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OPEN: A curated binary pattern
pataDEscriPTOR MUltitarget dataset of focused
ATP-binding cassette transporter
inhibitors

Sven Marcel Stefan®%23*, Patric Jan Jansson(®?3°, Jens Pahnke®%*57 &
: Vigneshwaran Namasivayam®?2*™

Multitarget datasets that correlate bioactivity landscapes of small-molecules toward different related
or unrelated pharmacological targets are crucial for novel drug design and discovery. ATP-binding
cassette (ABC) transporters are critical membrane-bound transport proteins that impact drug and
metabolite distribution in human disease as well as disease diagnosis and therapy. Molecular-structural
patterns are of the highest importance for the drug discovery process as demonstrated by the novel
drug discovery tool ‘computer-aided pattern analysis’ (C@PA’). Here, we report a multitarget dataset
of 1,167 ABC transporter inhibitors analyzed for 604 molecular substructures in a statistical binary

. pattern distribution scheme. This binary pattern multitarget dataset (ABC_BPMDS) can be utilized for

. various areas. These areas include the intended design of (i) polypharmacological agents, (ii) highly

. potent and selective ABC transporter-targeting agents, but also (iii) agents that avoid clearance by the

. focused ABC transporters [e.g., at the blood-brain barrier (BBB)]. The information provided will not only

: facilitate novel drug prediction and discovery of ABC transporter-targeting agents, but also drug design
in general in terms of pharmacokinetics and pharmacodynamics.

: Background & Summary
. 'The superfamily of ABC transporters is of highest importance in terms of novel drug discovery, design, and
© development. ABC transporters are ubiquitously present in the human body'%, and their (co-)expression has
: broad implications in human diseases. These diseases include prevalent [e.g., Alzheimer’s disease (AD)>¢, ath-
. erosclerosis’, or cancer*®#] and orphan [e.g., Tangier disease (ABCA1)’, Stargardt’s disease (ABCA4)', har-
. lequin ichthyosis (ABCA12)", pseudoxanthoma elasticum (ABCC6)'%, or adrenoleukodystrophy (ABCD1)"?]
: pathological conditions. Together with tight-junction proteins, these membrane-bound efflux pumps are the
* backbone of systemic barrier formation'*'*. Their localization at blood-tissue barriers impacts metabolite distri-
. bution and drug delivery, and hence, disease progress, treatment, and therapyls’w. Determinants that establish
a correlation between the molecular structure of a small-molecule (drug) and its interaction with ABC trans-
. porters is key for the development of novel, safe, systemically applicable, and target-oriented (selective) drugs.
: These determinants include descriptors that conserve certain physicochemical features of the
small-molecules of interest, such as the calculated octanol-water partition coefficient (CLogP), molecular weight
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(MW), molar refractivity (MR), or topological polar surface area (TPSA), but also the number of hydrogen
bond (H-bond) donors, H-bond acceptors, or rotatable bonds®. Other than that, more complex attributes can
be summarized in fingerprints that represent certain molecular features of the small-molecule in a binary code
(e.g., feature-, path-, and radial-fingerprints?*-?2). Unfortunately, comprehensive binary datasets do not exist
for ABC transporters. However, the knowledge about such binary fingerprints could facilitate the development
of (i) drugs that avoid clearance mediated by ABC transporters [e.g., targeting the BBB to treat central nerv-
ous system-(CNS)-related diseases®]; (ii) agents targeting ABC transporters to study their expression and/or
function with state-of-the-art imaging techniques [e.g., by positron emission tomography (PET)'¢]; (iii) drugs
that selectively target well-studied ABC transporters in human diseases (e.g., cancer**%8); (iv) broad-spectrum
drugs that target several ABC transporters to ameliorate/cure an ABC transporter-associated pathological con-
dition?%; (v) polypharmacological agents to target and study particularly less- and under-studied ABC transport-
ers by a multitargeting approach”?-%’; or (vi) combined/extended fingerprints to create high-quality compound
collections that would provide a starting point of polypharmacology-focused virtual screenings’.

In the present work, we combined the concepts of the multitarget dataset”*” and the binary distribution of sub-
structures’. The latest version of the multitarget dataset contains 1,167 compounds that were evaluated against the
well-studied ABC transporters ABCB1, ABCC1, and ABCG2. A large substructure catalog was created, contain-
ing in total 604 active (= present) substructures within these 1,167 compounds of the updated multitarget dataset.
The new binary pattern multitarget dataset (ABC_BPMDS) is freely available under the http://www.zenodo.org*
URL as well as the http://www.panabc.info website, and its use is free of charge.

