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a curated binary pattern 
multitarget dataset of focused 
atP-binding cassette transporter 
inhibitors
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Vigneshwaran Namasivayam  2,4 ✉

Multitarget datasets that correlate bioactivity landscapes of small-molecules toward different related 
or unrelated pharmacological targets are crucial for novel drug design and discovery. atP-binding 
cassette (aBC) transporters are critical membrane-bound transport proteins that impact drug and 
metabolite distribution in human disease as well as disease diagnosis and therapy. Molecular-structural 
patterns are of the highest importance for the drug discovery process as demonstrated by the novel 
drug discovery tool ‘computer-aided pattern analysis’ (‘C@PA’). Here, we report a multitarget dataset 
of 1,167 ABC transporter inhibitors analyzed for 604 molecular substructures in a statistical binary 
pattern distribution scheme. This binary pattern multitarget dataset (ABC_BPMDS) can be utilized for 
various areas. These areas include the intended design of (i) polypharmacological agents, (ii) highly 
potent and selective ABC transporter-targeting agents, but also (iii) agents that avoid clearance by the 
focused aBC transporters [e.g., at the blood-brain barrier (BBB)]. The information provided will not only 
facilitate novel drug prediction and discovery of ABC transporter-targeting agents, but also drug design 
in general in terms of pharmacokinetics and pharmacodynamics.

Background & Summary
The superfamily of ABC transporters is of highest importance in terms of novel drug discovery, design, and 
development. ABC transporters are ubiquitously present in the human body1–4, and their (co-)expression has 
broad implications in human diseases. These diseases include prevalent [e.g., Alzheimer’s disease (AD)5,6, ath-
erosclerosis7, or cancer1,3,6,8] and orphan [e.g., Tangier disease (ABCA1)9, Stargardt’s disease (ABCA4)10, har-
lequin ichthyosis (ABCA12)11, pseudoxanthoma elasticum (ABCC6)12, or adrenoleukodystrophy (ABCD1)13] 
pathological conditions. Together with tight-junction proteins, these membrane-bound efflux pumps are the 
backbone of systemic barrier formation14,15. Their localization at blood-tissue barriers impacts metabolite distri-
bution and drug delivery, and hence, disease progress, treatment, and therapy15–19. Determinants that establish 
a correlation between the molecular structure of a small-molecule (drug) and its interaction with ABC trans-
porters is key for the development of novel, safe, systemically applicable, and target-oriented (selective) drugs.

These determinants include descriptors that conserve certain physicochemical features of the 
small-molecules of interest, such as the calculated octanol-water partition coefficient (CLogP), molecular weight 
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(MW), molar refractivity (MR), or topological polar surface area (TPSA), but also the number of hydrogen 
bond (H-bond) donors, H-bond acceptors, or rotatable bonds5. Other than that, more complex attributes can 
be summarized in fingerprints that represent certain molecular features of the small-molecule in a binary code 
(e.g., feature-, path-, and radial-fingerprints20–22). Unfortunately, comprehensive binary datasets do not exist 
for ABC transporters. However, the knowledge about such binary fingerprints could facilitate the development 
of (i) drugs that avoid clearance mediated by ABC transporters [e.g., targeting the BBB to treat central nerv-
ous system-(CNS)-related diseases23]; (ii) agents targeting ABC transporters to study their expression and/or 
function with state-of-the-art imaging techniques [e.g., by positron emission tomography (PET)16]; (iii) drugs 
that selectively target well-studied ABC transporters in human diseases (e.g., cancer1,3,4,6,8); (iv) broad-spectrum 
drugs that target several ABC transporters to ameliorate/cure an ABC transporter-associated pathological con-
dition24; (v) polypharmacological agents to target and study particularly less- and under-studied ABC transport-
ers by a multitargeting approach7,25–27; or (vi) combined/extended fingerprints to create high-quality compound 
collections that would provide a starting point of polypharmacology-focused virtual screenings7.

