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an Open MRI Dataset For Multiscale 
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Peer Herholz  3, Qiongling Li  1,4, Reinder Vos de Wael1, Casey Paquola1,5, Oualid Benkarim1, 
Bo-yong Park  1,6,7, Alexander J. Lowe1, Daniel Margulies  8, Jonathan Smallwood9, 
andrea Bernasconi10, Neda Bernasconi10, Birgit Frauscher2 & Boris C. Bernhardt1 ✉

Multimodal neuroimaging grants a powerful window into the structure and function of the human brain 
at multiple scales. Recent methodological and conceptual advances have enabled investigations of the 
interplay between large-scale spatial trends (also referred to as gradients) in brain microstructure and 
connectivity, offering an integrative framework to study multiscale brain organization. Here, we share a 
multimodal MRI dataset for Microstructure-Informed Connectomics (MICA-MICs) acquired in 50 healthy 
adults (23 women; 29.54 ± 5.62 years) who underwent high-resolution T1-weighted MRI, myelin-
sensitive quantitative T1 relaxometry, diffusion-weighted MRI, and resting-state functional MRI at 3 
Tesla. In addition to raw anonymized MRI data, this release includes brain-wide connectomes derived 
from (i) resting-state functional imaging, (ii) diffusion tractography, (iii) microstructure covariance 
analysis, and (iv) geodesic cortical distance, gathered across multiple parcellation scales. Alongside, 
we share large-scale gradients estimated from each modality and parcellation scale. Our dataset will 
facilitate future research examining the coupling between brain microstructure, connectivity, and 
function. MICA-MICs is available on the Canadian Open Neuroscience Platform data portal (https://
portal.conp.ca) and the Open Science Framework (https://osf.io/j532r/).

Background & Summary
The human brain is a highly interconnected network which can be described at multiple spatial and tempo-
ral scales. Neuroimaging, in particular magnetic resonance imaging (MRI), has provided a window into brain 
structure and function, offering versatile contrasts to assess its multiscale organization1. Multimodal imaging 
increasingly capitalizes on sequences sensitive to brain microstructure, such as quantitative T1 (qT1) relaxation 
mapping. This contrast can differentiate highly myelinated regions, with shorter T1 relaxation times, from more 
lightly myelinated regions showing longer qT12. Regional variations in qT1 concord with seminal myeloarchi-
tectonic studies3–5, supporting the potential of these contrasts for in vivo microstructural profiling and the study 
of myeloarchitectonic similarity between areas6–9. These investigations can also be complemented by metrics 
such as geodesic distance, enabling estimations of cortico-cortical wiring cost emerging from short-range intra-
cortical axon collaterals10–13, the exploration of the anatomical proximity of different brain systems, and the 
study of cortical topographic organization14,15. In addition, macroscale connectome architecture can be probed 
using diffusion MRI tractography and resting-state functional connectivity analysis to approximate whole-brain 

1Multimodal Imaging and Connectome Analysis (MICA) Laboratory, McConnell Brain Imaging Centre, Montreal 
Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada. 2Analytical Neurophysiology 
(ANPHY) Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada. 
3NeuroDataScience - ORIGAMI lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, 
McGill University, Montreal, Québec, Canada. 4School of Biological Science & Medical Engineering, Beijing Advanced 
Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China. 5institute of neuroscience and 
Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany. 6Department of Data Science, Inha University, 
Incheon, Republic of Korea. 7Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic 
of Korea. 8Centre national de la recherche scientifique (CNRS), Institut du Cerveau et de la Moelle Épinière, Paris, 
france. 9Department of Psychology, Queens University, Kingston, Ontario, Canada. 10Neuroimaging of Epilepsy 
Laboratory (NOEL), McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill 
University, Montreal, Québec, Canada. ✉e-mail: jessica.royer@mail.mcgill.ca; boris.bernhardt@mcgill.ca

DATA DeSCRIPTOR

OPEN

https://doi.org/10.1038/s41597-022-01682-y
http://orcid.org/0000-0002-4448-8998
http://orcid.org/0000-0002-2917-1212
http://orcid.org/0000-0002-9840-6257
http://orcid.org/0000-0001-6989-2981
http://orcid.org/0000-0001-7096-337X
http://orcid.org/0000-0002-8880-9204
https://portal.conp.ca
https://portal.conp.ca
https://osf.io/j532r/
mailto:jessica.royer@mail.mcgill.ca
mailto:boris.bernhardt@mcgill.ca
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-022-01682-y&domain=pdf


2Scientific Data |           (2022) 9:569  | https://doi.org/10.1038/s41597-022-01682-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

structural and functional networks16–18. Together, these techniques offer key insights into overarching principles 
of brain organization, from properties of local regions to their embedding within macroscale systems.