Methods

The generation of the ABC_BPMDS was a four-step process: (i) deep literature search including the selection of
qualified reports, resulting in the exquisite compilation of the original multitarget dataset as reported earlier?”
[including updates in our former” and the present work (see below)]; (ii) manual curation of the given data,
in particular: (a) calculation of bioactivity values for estimated bioactivity data and data determination, (b)
unification and harmonization of bioactivity data, as well as (c) comparison, curation, and harmonization of
molecular-structural data (SMILES codes); (iii) generation of a substructure catalog, in particular: (a) visual
inspection of the 1,167 molecules of the updated multitarget dataset, (b) extraction of partial structures, (c)
creation and extension of substitution patterns, as well as (d) screening of the multitarget dataset for these sub-
structures, discovering 604 active substructures; and (iv) individual pattern analysis” for uncovering the statis-
tical distribution of these 604 active substructures amongst the 1,167 compounds of the multitarget dataset. The
following sections will provide a detailed description on how the final ABC_BPMDS was assembled. Figure 1
provides an overview of the taken steps.

Literature Collection of the Original Dataset. Qualified Reports. A deep literature search was the
first step to compile the original multitarget dataset, which has been reported in detail before”?’. The National
Center for Biotechnological Information (NCBI; https://www.ncbi.nlm.nih.gov)?* was used to search for qualified
reports applying the keywords (i) ABCB1, (ii) ABCCI, (iii) ABCGZ2;, (iv) ‘P-gp; (v) ‘MRP1, and (vi) ‘BCRP’. The
keywords were used in all possible combinations to extract the maximal yield in reports. In addition to the gen-
uine database search, the reference sections of the found reports were searched for potential additional literature
to extract further qualified information.

Compounds. Compounds were considered only if they had been evaluated against all three focused targets,
ABCBI1, ABCC], and ABCG2, including inactive compounds as well as selective, dual, and triple inhibitors. This
information could be provided either in one single report (e.g., in case of the standard ABCG2 inhibitor Ko143*’) or
in several individual reports [e.g., in case of the standard ABCC1 inhibitor verlukast (MK571)*!-%¢]. The molecular
structures of qualified compounds were collected as SMILES codes. These were obtained either from (i) supplemen-
tary information of the respective report; (i) the PubChem database (https://pubchem.ncbi.nlm.nih.gov)* [e.g.,
in case of known drugs and drug-like compounds, such as the standard inhibitors verapamil (ABCB1), cyclosporine
A (ABCBI and ABCC1), verlukast (ABCC1), or Ko143 (ABCG2)]; or (iii) manual drawing according to the 2D
representations as outlined in the respective report using ChemDraw Pro version 20.1.1.125.Isomeric
SMILES were considered where applicable. SMILES codes that encoded aromatic substructures with lower-case
letters in certain reports®*** were unified according to the upper-case description scheme (structural curation)’.

Assays.  Only functional assays were considered using either fluorescence labeling or radionuclide detection
applying either living (selected or transfected) cells or membrane vesicles with reconstituted transporters.
ATPase assays were not considered because ATPase activity and transporter inhibition may not be directly con-
nected to each other. MDR reversal assay data was not considered because of the complexity of the involved pro-
cesses and the fact that the triggered response(s) may not only be caused by ABC transporter inhibition. Table 1
provides an exhaustive list of functional tracers (and substrates) that were used to assess the 1,167 compounds
of the ABC_BPMDS against ABCB1, ABCC1, and ABCG2. Table 2 summarizes all used host systems (cell lines
and membrane vesicles) used for the evaluation of the 1,167 compounds against ABCB1, ABCC1, and ABCG2.

Bioactivity. 'The bioactivities (ICs, values) of the compounds were extracted from either (i) tables of the respective
reports (including supplementary information); or (ii) screening figures with relative inhibition (I,;) values (%)
compared to a standard (I,,,; 100%). In the latter case, the IC, values were estimated (either span or >, >, <, ~)
in the previous multitarget dataset”?’.
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Fig. 1 Depiction of the main workflow of assemble and validation as reported earlier in our preliminary work?,
as well as the main steps of data extension and curation as part of the current work to generate the ABC_BPMDS.
This graphic was created with BioRender.com (https://biorender.com).

Data Curation - Bioactivity Data. Dataset Update and Complementation. New reports particularly from
2021 and 2022 were taken into consideration to update the dataset with compounds that were evaluated against
the three transporters ABCB1, ABCC1, and ABCG2. In total, 22 new compounds were included into the list of
qualified compounds”*-*2, In addition, we focused an extended literature search, particularly of known standard
inhibitors of ABCB1, ABCC1, and ABCG2 to obtain bioactivities with less mathematical uncertainty which also
align well with our empirical experience in the laboratory. These compounds included verapamil (ABCB1*%),
cyclosporine A (ABCB1443-46 and ABCC1344-%), verlukast (ABCC1%!-¢), and Ko143 (ABCG2*%). As a side
note, the additional literature search also resulted in an update of bioactivity data of the natural compound
piperine®. In the curation process to complement bioactivity values, we found that two compounds were errone-
ously included into the dataset (apatinib*® and ceritinib*’). Both were not evaluated against ABCC1, and there-
fore, did not qualify for this dataset and were therefore removed.