In the present work, we combined the concepts of the multitarget dataset7,27 and the binary distribution of sub-
structures7. The latest version of the multitarget dataset contains 1,167 compounds that were evaluated against the 
well-studied ABC transporters ABCB1, ABCC1, and ABCG2. A large substructure catalog was created, contain-
ing in total 604 active (= present) substructures within these 1,167 compounds of the updated multitarget dataset. 
The new binary pattern multitarget dataset (ABC_BPMDS) is freely available under the http://www.zenodo.org 28  
URL as well as the http://www.panabc.info website, and its use is free of charge.

Methods
The generation of the ABC_BPMDS was a four-step process: (i) deep literature search including the selection of 
qualified reports, resulting in the exquisite compilation of the original multitarget dataset as reported earlier27 
[including updates in our former7 and the present work (see below)]; (ii) manual curation of the given data, 
in particular: (a) calculation of bioactivity values for estimated bioactivity data and data determination, (b) 
unification and harmonization of bioactivity data, as well as (c) comparison, curation, and harmonization of 
molecular-structural data (SMILES codes); (iii) generation of a substructure catalog, in particular: (a) visual 
inspection of the 1,167 molecules of the updated multitarget dataset, (b) extraction of partial structures, (c) 
creation and extension of substitution patterns, as well as (d) screening of the multitarget dataset for these sub-
structures, discovering 604 active substructures; and (iv) individual pattern analysis7 for uncovering the statis-
tical distribution of these 604 active substructures amongst the 1,167 compounds of the multitarget dataset. The 
following sections will provide a detailed description on how the final ABC_BPMDS was assembled. Figure 1 
provides an overview of the taken steps.

Literature Collection of the original Dataset. Qualified Reports. A deep literature search was the 
first step to compile the original multitarget dataset, which has been reported in detail before7,27. The National 
Center for Biotechnological Information (NCBI; https://www.ncbi.nlm.nih.gov)29 was used to search for qualified 
reports applying the keywords (i) ‘ABCB1’, (ii) ‘ABCC1’, (iii) ‘ABCG2’, (iv) ‘P-gp’, (v) ‘MRP1’, and (vi) ‘BCRP’. The 
keywords were used in all possible combinations to extract the maximal yield in reports. In addition to the gen-
uine database search, the reference sections of the found reports were searched for potential additional literature 
to extract further qualified information.

Compounds. Compounds were considered only if they had been evaluated against all three focused targets, 
ABCB1, ABCC1, and ABCG2, including inactive compounds as well as selective, dual, and triple inhibitors. This 
information could be provided either in one single report (e.g., in case of the standard ABCG2 inhibitor Ko14330) or 
in several individual reports [e.g., in case of the standard ABCC1 inhibitor verlukast (MK571)31–36]. The molecular 
structures of qualified compounds were collected as SMILES codes. These were obtained either from (i) supplemen-
tary information of the respective report; (ii) the PubChem database (https://pubchem.ncbi.nlm.nih.gov)37 [e.g.,  
in case of known drugs and drug-like compounds, such as the standard inhibitors verapamil (ABCB1), cyclosporine 
A (ABCB1 and ABCC1), verlukast (ABCC1), or Ko143 (ABCG2)]; or (iii) manual drawing according to the 2D 
representations as outlined in the respective report using ChemDraw Pro version 20.1.1.125. Isomeric 
SMILES were considered where applicable. SMILES codes that encoded aromatic substructures with lower-case 
letters in certain reports38,39 were unified according to the upper-case description scheme (structural curation)7.

Assays. Only functional assays were considered using either fluorescence labeling or radionuclide detection 
applying either living (selected or transfected) cells or membrane vesicles with reconstituted transporters. 
ATPase assays were not considered because ATPase activity and transporter inhibition may not be directly con-
nected to each other. MDR reversal assay data was not considered because of the complexity of the involved pro-
cesses and the fact that the triggered response(s) may not only be caused by ABC transporter inhibition. Table 1 
provides an exhaustive list of functional tracers (and substrates) that were used to assess the 1,167 compounds 
of the ABC_BPMDS against ABCB1, ABCC1, and ABCG2. Table 2 summarizes all used host systems (cell lines 
and membrane vesicles) used for the evaluation of the 1,167 compounds against ABCB1, ABCC1, and ABCG2.