Recent methodological and conceptual advances have provided the means to analyse topographic princi-
ples of multiscale brain organization. Homogeneity in regional properties can be detected in structural and 
functional imaging data, at the basis of parcellation-based approaches19. Regional boundaries can be defined 
with a varying level of granularity from different features, such as morphology20,21, microstructure22,23, con-
nectivity patterns24,25, and combinations of these metrics26. Functional and anatomical relationships between 
parcels can then be identified, forming the brain’s macroscale network architecture27–29. Complementing tech-
niques highlighting discrete collections of areas through parcellation or decomposing the brain into mesoscale 
communities, recent work has begun to identify continuous spatial trends – also referred to as gradients – in 
brain microstructure, connectivity, and function. Gradient identification approaches have described main axes 
of cortical and subregional organization at the level of resting-state functional connectivity14,30–35, structural 
connectivity derived from diffusion tractography10,36–38, similarity of cortical microstructure6,7,10,39–41 and cor-
tical morphology40, as well as molecular and microcircuit properties16,42,43. These approaches have enabled the 
discovery of a principal gradient of intrinsic functional connectivity differentiating lower-order sensorimotor 
systems from transmodal systems such as the default-mode network and paralimbic cortices, recapitulating 
seminal models of the cortical hierarchy formulated in non-human primates7,44,45. By depicting low dimensional 
axes of cortical organization, gradient approaches enable investigations of systematic changes in structure and 
function across the brain and are thus particularly suited for studies aiming to bridge different neurobiological 
axes. For instance, recent work has demonstrated stronger decoupling between principal microstructural and 
functional gradients in transmodal cortical areas relative to unimodal systems, possibly reflective of the flexible 
role that transmodal areas play in human cognition7. Relatedly, the principal functional gradient has also been 
shown to reflect variations in geodesic distance between sensory and transmodal systems, offering a potential 
macroscale mechanism allowing transmodal networks to support higher cognitive functions decoupled from 
“the here and now”14. By offering a formal framework for such multimodal comparisons, these findings empha-
size the potential of dimensional analyses to obtain novel insights into multiscale brain organization.

Beyond innovations in imaging and analytics, neuroscience has increasingly benefitted from the adoption of 
open science practices, particularly through open data sharing46–48 and the combined publication of derivative 
data and their associated pre-processing pipelines49. In recent years, the field has witnessed the emergence of 
numerous and widely used data sharing initiatives for multimodal MRI data, such as the Human Connectome 
Project46, UK BioBank47, NSPN48, Cam-CAN50, ABIDE51,52, and many others. In parallel, data sharing efforts 
have been supported by advances in methods and infrastructure supporting new data releases49,53–55 facilitat-
ing exchange and collaboration while boosting transparency and reproducibility in neuroimaging56. In line 
with this perspective, this work presents a ready-to-use multimodal MRI dataset for Microstructure-Informed 
Connectomics (MICA-MICs). MICA-MICs provides connectomes based on i) task-free functional MRI, ii) dif-
fusion tractography, iii) microstructure covariance analysis based on qT1 mapping, and iv) geodesic cortical dis-
tance, each built across multiple parcellation schemes and spatial scales. We furthermore provide anonymized 
raw data adhering to Brain Imaging Data Structure (BIDS) standards57. Processing has been carried out using an 
open access pipeline (https://micapipe.readthedocs.io/). This resource promises to deepen our understanding of 
the human brain at multiple scales and augment assessments of generalizability and replicability.

Methods
Participants. Data were collected in a sample of 50 healthy volunteers (23 women; 29.54 ± 5.62 years; 47 
right-handed) between April 2018 and February 2021. Each participant underwent a single testing session. All 
participants denied a history of neurological and psychiatric illness. The Ethics Committee of the Montreal 
Neurological Institute and Hospital approved the study (2018–3469). Written informed consent, including a 
statement for openly sharing all data in anonymized form, was obtained from all participants. Socio-demographic 
information included in this release includes participant sex and age at time of scan (in 5-year increments).

MRI data acquisition. Scans were completed at the Brain Imaging Centre of the Montreal Neurological 
Institute and Hospital on a 3 T Siemens Magnetom Prisma-Fit equipped with a 64-channel head coil. Participants 
underwent a T1-weighted (T1w) structural scan, followed by multi-shell diffusion-weighted imaging (DWI) and 
resting-state functional MRI (rs-fMRI). In addition, a pair of spin-echo images was acquired for distortion cor-
rection of individual rs-fMRI scans. A second T1w scan was then acquired, followed by qT1 mapping (Fig. 1a). 
Total scan time for these acquisitions was approximately 45 minutes.