Complementary Data Analysis. The bioactivity of several inhibitors could only be described as an estima-
tion (either described as span, marked as ‘active, or annotated with >, > ‘<), *~ in the previous dataset”?’).
However, to allow for the use of the entire dataset in mathematical and computational operations, we sought
to allocate defined bioactivity values to these compounds. Hence, the individual reports were analyzed and the
given indications of bioactivity [e.g., screening figures, flow-cytometry histograms, or tables with bioactivity
values other than ICs, values (e.g., percentages)] were taken into consideration for further data analysis. The
specific bioactivity value (e.g., percentage inhibition) was extracted and correlated to the used compound con-
centration. By using GraphPad Prism version 8.4.0 applying the three-parameter logistic equation
with a fixed Hill slope (=1.0), IC5, values were calculated and listed in the new multitarget dataset. A detailed
curation protocol is provided on https://www.zenodo.org > as well as he http://www.panabc.info website, and
the related GraphPad Prism file containing the concentration-effect curves can be accessed without restric-
tions. In total, the bioactivity data of 104, 77, and 73 ABCB1, ABCC1, and ABCG2 inhibitors, respectively, have
been calculated and complemented.

Data Determination. The bioactivities of five compounds [ayanin®!, retusin®! (flavone derivative 12°2),
dihydrodibenzoazepine derivative 4i*, dregamine derivative 2°4, and tabernaemontanine derivative 22°*] had to
be determined without mathematical operations. The ICs, values of ayanin and retusin were stated as *>50 uM’ in
the original report®l. Usually, these kinds of statements (e.g., “>50 uM;, “>100;, ‘inactive, etc) led to the allocation
of such compounds into the ‘inactive’ category (arbitrary ICs, value of 2000 uM in the ABC_BPMDS). However,
the authors of the respective publication stated that ayanin and retusin had some (weak) inhibitory activity®'.

SCIENTIFIC DATA | (2022) 9:446 | https://doi.org/10.1038/s41597-022-01506-z 3


https://doi.org/10.1038/s41597-022-01506-z
https://www.zenodo.org
http://www.panabc.info
https://biorender.com

www.nature.com/scientificdata/

functional tracer ABCC1 (MRP1) ABCG2 (BCRP)
BODIPY-FL-vinblastine*
BODIPY -prazosin®
Calcein AM7-86
5-CFDAY’
DiOCy3788
Daunorubicin’
Lucifer yellow®’
D-luciferin®
Doxorubicin®!
Estradiol glucuronide®?
Estrone sulfate?®?
Fluo-3 AM*
Fluo-4 AM>?
Hoechst 33342727
JC1%
Mitoxantrone®!-?6-97
Paclitaxe]’®
Rhodamine 1238899.100
PhenGreen SK diacetate®’
Pheophorbide A7
N-methyl-quinidine®’
Rosuvastatin'?!
Silybin AY
Silybin B
9mTc_Sestamibi®’
Vincristine®*

Table 1. An exhaustive list of functional tracers that were used to functionally assess the 1,167 compounds of
the ABC_BPMDS against ABCB1, ABCC1, and ABCG27?". The assessment of the corresponding transporter by
the respective tracer is indicated by a black box. The provided references are examples in which details in terms
of the stated assays can be found”?7:47:5584-101,

Therefore, we decided to allocate an arbitrary value of 100 uM to these compounds to acknowledge their
minor inhibitory potential against ABCC1. Dihydrodibenzoazepine derivative 4i**, dregamine derivative 2%,
and tabernaemontanine derivative 22>, on the other hand, reached over 100% inhibition at concentrations of
2.50 uM, 20.0 uM, and 20.0 uM, respectively. Unfortunately, these were the only indications of bioactivity by the
authors of the original reports®*>*. Hence, we decided to allocate arbitrary values of 0.999 pM*, 4.99 uM>*, and
4.99 uM>4, respectively, to acknowledge their potentially (very) high inhibitory power against ABCBI as well
as ABCG2 considering the effect-concentrations used in the original reports. These arbitrary ICs, values have
been chosen since sub-classifications of bioactivity classes according to bioactivity thresholds (e.g., 1 and 5 uM)
provided a better prediction in our previous works”.