Bioactivity. The bioactivities (IC50 values) of the compounds were extracted from either (i) tables of the respective 
reports (including supplementary information); or (ii) screening figures with relative inhibition (Irel) values (%)  
compared to a standard (Imax; 100%). In the latter case, the IC50 values were estimated (either span or >, ≥, <, ~)  
in the previous multitarget dataset7,27.
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Data Curation – Bioactivity Data. Dataset Update and Complementation. New reports particularly from 
2021 and 2022 were taken into consideration to update the dataset with compounds that were evaluated against 
the three transporters ABCB1, ABCC1, and ABCG2. In total, 22 new compounds were included into the list of 
qualified compounds7,40–42. In addition, we focused an extended literature search, particularly of known standard 
inhibitors of ABCB1, ABCC1, and ABCG2 to obtain bioactivities with less mathematical uncertainty which also 
align well with our empirical experience in the laboratory. These compounds included verapamil (ABCB143), 
cyclosporine A (ABCB141,43–46 and ABCC131,44–46), verlukast (ABCC131–36), and Ko143 (ABCG241,45). As a side 
note, the additional literature search also resulted in an update of bioactivity data of the natural compound  
piperine47. In the curation process to complement bioactivity values, we found that two compounds were errone-
ously included into the dataset (apatinib48 and ceritinib49). Both were not evaluated against ABCC1, and there-
fore, did not qualify for this dataset and were therefore removed.

Complementary Data Analysis. The bioactivity of several inhibitors could only be described as an estima-
tion (either described as span, marked as ‘active’, or annotated with ‘>’, ‘≥’, ‘<’, ‘~’ in the previous dataset7,27). 
However, to allow for the use of the entire dataset in mathematical and computational operations, we sought 
to allocate defined bioactivity values to these compounds. Hence, the individual reports were analyzed and the 
given indications of bioactivity [e.g., screening figures, flow-cytometry histograms, or tables with bioactivity 
values other than IC50 values (e.g., percentages)] were taken into consideration for further data analysis. The 
specific bioactivity value (e.g., percentage inhibition) was extracted and correlated to the used compound con-
centration. By using GraphPad Prism version 8.4.0 applying the three-parameter logistic equation 
with a fixed Hill slope (=1.0), IC50 values were calculated and listed in the new multitarget dataset. A detailed 
curation protocol is provided on https://www.zenodo.org 50 as well as he http://www.panabc.info website, and 
the related GraphPad Prism file containing the concentration-effect curves can be accessed without restric-
tions. In total, the bioactivity data of 104, 77, and 73 ABCB1, ABCC1, and ABCG2 inhibitors, respectively, have 
been calculated and complemented.

Data Determination. The bioactivities of five compounds [ayanin51, retusin51 (flavone derivative 1252),  
dihydrodibenzoazepine derivative 4i53, dregamine derivative 254, and tabernaemontanine derivative 2254] had to 
be determined without mathematical operations. The IC50 values of ayanin and retusin were stated as ‘>50 µM’ in 
the original report51. Usually, these kinds of statements (e.g., ‘>50 µM’, ‘>100’, ‘inactive’, etc) led to the allocation 
of such compounds into the ‘inactive’ category (arbitrary IC50 value of 2000 µM in the ABC_BPMDS). However, 
the authors of the respective publication stated that ayanin and retusin had some (weak) inhibitory activity51. 

Fig. 1 Depiction of the main workflow of assemble and validation as reported earlier in our preliminary work27, 
as well as the main steps of data extension and curation as part of the current work to generate the ABC_BPMDS. 
This graphic was created with BioRender.com (https://biorender.com).
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Table 1. An exhaustive list of functional tracers that were used to functionally assess the 1,167 compounds of 
the ABC_BPMDS against ABCB1, ABCC1, and ABCG27,27. The assessment of the corresponding transporter by 
the respective tracer is indicated by a black box. The provided references are examples in which details in terms 
of the stated assays can be found7,27,47,55,84–101.

