Table 7.

Usage Notes
Even with the ever-decreasing cost of long read sequencing making it increasingly tractable to call SVs across 
sets of samples using HTS, validation of the SV calls remain challenging. This compendium of SVs across global 
cattle breeds provides a validation set called using an independent technology that can be used to assess the 
quality of cattle SV calls. In fact, optical mapping data has previously been used to validate sequencing based SV 
calls24, and we believe this dataset provides the largest set of optical maps to date for a livestock species.

With many SVs shared across the two animals of each breed, the raw molecules in this dataset can also be 
used to help scaffold and validate novel assemblies of cattle of breeds closely related to the individuals repre-
sented here, potentially reducing the cost of future genome assembly projects.

Unlike most cattle studies, this database is not focused just on European cattle breeds, meaning this will be a 
valuable resource to researchers across the globe. Importantly, it will allow for SVs to inform the interpretation 
of results from GWAS and population genetics studies by providing candidate functional variants in relevant 
regions.

Ultimately, we expect the database to enable further insights into SVs, an understudied class of genetic var-
iation in cattle, giving access to a catalogue of thousands of variants present across multiple breeds worldwide.

Code availability
The code used in this article were deposited at https://github.com/evotools/CattleOManalyses.
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