Data Unification. ~Several compounds were evaluated in multiple assays, e.g., the mentioned standard inhib-
itors of ABCB1, ABCC1, and ABCG2. However, to allocate one bioactivity value to one compound, a uni-
fication process was necessary. As IC;, values do not follow a normal distribution, the multiple ICs, values
associated with one compound were subject to a three-step mathematical operation: (i) logarithmization of the
IC5, values; (ii) calculation of the mean; and (iii) delogarithmization of the log(ICs,)-mean value. The resultant
mean value was allocated to the respective compound. It shall be noted that the bioactivities of the compounds
curcumin I-III (ABCC1)* and gefitinib (ABCB1 and ABCC1)*® were only given as a span in the original
reports®>*®, and hence, the mean of the respective span was taken for further operations. In total, 60, 48, and 209
ABCBI1, ABCC1, and ABCG?2 inhibitors have been given a new bioactivity value by these operations compared
to the previous multitarget dataset””.

Data Correction and Harmonization. Through the complementary analysis process, several bioactivity values
were corrected. This applied for compounds that were falsely marked as ‘inactive’ in the previous multitarget
dataset (ABCB1: 22 compounds; ABCC1: 26 compounds; ABCG2: 19 compounds)”?. Lastly, all bioactivity val-
ues of the ABC_BPMDS were harmonized according to a number of three significant digits. This harmonization
resulted in a standardized format of presentation: (i) ‘XXX0 uM’; (ii) ‘XXX uM; (iii) XX.X uM; (iv) X.XX uM;
(v) 0.XXX uM; and (vi) 0.0XX (X = any numeric value between 1-9). Here, 11, 8, and 9 ABCB1, ABCCI, and
ABCG?2 values have been changed compared to the previous multitarget dataset”?’.
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K56242,102,1 09

KB48,84,107,1 10

LLC-PK1'!

cell line ABCBI (P-gp) ABCC1 (MRP1) ABCG2 (BCRP)
20082 transfected
822677102 doxorubicin (Dox6) _ mitoxantrone (MR20)
A27807 doxorubicin (ADR)
A-459103 cisplatin (DDP)
BHK-21% transfected
Caco-2'"
CCRF!% doxorubicin (ADR5000)
CORL-23% doxorubicin (R)
Flp-In™ -293106 transfected transfected transfected
H460!%7 mitoxantrone (MX2)
H697 doxorubicin (AR)
HCT-15'08
HEK 293848593 transfected sfec transfected

vesicles vesicles vesicles

HL60% vincristine (VCR) doxorubicin (ADR) _
Ig!% mitoxantrone (MXP3)
Jurkat!® doxorubicin (DNR) ]

doxorubicin (A02) transfected
transfected

vinblastine (V1; V200; | doxorubicin (C-A120)

transfected

transfected

MCF-738:48,102.103,107.111 ISR 3 (o1 R 1104 doxorubicin (DOX) doxorubicin (DOX)
etoposide (VP16) flavopiridol (FLV1000)
mitoxantrone (MX)
topotecan (Topo)
verapamil (AdrVp)
transfected
transfected

MDA-MB-231100
MDCK38,1 12

transfected transfected

vesicles

MEF!" -

transduced

MES-SA!!# doxorubicin (Dx-5) mitoxantrone (MX2)
NIH-3T3% transfected

PLB-985% transfected transfected

S148 mitoxantrone (M1-80)
Sf9%9 transfected, vesicles

SupT1!% vincristine (Vin)

SW620%8 doxorubicin (AD300)

Table 2. An exhaustive list of transporter host systems that were used to functionally assess the 1,167
compounds of the ABC_BPMDS against the well-studied ABC transporters ABCB1, ABCC1, and ABCG2"%.
The assessment of the corresponding transporter by the respective host system is indicated by a black box.
Regarding selected cells, the used cytotoxic agent is indicated under the respective transporter, and the cell
subline abbreviation is given in brackets. The provided references are examples in which details in terms of the
stated cell lines can be found”?#42:4852,8489,93,9597-114,

Data Curation — Molecular-structural Data. The 1,167 compounds of the ABC_BPMDS were por-
trayed as canonical or isomeric SMILES codes as derived from the (i) respective report, (ii) PubChem database
(https://pubchem.ncbi.nlm.nih.gov), or (iii) SMILES generation tool of ChemDraw Pro version
20.1.1.125. All smiles were compared to each other to identify duplicates by using InstantJChem ver-
sion 21.13.0. Through this individual cross-check of the molecular-structural data, 13 compounds were
discovered as duplicates?®1:°->? and their bioactivity values were merged with the original bioactivity data of
the particular compound®>**-2, In addition, three compounds were identified to be incorrect in terms of their
molecular structure and have been corrected in the dataset*®>"3.,