Therefore, we decided to allocate an arbitrary value of 100 µM to these compounds to acknowledge their 
minor inhibitory potential against ABCC1. Dihydrodibenzoazepine derivative 4i53, dregamine derivative 254,  
and tabernaemontanine derivative 2254, on the other hand, reached over 100% inhibition at concentrations of 
2.50 µM, 20.0 µM, and 20.0 µM, respectively. Unfortunately, these were the only indications of bioactivity by the 
authors of the original reports53,54. Hence, we decided to allocate arbitrary values of 0.999 µM53, 4.99 µM54, and 
4.99 µM54, respectively, to acknowledge their potentially (very) high inhibitory power against ABCB1 as well 
as ABCG2 considering the effect-concentrations used in the original reports. These arbitrary IC50 values have 
been chosen since sub-classifications of bioactivity classes according to bioactivity thresholds (e.g., 1 and 5 µM) 
provided a better prediction in our previous works7.

Data Unification. Several compounds were evaluated in multiple assays, e.g., the mentioned standard inhib-
itors of ABCB1, ABCC1, and ABCG2. However, to allocate one bioactivity value to one compound, a uni-
fication process was necessary. As IC50 values do not follow a normal distribution, the multiple IC50 values 
associated with one compound were subject to a three-step mathematical operation: (i) logarithmization of the 
IC50 values; (ii) calculation of the mean; and (iii) delogarithmization of the log(IC50)-mean value. The resultant 
mean value was allocated to the respective compound. It shall be noted that the bioactivities of the compounds  
curcumin I-III (ABCC1)55 and gefitinib (ABCB1 and ABCC1)56 were only given as a span in the original 
reports55,56, and hence, the mean of the respective span was taken for further operations. In total, 60, 48, and 209 
ABCB1, ABCC1, and ABCG2 inhibitors have been given a new bioactivity value by these operations compared 
to the previous multitarget dataset7,27.

Data Correction and Harmonization. Through the complementary analysis process, several bioactivity values 
were corrected. This applied for compounds that were falsely marked as ‘inactive’ in the previous multitarget 
dataset (ABCB1: 22 compounds; ABCC1: 26 compounds; ABCG2: 19 compounds)7,27. Lastly, all bioactivity val-
ues of the ABC_BPMDS were harmonized according to a number of three significant digits. This harmonization 
resulted in a standardized format of presentation: (i) ‘XXX0 µM’; (ii) ‘XXX µM; (iii) XX.X µM; (iv) X.XX µM; 
(v) 0.XXX µM; and (vi) 0.0XX (X = any numeric value between 1–9). Here, 11, 8, and 9 ABCB1, ABCC1, and 
ABCG2 values have been changed compared to the previous multitarget dataset7,27.

https://doi.org/10.1038/s41597-022-01506-z
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cell line ABCB1 (P-gp) ABCC1 (MRP1) ABCG2 (BCRP) 
200852 transfected 
822697,102 doxorubicin (Dox6) mitoxantrone (MR20)

A27807 doxorubicin (ADR) 

A-459103 cisplatin (DDP)

BHK-2199 transfected 
Caco-2104

CCRF105 doxorubicin (ADR5000)

CORL-2389 doxorubicin (R)

Flp-In™ -293106 transfected transfected transfected
H460107 mitoxantrone (MX2)

H697 doxorubicin (AR)

HCT-15108

HEK29384,85,93 transfected 
vesicles 

transfected 
vesicles 

transfected 
vesicles 

HL6097 vincristine (VCR) doxorubicin (ADR)

Ig105 mitoxantrone (MXP3)

Jurkat105 doxorubicin (DNR)

K56242,102,109 doxorubicin (A02) 

transfected
transfected transfected

KB48,84,107,110 vinblastine (V1; V200;

8-5-11) 

doxorubicin (C-A120)

LLC-PK1101 transfected 
MCF-738,48,102,103,107,111 doxorubicin (DOX) doxorubicin (DOX) 

etoposide (VP16)

doxorubicin (DOX) 

flavopiridol (FLV1000)

mitoxantrone (MX) 

topotecan (Topo) 

verapamil (AdrVp)