Two T1w scans with identical parameters were acquired with a 3D magnetization-prepared rapid 
gradient-echo sequence (MP-RAGE; 0.8 mm isotropic voxels, matrix = 320 × 320, 224 sagittal slices, 
TR = 2300 ms, TE = 3.14 ms, TI = 900 ms, flip angle = 9°, iPAT = 2, partial Fourier = 6/8). Both T1w scans 
were visually inspected to ensure minimal head motion before they were submitted to further processing. qT1 
relaxometry data were acquired using a 3D-MP2RAGE sequence (0.8 mm isotropic voxels, 240 sagittal slices, 
TR = 5000 ms, TE = 2.9 ms, TI 1 = 940 ms, T1 2 = 2830 ms, flip angle 1 = 4°, flip angle 2 = 5°, iPAT = 3, band-
width = 270 Hz/px, echo spacing = 7.2 ms, partial Fourier = 6/8). We combined two inversion images for qT1 
mapping in order to minimise sensitivity to B1 inhomogeneities and optimize intra- and inter-subject reliabil-
ity58,59. A 2D spin-echo echo-planar imaging sequence with multi-band acceleration was used to obtain DWI 
data, consisting of three shells with b-values 300, 700, and 2000s/mm2 and 10, 40, and 90 diffusion weight-
ing directions per shell, respectively (1.6 mm isotropic voxels, TR = 3500 ms, TE = 64.40 ms, flip angle = 90°, 
refocusing flip angle = 180°, FOV = 224 × 224 mm2, slice thickness = 1.6 mm, multi-band factor = 3, echo 
spacing = 0.76 ms). b0 images acquired in reverse phase encoding direction are also provided for distor-
tion correction of DWI scans. One 7 min rs-fMRI scan was acquired using multiband accelerated 2D-BOLD 
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echo-planar imaging (3 mm isotropic voxels, TR = 600 ms, TE = 30 ms, flip angle = 52°, FOV = 240 × 240 mm2, 
slice thickness = 3 mm, mb factor = 6, echo spacing = 0.54 ms). Participants were instructed to keep their eyes 
open, look at a fixation cross, and not fall asleep. We also include two spin-echo images with reverse phase 
encoding for distortion correction of the rs-fMRI scans (3 mm isotropic voxels, TR = 4029 ms, TE = 48 ms, flip 
angle = 90°, FOV = 240 × 240 mm2, slice thickness = 3 mm, echo spacing = 0.54 ms, phase encoding = AP/PA, 
bandwidth = 2084 Hz/Px). A complete list of acquisition parameters is provided in the detailed imaging protocol 
available alongside this data release.

MRI data pre-processing. Raw DICOMS were sorted by sequence, converted to NIfTI format using 
dcm2niix (v1.0.20200427; https://github.com/rordenlab/dcm2niix)60, renamed, and assigned to their respec-
tive subject-specific directories according to BIDS57. Agreement between the resulting data structure and BIDS 
standards was ascertained using the BIDS-validator (v1.5.10; https://doi.org/10.5281/zenodo.3762221)61. All 
further processing was performed via micapipe, an openly accessible processing pipeline for multimodal MRI 
data (https://micapipe.readthedocs.io/), and BrainSpace, a toolbox for macroscale gradient mapping (https://
brainspace.readthedocs.io/)62.

Fig. 1 Overview of MICA-MICs dataset.(a) Sequences provided in the MICA-MICs dataset release include 
quantitative T1 relaxometry, a multiband accelerated resting-state functional scan, multiband, multi-shell 
diffusion-weighted imaging, and two structural T1w scans. Pial and white matter surface segmentations are 
superimposed on a coronal slice of the T1w image generated by FreeSurfer combining both input T1w scans.  
(b) Group-averaged matrices (only left hemisphere parcels shown - top panel) and connection weights 
from three outlined seeds, selected to represent a diverse set of network communities (bottom panel). 
Microstructural profile covariance (MPC), functional connectivity (FC), and geodesic distance (GD) matrices 
were averaged across participants. Group-level structural connectivity (SC) was computed using distance-
dependent thresholding to preserve the distribution of within- and between-hemisphere connections lengths in 
individual subjects90. Prior to averaging, subject-level SC matrices were log-transformed to reduce connectivity 
strength variance. All features are projected to the fsaverage5 midsurface from the Schaefer-400 atlas.
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T1w pre-processing. Native structural images were anonymized and de-identified by defacing all structural 
volumes using custom scripts (https://github.com/MICA-LAB/micapipe/; micapipe_anonymize). Note that pro-
cessing derivatives were generated from non-anonymized images. Structural processing was carried out using 
several software packages, including tools from AFNI, FSL, and ANTs63. Each T1w scan was deobliqued and 
reoriented to standard neuroscience orientation (LPI: left to right, posterior to anterior, and inferior to supe-
rior). Both scans were then linearly co-registered and averaged, automatically corrected for intensity nonu-
niformity64, and intensity normalized. Resulting images were skull-stripped, and subcortical structures were 
segmented using FSL FIRST65. Cortical surface segmentations were generated from native T1w scans using 
FreeSurfer 6.066–68.