Binary Pattern Generation. Background. In contrast to common molecular fingerprints for
similarity-based virtual screenings?*®4, the very recently reported novel drug discovery tool ‘computer-aided pat-
tern analysis’ (‘C@PA) identified that defined (=non-substituted) hydrogens and their positioning is particularly
important in terms of the differentiation between selective and multitarget inhibition of ABC transporters”22’.
Although certain fingerprints indeed consider polar hydrogens*?>, C@PA particularly discovered non-polar
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IC;, median | pICs, 1C;, mean | pICs,
inhibitor class count | IC;, span [uM] pIC;, span [uM] median [uM] mean
ABC_BPMDS 1,167 0.0153-1630 7.815-2.788 4.39 5.358 3.84 5.416
All ABCB1 525 0.0153-1460 7.815-2.836 6.37 5.196 6.32 5.199
All ABCC1 344 0.146-1630 6.836-2.788 11.2 4.951 9.26 5.033
All ABCG2 866 0.0234-405 7.631-3.393 1.95 5.710 2.00 5.698
Selective ABCB1 88 0.0153-708 7.815-3.150 2.51 5.599 341 5.467
Selective ABCC1 61 0.222-112 6.654-3.951 5.97 5224 5.63 5.249
Selective ABCG2 409 0.0234-405 7.631-3.393 1.06 5.975 1.13 5.948
Dual ABCB1/ABCC1 38 0.289-180 6.539-3.745 20.4 4.692 15.2 4.819
Dual ABCC1/ABCG2 212 0.0255-333 7.593-3.478 4.43 5.354 3.85 5.415
Dual ABCC1/ABCG2 58 0.0988-163 7.005-3.788 10.1 4.996 6.92 5.160
Triple ABCB1/ABCC1/ABCG2 187 0.0475-1630 7.323-2.788 6.98 5.156 6.74 5.172

Table 3. Statistical survey of the span as well as median and mean values of the bioactivity of the entire ABC_
BPMDS as well as important sub-classes. The pICs, values have been calculated by using the negative decadic
logarithm of the respective bioactivity value.

hydrogens with critical discriminatory potential in the virtual screening process”?*?’. However, the original
C@PA worked with a very preliminary and limited dataset of 308 substructures which were compiled after mul-
titarget dataset visualization and literature consideration®, of which only 162 substructures were active in the
multitarget dataset of, at the time of the study, 1,049 compounds?.

Substructure Visualization, Identification, and Extension. For the development of a complete, detailed,
and novel (multitarget) fingerprint, which may also universally be used in (multitarget) virtual screening
approaches, the 1,167 compounds of the updated multitarget dataset were visualized using ChemDraw Pro
version 20.1.1.125, and substructures were identified and extracted. The extracted substructures
[e.g., single-standing/centered (hetero-)aromatic rings, condensed (hetero-)aromatic rings, (un)saturated side
chains, extremities, and non-aromatic (hetero-)cycles, etc.] were derivatized by applying a heavy atom substi-
tution scheme as already reported earlier®® (scaffold fragmentation and substructure hopping). Especially the
presence and positioning of (non-polar) hydrogens in the sense of a proton/non-proton pattern scheme was
stressed. These measures increased the quantity of substructural properties covered by the intended fingerprint.
In addition, alternative datasets of ABC transporter modulators® and modes of action (particularly ABC trans-
porter activators)®® have been considered to gain complementary knowledge about potentially active substruc-
tures. The resultant substructures were subsequently searched in the 1,167 compounds (loaded as.csv file) using
the query search function of InstantJChem version 21.13.0 and, if present, listed in the substructure
catalog. As a result, a catalog of 604 active substructures has been assembled.

Individual Pattern Analysis’”. In a final step, the multitarget dataset of 1,167 compounds was statistically ana-
lyzed for the listed 604 substructures of the substructure catalog. Here, the resultant list of hit molecules per
substructure derived from the query search function of InstantJChem version 21.13.0 was saved
and compared to the original list, translating the entry differences into a binary code [1 = substructure pres-
ent (active substructure); 0 = substructure not present (inactive substructure)]. A binary pattern distribution
scheme resulted which constituted the final ABC_BPMDS. It shall be taken note that the number of the very
same substructure within the same compound was irrelevant; the presence (numeric value = 1) of the substruc-
ture was not an expression of how often the respective substructure appeared within the compound.