MDA-MB-231100 transfected
MDCK38,112 transfected 

vesicles
transfected transfected

MEF113 transduced
MES-SA114 doxorubicin (Dx-5) mitoxantrone (MX2) 

NIH-3T399 transfected 
PLB-98589 transfected transfected 
S148 mitoxantrone (M1-80)

Sf989 transfected, vesicles 
SupT1105 vincristine (Vin)

SW62098 doxorubicin (AD300) 

Table 2. An exhaustive list of transporter host systems that were used to functionally assess the 1,167 
compounds of the ABC_BPMDS against the well-studied ABC transporters ABCB1, ABCC1, and ABCG27,27. 
The assessment of the corresponding transporter by the respective host system is indicated by a black box. 
Regarding selected cells, the used cytotoxic agent is indicated under the respective transporter, and the cell 
subline abbreviation is given in brackets. The provided references are examples in which details in terms of the 
stated cell lines can be found7,38,42,48,52,84,89,93,95,97–114.

Data Curation – Molecular-structural Data. The 1,167 compounds of the ABC_BPMDS were por-
trayed as canonical or isomeric SMILES codes as derived from the (i) respective report, (ii) PubChem database  
(https://pubchem.ncbi.nlm.nih.gov), or (iii) SMILES generation tool of ChemDraw Pro version 
20.1.1.125. All smiles were compared to each other to identify duplicates by using InstantJChem ver-
sion 21.13.0. Through this individual cross-check of the molecular-structural data, 13 compounds were 
discovered as duplicates46,51,56–59 and their bioactivity values were merged with the original bioactivity data of 
the particular compound52,59–62. In addition, three compounds were identified to be incorrect in terms of their 
molecular structure and have been corrected in the dataset46,57,63.

Binary Pattern Generation. Background. In contrast to common molecular fingerprints for 
similarity-based virtual screenings20,64, the very recently reported novel drug discovery tool ‘computer-aided pat-
tern analysis’ (‘C@PA’) identified that defined (=non-substituted) hydrogens and their positioning is particularly 
important in terms of the differentiation between selective and multitarget inhibition of ABC transporters7,26,27. 
Although certain fingerprints indeed consider polar hydrogens21,22, C@PA particularly discovered non-polar 
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hydrogens with critical discriminatory potential in the virtual screening process7,26,27. However, the original  
C@PA worked with a very preliminary and limited dataset of 308 substructures which were compiled after mul-
titarget dataset visualization and literature consideration65, of which only 162 substructures were active in the 
multitarget dataset of, at the time of the study, 1,049 compounds27.

Substructure Visualization, Identification, and Extension. For the development of a complete, detailed, 
and novel (multitarget) fingerprint, which may also universally be used in (multitarget) virtual screening 
approaches, the 1,167 compounds of the updated multitarget dataset were visualized using ChemDraw Pro 
version 20.1.1.125, and substructures were identified and extracted. The extracted substructures  
[e.g., single-standing/centered (hetero-)aromatic rings, condensed (hetero-)aromatic rings, (un)saturated side 
chains, extremities, and non-aromatic (hetero-)cycles, etc.] were derivatized by applying a heavy atom substi-
tution scheme as already reported earlier26 (scaffold fragmentation and substructure hopping). Especially the 
presence and positioning of (non-polar) hydrogens in the sense of a proton/non-proton pattern scheme was 
stressed. These measures increased the quantity of substructural properties covered by the intended fingerprint. 
In addition, alternative datasets of ABC transporter modulators5 and modes of action (particularly ABC trans-
porter activators)6,8 have been considered to gain complementary knowledge about potentially active substruc-
tures. The resultant substructures were subsequently searched in the 1,167 compounds (loaded as.csv file) using 
the query search function of InstantJChem version 21.13.0 and, if present, listed in the substructure 
catalog. As a result, a catalog of 604 active substructures has been assembled.