qT1 pre-processing. Native qT1 scans were anonymized and de-identified by defacing. For pre-processing, 
a series of equivolumetric surfaces were first constructed for each participant between pial and white matter 
boundaries. These surfaces were used for systematic sampling of qT1 image intensities from raw T1 maps (i.e., 
/rawdata/sub-HC#/ses-01/anat/*T1map.nii.gz), to compute individual microstructural profile similarity matri-
ces6,7 (see next section). Here, qT1 images were co-registered to native FreeSurfer space of each participant using 
boundary-based registration69. No additional pre-processing was applied to qT1 images.

DWI pre-processing. DWI data were pre-processed using MRtrix70,71. DWI data was denoised72,73, underwent 
b0 intensity normalization64, and were corrected for susceptibility distortion, head motion, and eddy currents 
using a reverse phase encoding from two b = 0 s/mm2 volumes. Required anatomical features for tractography 
processing (e.g., tissue type segmentations, parcellations) were non-linearly co-registered to native DWI space 
using the deformable SyN approach implemented in ANTs74. Diffusion processing was performed in native DWI 
space.

rs-fMRI pre-processing. rs-fMRI images were pre-processed using AFNI75 and FSL65. The first five volumes 
were discarded to ensure magnetic field saturation. Images were reoriented, as well as motion and distortion 
corrected. Motion correction was performed by registering all timepoint volumes to the mean volume, while 
distortion correction leveraged main phase and reverse phase field maps acquired alongside rs-fMRI scans. 
Nuisance variable signal was removed using an ICA-FIX76 classifier trained in-house on a subset of 30 partici-
pants (15 healthy controls, 15 drug-resistant epilepsy patients) and by performing spike regression using motion 
outlier outputs provided by FSL. Volumetric timeseries were averaged for registration to native FreeSurfer space 
using boundary-based registration69, and mapped to individual surface models using trilinear interpolation. 
Native-surface cortical timeseries underwent spatial smoothing once mapped to each individual’s cortical sur-
face models (Gaussian kernel, FWHM = 10 mm)77,78, and were subsequently averaged within nodes defined by 
several parcellation schemes (see below). Parcellated subcortical timeseries are also provided in this release and 
were appended before cortical timeseries. Subject-specific subcortical parcellations were non-linearly registered 
to each individual’s native fMRI space using the deformable SyN approach implemented in ANTs74.

Generating individual and group-level connectome matrices. The following sections describe the 
construction of feature matrices, derived from each imaging sequence included in this data release (Fig. 1b). 
Cortical connectomes are provided according to anatomical20, intrinsic functional24, and multimodal parcella-
tion schemes26 at different resolutions, for a total of 18 distinct cortical parcellations. Anatomical atlases avail-
able in this dataset include Desikan-Killiany (aparc)20 and Destrieux (aparc.a2009s)21 parcellations provided by 
FreeSurfer, as well as an in vivo approximation of the cytoarchitectonic parcellation studies of Von Economo and 
Koskinas79. We additionally include similarly sized subparcellations, constrained within the boundaries of the 
Desikan-Killany atlas20, providing matrices with 100 to 400 cortical parcels following major sulco-gyral land-
marks. Parcellations based on intrinsic functional activity (Schaefer atlases based on 7-network parcellation) are 
also included in this release according to a wide range of resolutions (100–1000 nodes)24. Lastly, we also provide 
connectome matrices generated from a multimodal atlas with 360 nodes derived from the Human Connectome 
Project dataset, known as the Glasser parcellation26. All atlases are available on Conte6980 and fsaverage5 surface 
templates (see parcellations in https://github.com/MICA-MNI/micapipe), and were resampled to each partici-
pant’s native surface to generate modality- and subject-specific matrices. In addition, structural and functional 
connectome matrices include data for each subcortical structure (nucleus accumbens, amygdala, caudate nucleus, 
pallidum, putamen, and thalamus) and the hippocampus appended before entries for cortical parcels (see Usage 
notes).