Data Records

The ABC_BPMDS is freely available in an .xlsx format under the http://www.zenodo.org®® URL as well
as the http://www.panabc.info website and its use is free of charge. The dataset consists of (i) an individual
database identifier for each compound; (ii) the original name of the compounds according to the original
report(s); (iii) the TUPAC nomenclature of each compound generated by using ChemDraw Pro version
20.1.1.125; (iii) The SMILES code obtained either from the (a) supporting information of the respective
report, (b) PubChem database (https://pubchem.ncbi.nlm.nih.gov), or (¢) manual drawing using ChemDraw
Pro version 20.1.1.125; (iv) the physicochemical properties (a) CLogP, (b) calculated molecular
water solubility (CLogS), (c) MW, (d) MR, (e) TPSA, (f) H-bond donors, (g) H-bond acceptors, (h) rotatable
bonds, and (j) number of heavy atoms; (v) the associated bioactivity values expressed as (a) ICs, values [uM]
against ABCB1, ABCCI, and ABCG2 presented in the standardized format of three significant digits as outlined
above [10°8Mem] and (b) pICs, values against ABCB1, ABCCI, and ABCG2; (vi) the binary code (active = 1;
inactive = 0) for each of the 604 evaluated substructures of the substructure catalog including their (a) trivial
name, (b) SMILES code, (c) number of defined hydrogens, (d) number of heavy atoms, (e) total hit count,
and (f) individual substructure identifier. The substructures are sorted from most abundant (left) to most
rare (right); and (vii) the PubMed (https://pubmed.ncbi.nlm.nih.gov) identifier (PMID) retrieved from NCBI
(https://www.ncbi.nlm.nih.gov). In addition, a detailed curation protocol as well as an associated GraphPad
Prism file can be found on https://www.zenodo.org™ as well as the http://www.panabc.info website.
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Fig. 2 Distribution of bioactivity values (pICs,) of the 1,167 compounds of the ABC_BPMDS against ABCB1
(a), ABCC1 (b), and ABCG2 (c).
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Fig. 3 Distribution of the important physicochemical''® properties CLogP (a), MW (b), MR (c), and TPSA (d)
amongst the 1,167 compounds of the ABC_BPMDS as determined by MOE version 2019.01.

Technical Validation

Compounds. The 1,167 compounds were portrayed as canonical or isomeric SMILES codes as derived
from the respective report or the PubChem database (https://pubchem.ncbi.nlm.nih.gov) and imported into the
MarvinSketch editor implementedin InstantJChem version 21.13.0.Iftheloaded SMILES
code appeared as the intended original molecular representation according to the respective report or the
PubChem database (https://pubchem.ncbi.nlm.nih.gov) without any errors, it was considered as valid.

Bioactivity Space Validation. In total, 113 reports between 1994 and 2022 have been collected, resulting in
a final number of 1,167 compounds that were evaluated against ABCB1, ABCC1, and ABCG2, including inactive
compounds as well as selective, dual, and triple inhibitors. Amongst the 1,167 compounds are (i) 525 ABCB1
inhibitors, of which (a) 88 are selective ABCB1 inhibitors (no activity against ABCCI and ABCG2; any given
ICy, value), (b) 67 are potent ABCBI inhibitors (IC,, values < 1 uM), and (c) 25 are selective and potent ABCB1
inhibitors; (ii) 344 ABCCI inhibitors, of which (a) 61 are selective ABCC1 inhibitors (no activity against ABCB1
and ABCG2; any given ICy, value), (b) 45 are potent ABCC1 inhibitors (ICy, values < 1 uM), and (c) 11 are
selective and potent ABCC1 inhibitors; (iii) 866 ABCG2 inhibitors, of which (a) 409 are selective ABCG2 inhib-
itors (no activity against ABCB1 and ABCC1; any given ICs, value), (b) 330 are potent ABCG2 inhibitors (ICs,
values < 1 uM), and (c) 199 are selective and potent ABCG2 inhibitors.

On the other hand, 38, 212, and 58 dual ABCB1/ABCC1, ABCB1/ABCG2, and ABCC1/ABCG2 inhibitors
are present, respectively, of which 7, 99, and 13 can be considered as potent dual ABCB1/ABCC1, ABCB1/
ABCG2, and ABCC1/ABCG?2 inhibitors, respectively (ICs, < 10 uM). Finally, 187 triple ABCB1, ABCC1, and
ABCG?2 inhibitors can be defined, of which 54 can be considered as potent (IC5, < 10 uM; so-called ‘Class 72
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CLogP  [CLogP | MW MW | MR MR TPSA TPSA
inhibitor class count | median mean median mean median mean median mean
ABC_BPMDS 1,167 4.33 4.26 403.39 418.38 11.27 11.73 73.86 77.87
All ABCB1 525 4.40 4.78 432.43 458.67 12.07 12.90 73.63 79.56
All ABCC1 344 391 3.88 420.44 442.92 11.72 12.37 76.10 84.82
All ABCG2 866 4.34 4.25 396.37 415.32 11.13 11.64 74.73 79.01
Selective ABCB1 88 5.22 5.47 452.11 481.94 13.08 13.70 61.42 65.98
Selective ABCC1 61 3.37 3.41 374.49 377.22 11.07 10.70 69.77 75.29
Selective ABCG2 409 4.38 4.35 372.38 381.58 10.39 10.67 73.86 75.14
Dual ABCB1/ABCC1 38 5.03 4.80 475.56 471.03 13.19 13.20 70.05 78.29
Dual ABCC1/ABCG2 212 442 4.52 420.23 434.62 11.86 12.32 75.69 75.83
Dual ABCC1/ABCG2 58 3.62 3.68 376.91 398.33 10.52 11.23 76.26 80.98
Triple ABCB1/ABCC1/ABCG2 187 3.95 391 432.44 472.47 11.91 13.10 79.44 90.45