Individual Pattern Analysis7. In a final step, the multitarget dataset of 1,167 compounds was statistically ana-
lyzed for the listed 604 substructures of the substructure catalog. Here, the resultant list of hit molecules per 
substructure derived from the query search function of InstantJChem version 21.13.0 was saved 
and compared to the original list, translating the entry differences into a binary code [1 = substructure pres-
ent (active substructure); 0 = substructure not present (inactive substructure)]. A binary pattern distribution 
scheme resulted which constituted the final ABC_BPMDS. It shall be taken note that the number of the very 
same substructure within the same compound was irrelevant; the presence (numeric value = 1) of the substruc-
ture was not an expression of how often the respective substructure appeared within the compound.

Data records
The ABC_BPMDS is freely available in an .xlsx format under the http://www.zenodo.org28 URL as well 
as the http://www.panabc.info website and its use is free of charge. The dataset consists of (i) an individual 
database identifier for each compound; (ii) the original name of the compounds according to the original 
report(s); (iii) the IUPAC nomenclature of each compound generated by using ChemDraw Pro version 
20.1.1.125; (iii) The SMILES code obtained either from the (a) supporting information of the respective 
report, (b) PubChem database (https://pubchem.ncbi.nlm.nih.gov), or (c) manual drawing using ChemDraw 
Pro version 20.1.1.125; (iv) the physicochemical properties (a) CLogP, (b) calculated molecular 
water solubility (CLogS), (c) MW, (d) MR, (e) TPSA, (f) H-bond donors, (g) H-bond acceptors, (h) rotatable 
bonds, and (j) number of heavy atoms; (v) the associated bioactivity values expressed as (a) IC50 values [µM] 
against ABCB1, ABCC1, and ABCG2 presented in the standardized format of three significant digits as outlined 
above [10log(mean)], and (b) pIC50 values against ABCB1, ABCC1, and ABCG2; (vi) the binary code (active = 1;  
inactive = 0) for each of the 604 evaluated substructures of the substructure catalog including their (a) trivial 
name, (b) SMILES code, (c) number of defined hydrogens, (d) number of heavy atoms, (e) total hit count, 
and (f) individual substructure identifier. The substructures are sorted from most abundant (left) to most 
rare (right); and (vii) the PubMed (https://pubmed.ncbi.nlm.nih.gov) identifier (PMID) retrieved from NCBI  
(https://www.ncbi.nlm.nih.gov). In addition, a detailed curation protocol as well as an associated GraphPad 
Prism file can be found on https://www.zenodo.org50 as well as the http://www.panabc.info website.

inhibitor class count IC50 span [µM] pIC50 span
IC50 median 
[µM]

pIC50 
median

IC50 mean 
[µM]

pIC50 
mean

ABC_BPMDS 1,167 0.0153–1630 7.815–2.788 4.39 5.358 3.84 5.416

All ABCB1 525 0.0153–1460 7.815–2.836 6.37 5.196 6.32 5.199

All ABCC1 344 0.146–1630 6.836–2.788 11.2 4.951 9.26 5.033

All ABCG2 866 0.0234–405 7.631–3.393 1.95 5.710 2.00 5.698

Selective ABCB1 88 0.0153–708 7.815–3.150 2.51 5.599 3.41 5.467

Selective ABCC1 61 0.222–112 6.654–3.951 5.97 5.224 5.63 5.249

Selective ABCG2 409 0.0234–405 7.631–3.393 1.06 5.975 1.13 5.948

Dual ABCB1/ABCC1 38 0.289–180 6.539–3.745 20.4 4.692 15.2 4.819

Dual ABCC1/ABCG2 212 0.0255–333 7.593–3.478 4.43 5.354 3.85 5.415

Dual ABCC1/ABCG2 58 0.0988–163 7.005–3.788 10.1 4.996 6.92 5.160

Triple ABCB1/ABCC1/ABCG2 187 0.0475–1630 7.323–2.788 6.98 5.156 6.74 5.172

Table 3. Statistical survey of the span as well as median and mean values of the bioactivity of the entire ABC_
BPMDS as well as important sub-classes. The pIC50 values have been calculated by using the negative decadic 
logarithm of the respective bioactivity value.
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technical Validation
Compounds. The 1,167 compounds were portrayed as canonical or isomeric SMILES codes as derived 
from the respective report or the PubChem database (https://pubchem.ncbi.nlm.nih.gov) and imported into the 
MarvinSketch editor implemented in InstantJChem version 21.13.0. If the loaded SMILES 
code appeared as the intended original molecular representation according to the respective report or the 
PubChem database (https://pubchem.ncbi.nlm.nih.gov) without any errors, it was considered as valid.