Geodesic distance (GD). We computed individual GD matrices along each participant’s native cortical midsur-
face using workbench tools77,78. First, a centroid vertex was defined for each cortical parcel by identifying the 
vertex with the shortest summed Euclidean distance from all other vertices within its assigned parcel. The GD 
between centroid vertices and all other vertices on the native midsurface mesh was computed using Dijkstra’s 
algorithm. Notably, this implementation computes distances not only across vertices sharing a direct connec-
tion, but also across pairs of triangles which share an edge to mitigate the impact of mesh configuration on 
calculated distances. Vertex-wise GD values were averaged within parcels.

Microstructural profile covariance (MPC). We generated 14 equivolumetric intracortical surfaces81 to sample 
qT1 intensities across cortical depths, yielding distinct intensity profiles reflecting the intracortical microstruc-
tural composition at each cortical vertex. This number of surfaces was selected based on recent stability analyses 
of resulting MPC matrices6,7. Data sampled from surfaces closest to the pial and white matter boundaries were 
discarded to mitigate partial volume effects. Vertex-wise intensity profiles were averaged within parcels. Nodal 
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microstructural profiles were cross-correlated across the cortical mantle using partial correlations while con-
trolling for the average cortex-wide intensity profile, and log-transformed6,7. Left and right medial walls, as well 
as non-cortical areas such as corpus callosum and peri-callosal regions of the Desikan-Killiany and Destrieux 
parcellations were excluded when averaging cortex-wide intensity profiles. Resulting matrices thus represented 
participant-specific similarity matrices in myelin proxies across the cortex.

Diffusion MRI tractography derived structural connectivity (SC). Structural connectomes were generated with 
MRtrix from pre-processed DWI data70,71. We performed anatomically-constrained tractography using tissue 
types (cortical and subcortical grey matter, white matter, cerebrospinal fluid) segmented from each participant’s 
pre-processed T1w images registered to native DWI space82. We estimated multi-shell and multi-tissue response 
functions83 and performed constrained spherical-deconvolution and intensity normalization84. We generated a 
tractogram with 40 million streamlines (maximum tract length = 250; fractional anisotropy cutoff = 0.06). We 
applied spherical deconvolution informed filtering of tractograms (SIFT2) to reconstruct whole brain stream-
lines weighted by cross-sectional multipliers85. The reconstructed cross-section streamlines were mapped to 
each parcellation scheme (cortical and subcortical), which were also warped to DWI space. The connection 
weights between nodes were defined as the weighted streamline count.

Functional connectivity (FC). Individual rs-fMRI timeseries mapped to subject-specific surface models were 
averaged within cortical parcels. The subcortical parcellation was warped to each subject’s native fMRI vol-
ume space and used to average timeseries within each node. Individual functional connectomes were generated 
by cross-correlating all nodal timeseries. For analyses presented in this paper, correlation values subsequently 
underwent Fisher-R-to-Z transformations. However, all FC matrices are provided as raw correlation matrices 
in the released data.

Data Records
All files are organized according to the Brain Imaging Directory Structure (BIDS)57 and are hosted on the 
Canadian Open Neuroscience Platform’s data portal (CONP; https://portal.conp.ca/dataset?id=projects/
mica-mics). All data is also available via the Open Science Framework (OSF; https://osf.io/j532r/)86. Due to 
storage limitations on the OSF platform, derivative and raw data were uploaded in different project components, 
and raw data files were furthermore compressed into 5-subject batches.

Native space data. Native space data and corresponding.json files are contained in the branch /rawdata/
sub-HC#/ses-01 of the directory structure (Fig. 2a). For each subject (/sub-HC#/ses-01), the /anat subdirectory 
includes several NIfTI files containing native space T1w and qT1 images. T1w scans are named according to 

Fig. 2 Directory structure of MICA-MICs dataset. (a) Anonymized data with no additional processing are 
provided in the rawdata branch of the directory structure, and includes qT1, T1w, diffusion-weighted, and 
resting-state functional imaging data. (b) Processing derivatives are organized according to their associated 
pipelines. Group and subject-level gradients (/derivatives/gradients) were derived from averaged and individual 
connectivity matrices computed from several parcellation schemes using micapipe (/derivatives/micapipe). 
Matrices and gradients are organized into modality-specific directories for structural (/anat/micro_profiles for 
MPC, /anat/geo_dist for geodesic distance), functional (/func), and diffusion-weighted (/dwi) imaging. We 
additionally provide detailed image quality reports for T1w and rsfMRI raw data generated using MRIQC87.
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acquisition order, denoted by run-#. For unprocessed qT1 images, we provide results of each inversion time 
parameter (denoted by inv-1 and inv-2), T1 mapping based on the combination of both inversion time images 
(T1-map), as well as MP2RAGE-derived synthetic T1w images (uni). Removal of facial features by masking was 
the only change applied to these images (see MRI data pre-processing).