Table 4. Statistical survey of median and mean values of the important physicochemical properties CLogP,
MW, MR, and TPSA amongst the entire ABC_BPMDS as well as important sub-classes as determined by MOE
version 2019.01.

number of H-bond donors number of H-bond acceptors number of rotatable bonds

Fig. 4 Distribution of H-bond donors (a), H-bond acceptors (b), and rotatable bonds (¢) amongst the 1,167
compounds of the ABC_BPMDS as determined by MOE version 2019.01.

compounds”?*¥"). Table 3 summarizes a survey of statistical parameters of the entire ABC_BPMDS as well as

important sub-classes. Figure 2 depicts the distribution of the pIC, values of ABCB1 (A), ABCC1 (B), and
ABCG?2 (C) inhibitors amongst the entire ABC_BPMDS, which followed in all three cases a Gaussian normal
distribution.

Physicochemistry Space Validation. Physicochemical properties shape not only the pharmacological
profile of ABC transporter inhibitors®®-%, but are also very often used as additional discriminators in virtual
screening processes”??”%, To prove that the 1,167 compounds of the ABC_BPMDS have a balanced distribution
of physicochemical attributes, the ABC_BPMDS was analyzed for the CLogP, MW, MR, and TPSA using MOE
version 2019.01. Figure 3 demonstrates that these physicochemical properties are normally distributed
within the ABC_BPMDS comparable to other reported datasets?*”°. Table 4 summarizes the median and mean
values of CLogP, MW, MR, and TPSA of the entire ABC_BPMDS as well as important sub-classes. The median
and mean values are well-aligned, which accounts for the equal distribution of values.

Molecular-Structure Space Validation. H-bonds and molecular flexibility are crucial aspects in terms
of ligand-target interactions, especially for ABC transporters’'. Hence, we analyzed the 1,167 compounds of the
ABC_BPMDS for their number of H-bond donors, H-bond acceptors, and rotatable bonds. Figure 4 visualizes
the found distributions amongst the entire ABC_BPMDS. Together with CLogP and MW, H-bond donors and
acceptors play a major role in the drug-likeliness as defined by Lipinsky’?, particularly influencing drug absorp-
tion, distribution, and permeation. Considering the ‘Lipinski rule of five’ (CLogP < 5; MW < 500; H-bond
donors < 5; H-bond acceptors <10), a large majority of compounds of the ABC_BPMDS fulfils these require-
ments. In particular, (i) 73.8% of compounds have CLogP values of <5, (ii) 84.0% of compounds have a MW of
<500, (iii) 99.7% of compounds have <5 H-bond donors, and (iv) 98.6% of compounds have <10 H-bond accep-
tors. Table 5 summarizes the median and mean values of H-bond donors, H-bond acceptors, and rotatable bonds
of the entire ABC_BPMDS as well as important sub-classes. Hence, the ABC_BPMDS contains suitable templates
for future drug design and therapeutic development purposes, however, leaves also enough molecular-structural
and physicochemical space for explorational analyses beyond the ‘Lipinski rule of five’ for the creation of inho-
mogeneous high-quality compound collections and compound libraries.
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H-bond H-bond H-bond H-bond rotatable

donors donors acceptors acceptors bonds rotatable
inhibitor class count | median mean median mean median bonds mean
ABC_BPMDS 1,167 1 1.12 4 4.43 6 6.50
All ABCB1 525 1 1.07 4 4.95 7 7.72
All ABCC1 344 1 1.28 4 4.87 6 6.91
All ABCG2 866 1 1.15 4 4.42 5 6.51
Selective ABCB1 88 1 0.75 4 4.70 8 7.70
Selective ABCC1 61 1 1.46 4 4.03 6 5.57
Selective ABCG2 409 1 1.14 4 3.79 5 5.35
Dual ABCB1/ABCC1 38 1 0.895 4 432 6 6.74
Dual ABCC1/ABCG2 212 1 0.986 4 4.78 7 7.87
Dual ABCC1/ABCG2 58 1 1.14 4 4.40 4.5 5.66
Triple ABCB1/ABCC1/ABCG2 187 1 1.35 4 5.40 6 7.76

Table 5. Statistical survey of median and mean values of H-bond donors, H-bond acceptors, and rotatable
bonds amongst the entire ABC_BPMDS as well as important sub-classes as determined by MOE version
2019.01.

Usage Notes

Status Quo. Practical Use. An easy-to-use sort function allows the user to discriminate the compounds
regarding their bioactivities toward the targets, physicochemical properties, or molecular-structural features, but
also in terms of the 604 different substructures. Hence, the user can retrieve the necessary binary pattern infor-
mation for subsequent virtual screening and rational drug design approaches.