Subject-specific DWI files can be found in the /rawdata/sub-HC#/ses-01/dwi subdirectory. Gradient direc-
tion, diffusion weighting, DWI volumes, and.json sidecar files are associated with each shell, indicated by its 
corresponding b-value and number of diffusion directions in the filename (e.g., “sub-HC#_ses-01_acq-b#_
dir-AP_dwi.json”). b0 images are denoted by their inverse phase encoding direction (PA; i.e., “sub-HC#_ses-
01_dir-PA_dwi.json”).

The rs-fMRI scans as well as associated spin-echo images used for distortion correction are located in the /
rawdata/sub-HC#/ses-01/func subdirectory. Functional timeseries include 700 timepoints, with the exception of 
subject numbers equal to or preceding sub-HC004 who underwent slightly longer acquisition (800 timepoints). 
Phase encoding direction of spin-echo images are indicated in the filename (i.e., APse – anterior-posterior – 
or PAse – posterior-anterior. The string “se” following phase-encoding direction in the filename indicates a 
spin-echo image later used for distortion correction).

Processed data. Processed data included in this release are stored in the derivatives subdirectory associated 
with their processing pipeline (Fig. 2b). Quality control reports of raw structural and functional data are provided 
in derivatives/mriqc/. Modality-specific matrices of varying granularity (70–1000 nodes) were generated using 
micapipe, and are stored in their respective subdirectory (e.g., all functional connectomes can be found in deriv-
atives/micapipe/sub-HC#/ses-01/func/). We also provide group- and subject-level gradients generated from each 
matrix, stored in derivatives/gradients/ses-01/ (see Technical validation and derivative metrics).

Structural processing. Surface-mapped processing derivatives of structural scans are provided in /derivatives/
micapipe/sub-HC#/ses-01/anat. These features are organized in two distinct subdirectories. First, MPC matrices 
generated from processed qT1 scans are stored in the /micro_profiles subdirectory and are identified by the 
parcellation scheme from which they were computed (e.g., “sub-HC#_ses-01_space-fsnative_atlas-schaefer100_
desc-mpc.txt”). GD matrices for each cortical parcellation scheme are included in the /geo_dist subdirectory (e.g., 
“sub-HC#_ses-01_space-fsnative_atlas-schaefer100_desc-gd.txt”). As described in a previous section, individual 
geodesic distance matrices were computed along each participant’s native midsurface using workbench77,78.

DWI processing. Processing derivatives of DWI scans are provided in /derivatives/micapipe/sub-HC#/ses-01/
dwi. Structural connectomes (e.g., “sub-HC#_ses-01_space-dwinative_atlas-schaefer100_desc-sc.txt”) and associ-
ated edge lengths (e.g., “sub-HC#_ses-01_space-dwinative_atlas-schaefer100_desc-edgeLength.txt”) are provided 
for each parcellation.

rs-fMRI processing. Fully processed connectomes (i.e., after removal of nuisance variable signal using 
ICA-FIX76, mapping to native cortical surface, spatial smoothing, and regression of motion spikes) are provided 
in /derivatives/micapipe/sub-HC#/ses-01/func (e.g., “sub-HC#_ses-01_space-fsnative_atlas-schaefer100_desc-fc.
txt”). Functional connectomes were computed from native-surface mapped timeseries for congruency across 
data modalities, as both GD and MPC matrices are generated from data mapped to native cortical surface models.

Quality control. Reports of image quality metrics computed by MRIQC v0.15.2 (https://github.com/poldrack-
lab/mriqc/)87 are included in the /mriqc branch of MICA-MICs processing derivatives. For each subject, /mriqc 
directories contain /anat and /func subdirectories, which include image quality metric reports for T1w and 
resting-state functional scans in.html and.json formats. These reports provide a number of metrics evaluating 
the quality of the input data, including estimates of motion, signal-to-noise, and intensity non-uniformities87.

Technical Validation and Derivative Metrics
Quality control procedures. Cortical surface segmentations. Surface extractions were visually inspected 
by three authors (JR, AJL, CP) and corrected for any segmentation errors with the placement of control points 
and manual edits.

Image quality metrics. The consistency of T1w scan quality was assessed using contrast-to-noise estimates 
computed in MRIQC87 (Fig. 3a). This metric provides a measure of separability of grey and white matter dis-
tributions for a given T1w image87,88, with higher values indicating better image quality. For DWI scans, move-
ment was quantified in each shell using MRtrix and FSL eddy, specifically using restricted movement root mean 
squared (RMS) outputs89 (Fig. 3b). For rs-fMRI, framewise displacement (FD) was estimated using FSL’s motion 
outlier detection tool. We also explored temporal signal-to-noise (tSNR) ratio, calculated for each participant by 
dividing surface-mapped mean timeseries by their standard deviation. Motion and distortion corrected time-
series were used to calculate tSNR across the cortex for each participant (i.e., before high-pass filtering and 
nuisance signal regression using ICA-FIX). Vertex-wise tSNR values were averaged within parcels to aggregate 
values across subjects (Fig. 3c).

estimation of cortical gradients from MPC, FC, SC, and GD matrices. In this section, we demon-
strate how group and individual-level gradients can be derived from each data modality provided in MICA-MICs. 
Using the BrainSpace toolbox (http://brainspace.readthedocs.io)62, we identified gradients from MPC, FC, SC, 
and GD matrices. We constructed group-level gradients by averaging all cortical entries of subject-level matrices 
constructed from the Schaefer-400 atlas. MPC, FC, and GD matrices were computed by cross-subject averaging, 
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and results were thresholded row-wise to retain the top 10% edges, as in previous work7,14,32,35. Group-level struc-
tural connectivity (SC) was computed using distance-dependent thresholding to preserve the distribution of 
within- and between-hemisphere connection lengths in individual subjects90. Prior to averaging, subject-level 
SC matrices were log-transformed to reduce connectivity strength variance. Group-average SC matrices were 
thresholded to only retain positive edges. No further thresholding was applied given the sparsity of SC matrices 
relative to other modalities.

Normalized angle affinity matrices, capturing inter-regional similarity of microstructural, connectivity, and 
distance patterns, were computed from each modality-specific matrix (Fig. 4a, top). Left and right hemispheres 
were analysed separately for SC data, given limitations of diffusion tractography in mapping inter-hemispheric 
fibres. Hemispheres were also analysed separately for GD gradients, as the surface-based measure of geodesic 
distance used here is computed on distinct hemisphere surface spheres. Data from both hemispheres were used 
to generate affinity matrices from MPC and FC features. We applied diffusion map embedding, a non-linear 
dimensionality reduction technique14,62,91, to each affinity matrix to identify eigenvectors (or gradients) describ-
ing inter-regional variability in each feature in descending order for each modality (Fig. 4a, middle). Resulting 
gradients were visualized on cortical surfaces, revealing distinct patterns for each feature (Fig. 4a, bottom). For 
instance, the first MPC gradient (G1) derived from myelin-sensitive qT1 recapitulated a sensory-fugal axis44,45 
ordering nodes from sensorimotor to paralimbic cortices7. In contrast, the principal FC and SC gradients 

Fig. 3 Image quality metrics across sequences. (a) Contrast-to-noise (CNR), estimated with MRIQC87, showed 
no outliers in either T1w scan (first scan in blue, second scan in green). (b) Motion parameters of diffusion-
weighted images were obtained from FSL eddy89. The histogram illustrates root mean squared (RMS) voxel-wise 
displacement relative to the first volume across all shells. Line plots show RMS displacement in each volume 
relative to the previous volume. (c) Framewise displacement (FD) of resting-state functional scans was obtained 
using FSL motion outliers, reflecting the average of rotation and translation parameter differences at each 
volume92. The histogram shows subjects-wise average FD across volumes. Line plots show FD across resting-
state acquisitions for three participants, with respectively 20th, 50th, and 80th percentile average FD across 
our sample. Dashed line indicates 0.2 mean FD threshold used for exclusion of participants with excessive 
motion. Vertex-wise temporal signal-to-noise (tSNR) was calculated on the native surface of each participant. 
Computed tSNR values were averaged within a 400-node functional parcellation (Schaefer-400) and averaged 
across individuals.

https://doi.org/10.1038/s41597-022-01682-y


8Scientific Data |           (2022) 9:569  | https://doi.org/10.1038/s41597-022-01682-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

primarily distinguished visual and sensorimotor cortices. The second gradient of FC, explaining a similar 
amount of variance to FC-G1, was anchored in unimodal sensory systems and the higher-order default mode 
network14. Gradients of geodesic distance highlighted the longest distance axes across the cortical surface mesh, 
specifically evolving along anterior to posterior (G1) and mesial/inferior to lateral/superior (G2) directions.