Special Considerations. 'The majority of the compounds was evaluated in proper full-blown concentration
effect curves within the original report, providing either only one single IC, or two ICs, values from different
assays for biological validation, resulting mostly in minor standard deviations or standard errors. However,
considering established reference compounds, many ICs, values have been reported that are not fully covered
by the deep literature search. Moreover, these drugs and drug-like compounds were tested in various assays,
and thus, their ICy, values vary in a greater span than of other compounds. In addition, data processing prior
to the original publication varied from laboratory to laboratory [e.g., number of concentrations tested, manner
of assay performance (non-standardized procedures), manner of data analysis (e.g., three- vs four-parameter
logistic equation, relative vs absolute inhibition), data presentation (single-point screening graphic vs full-blown
concentration effect curve, number of significant digits, in- or exclusion of standard deviation and/or stand-
ard error)] - contributing to a greater uncertainty of these particular data. Furthermore, the assays themselves
that were considered for the ABC_BPMDS were various [e.g., influx vs efflux assay, fluorescence labeling vs
radionuclide detection, manner of substrate (e.g., calcein AM vs mitoxantrone), selected cells vs transfected
cells vs membrane vesicles) — contributing to a general variation in data that is hidden due to the fact that most
compounds were only evaluated in one particular assessment system. These aspects should be considered when
using the ABC_BPMDS, however, at the same time, it should be taken note that our previous work demon-
strated the strength of substructural patterns based on the previous version of the ABC_BPMDS”*%". A list
of compounds affected by these variations in assessment systems can be found in the curation protocol under
the https://www.zenodo.org® URL (https://doi.org/10.5281/zenodo.6405752) or on the http://www.panabc.info
web site.

Future Perspective. Extension - New Compounds. The ABC_BPMDS provides the core application for
extension to other, less- and under-studied ABC transporters. Particularly, the addressing of under-studied ABC
transporters by multitarget agents poses a promising prospect for future drug discovery and development. Several
compounds of the ABC_BPMDS have been demonstrated to address other ABC transporters as well>*>?, such
as benzbromarone®”?*-?7, cyclosporine A>?°-?, dipyridamole”?””*-”7, erlotinib”?”7%7%, imatinib>”*>-%", nilo-
tinib”?7788081 ritonavir’*”#2, verapamil®>”*>~%, and verlukast>”*>-27% These ‘truly multitarget pan-ABC trans-
porter inhibitors'® are the primary focus for extension of the ABC_BPMDS, particularly with respect to their
substructural elements that promote multitargeting. On the other hand, the addition of multitarget agents that
are not part of the ABC_BPMDS will contribute valuable input to the polypharmacological space as charted by
the future ABC_BPMDS_1.2.

Extension — New Substructures (ABC_BPMDS_1.2°).  The substructural elements of the mentioned truly multi-
target pan-ABC transporter inhibitors include 4-anilinopyrimidine”?, benzyl’, cyano”?, 3,4-dimethoxyphenyl’,
fluorine”?’, furan”?, ethylene diamine’, ethylene hydroxy’, hydroxy’, isopropyl”*, methylene hydroxy’,
phenethyl’, piperazine”?’, pyrimidine”?%, quinazoline”%, thiazlole”¢, and thioether’. These and other substruc-
tures will be re-evaluated with respect to true multitargeting, and thus, receive a differential value dependent on
the purpose of the subsequent studies. Furthermore, the addition of multitarget agents that are not part of the
ABC_BPMDS will contribute valuable input to the substructure catalog, extending the substructural output of
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the future ABC_BPMDS_1.2. Specifically, this information beyond known multitarget fingerprints will enable
the exploration and exploitation of under-studied ABC transporters as potential drug targets of the future.

Extension — New Modes and Targets. Particularly, the inclusion of, for example, different modes of modula-
tion (e.g., activation), bioactivity measurements [e.g., in vitro (ATPase assays or MDR reversal assays), in silico
binding mode analyses (e.g., molecular docking or molecular dynamics simulations), or structural information
(e.g., x-ray, cryo-EM, homology-modelling, or AlphaFold®*)] will promote the discovery of drug candidates
with distinctive mode of action. Furthermore, the logistics outlined in this work also provide a useful frame-
work for similar data mining and descriptor approaches with respect to different pharmacological targets [e.g.,
under-studied human/bacterial ABC transporters, G-protein coupled receptors (GPCRs), ion channels (ICs),
solute carriers (SLCs; PANSLC, http://www.panslc.info) or tyrosine kinases (TKs)].

Code availability

The ABC_BPMDS is available without any restrictions under the http://www.zenodo.org?® URL
(https://doi.org/10.5281/zenodo.6384343). In addition, a detailed curation protocol including a GraphPad
Prism file are provided under the https://www.zenodo.org™® URL (https://doi.org/10.5281/zenodo.6405752).
All information is also available on the http://www.panabc.info website and the use is free of charge.
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