We next assess the reproducibility of group-average gradients in individual participants. Subject-level gra-
dients were generated following the same procedure as previously described group-level analyses. Resulting 
subject-level gradients were aligned with group-level template gradients generated from the 49 other participants 
using Procrustes alignment62. This procedure (i.e., excluding a single participant from the template used for align-
ment) ensured that resulting correlations were not spuriously increased by correlating single-subject data present 
in both sets. Aligned subject-level gradients were correlated with their corresponding gradient in the group-level 
data (Fig. 4b). A similar pattern was seen across all modalities, with decreasing individual-level replicability in 
gradients explaining less variance within each feature. Indeed, G1 was highly reproducible in all participants 
across all modalities (r mean ± SD; MPC 0.785 ± 0.041; FC 0.839 ± 0.065; SC 0.973 ± 0.008; GD 0.989 ± 0.003), 
but correlations between individual subject data and group-level template gradients were lower for gradients 
explaining less variance (e.g., G10; MPC 0.193 ± 0.064; FC 0.416 ± 0.127; SC 0.785 ± 0.083; GD 0.940 ± 0.019).

All subject-level gradients provided in this release were aligned to the full group template, and are provided 
for each modality and parcellation scheme. As such, all individual-subject gradients are aligned to an identical 
template. These files are included in their respective /derivatives subdirectories. For instance, all FC gradients 
for a given participant can be found in the /derivatives/gradients/ses-01/subjects/sub-HC# subdirectory (e.g., 
“sub-HC#_ses-01_space-fsnative_atlas-schaefer100_desc-fcGradient.txt” for FC gradients). Gradients generated 
from the averaged full sample data can also be accessed within their respective /derivatives/gradients directories 
(e.g., /derivatives/gradients/ses-01/group/func for FC gradients).

Fig. 4 Deriving smooth microstructural, connectivity, and distance gradients. (a) Matrices derived from the 
Schaefer-400 parcellation describing (i) microstructural similarity, (ii) functional connectivity, (iii) structural 
connectivity, and (iv) spatial proximity were thresholded, and transformed into affinity matrices using a 
normalized angle kernel (top row). Only left hemisphere data is shown, although data from both hemispheres 
was included in MPC and FC analyses. We then applied diffusion map embedding, a non-linear dimensionality 
reduction technique, to each affinity matrix to derive gradients describing inter-regional variability in each 
feature in descending order (middle row). A subset of resulting gradients is projected onto the cortical surface 
for each modality (bottom row). (b) We assessed reproducibility of group-level gradient patterns at the 
individual-participant level using Spearman correlations. We generated gradients for each modality, in each 
participant, and aligned resulting eigenvectors to corresponding group-level gradient data. Box plots show 
variations in Spearman r-values across participants, for the first 10 gradients in each modality (presented in the 
same order as panel (a). Note change in y-axis scale in SC and GD box plots.
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Usage Notes
Data hosting. MICA-MICs is made openly available via the CONP portal (https://portal.conp.ca/data-
set?id=projects/mica-mics) and OSF86 (https://osf.io/j532r/).

Matrix ordering. Rows and columns of GD and MPC matrices follow the order defined by annotation 
labels associated with their parcellation (see parcellations in https://github.com/MICA-LAB/micapipe), includ-
ing unique entries for the left and right medial walls. For example, row and column entries of the Schaefer-100 
matrices are ordered according to: Left hemisphere cortical parcels (1 medial wall followed by 50 cortical regions), 
and right hemisphere cortical parcels (1 medial wall followed by 50 cortical regions). FC and SC matrices follow 
the same ordering, although entries for subcortical structures are appended before cortical parcels. As such, row 
and column entries of the Schaefer-100 FC and SC matrices are ordered according to: Subcortical structures and 
hippocampus (7 left, 7 right), left hemisphere cortical parcels (1 medial wall followed by 50 cortical regions), and 
right hemisphere cortical parcels (1 medial wall followed by 50 cortical regions). The ordering of all parcels and 
their corresponding label in each volumetric parcellation are documented in lookup tables provided with our 
analysis pipeline.

Gradient data. Nodes excluded from group- and individual-level gradient analyses are indicated by a value 
of Inf in the corresponding node index. These data points may correspond to non-cortical nodes (e.g., medial 
wall, callosal or peri-callosal areas) or to nodes with no connections to other areas. This second case occasionally 
occurred in higher-resolution (>500 nodes) SC matrices of individual subjects.

Code availability
All processing pipeline scripts are openly available. Code used to generate pre-processed outputs can be accessed 
via GitHub (https://github.com/MICA-MNI/micapipe). Documentation for the processing pipeline, including 
usage and detailed processing steps, can also be accessed via ReadTheDocs (https://micapipe.readthedocs.io).
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