Bioactivity Space Validation. In total, 113 reports between 1994 and 2022 have been collected, resulting in 
a final number of 1,167 compounds that were evaluated against ABCB1, ABCC1, and ABCG2, including inactive 
compounds as well as selective, dual, and triple inhibitors. Amongst the 1,167 compounds are (i) 525 ABCB1 
inhibitors, of which (a) 88 are selective ABCB1 inhibitors (no activity against ABCC1 and ABCG2; any given 
IC50 value), (b) 67 are potent ABCB1 inhibitors (IC50 values < 1 µM), and (c) 25 are selective and potent ABCB1 
inhibitors; (ii) 344 ABCC1 inhibitors, of which (a) 61 are selective ABCC1 inhibitors (no activity against ABCB1 
and ABCG2; any given IC50 value), (b) 45 are potent ABCC1 inhibitors (IC50 values < 1 µM), and (c) 11 are 
selective and potent ABCC1 inhibitors; (iii) 866 ABCG2 inhibitors, of which (a) 409 are selective ABCG2 inhib-
itors (no activity against ABCB1 and ABCC1; any given IC50 value), (b) 330 are potent ABCG2 inhibitors (IC50  
values < 1 µM), and (c) 199 are selective and potent ABCG2 inhibitors.

On the other hand, 38, 212, and 58 dual ABCB1/ABCC1, ABCB1/ABCG2, and ABCC1/ABCG2 inhibitors 
are present, respectively, of which 7, 99, and 13 can be considered as potent dual ABCB1/ABCC1, ABCB1/
ABCG2, and ABCC1/ABCG2 inhibitors, respectively (IC50 < 10 µM). Finally, 187 triple ABCB1, ABCC1, and 
ABCG2 inhibitors can be defined, of which 54 can be considered as potent (IC50 < 10 µM; so-called ‘Class 7’ 

        (a)             pIC50 ABCB1             (b)   pIC50 ABCC1   (c)      pIC50 ABCG2 

Fig. 2 Distribution of bioactivity values (pIC50) of the 1,167 compounds of the ABC_BPMDS against ABCB1 
(a), ABCC1 (b), and ABCG2 (c).

(a) CLogP (b) MW 

(c) MR (d) TPSA

Fig. 3 Distribution of the important physicochemical115 properties CLogP (a), MW (b), MR (c), and TPSA (d) 
amongst the 1,167 compounds of the ABC_BPMDS as determined by MOE version 2019.01.
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compounds7,26,27). Table 3 summarizes a survey of statistical parameters of the entire ABC_BPMDS as well as 
important sub-classes. Figure 2 depicts the distribution of the pIC50 values of ABCB1 (A), ABCC1 (B), and 
ABCG2 (C) inhibitors amongst the entire ABC_BPMDS, which followed in all three cases a Gaussian normal 
distribution.

Physicochemistry Space Validation. Physicochemical properties shape not only the pharmacological 
profile of ABC transporter inhibitors66–69, but are also very often used as additional discriminators in virtual 
screening processes7,26,27,38. To prove that the 1,167 compounds of the ABC_BPMDS have a balanced distribution 
of physicochemical attributes, the ABC_BPMDS was analyzed for the CLogP, MW, MR, and TPSA using MOE 
version 2019.01. Figure 3 demonstrates that these physicochemical properties are normally distributed 
within the ABC_BPMDS comparable to other reported datasets23,70. Table 4 summarizes the median and mean 
values of CLogP, MW, MR, and TPSA of the entire ABC_BPMDS as well as important sub-classes. The median 
and mean values are well-aligned, which accounts for the equal distribution of values.

Molecular-Structure Space Validation. H-bonds and molecular flexibility are crucial aspects in terms 
of ligand-target interactions, especially for ABC transporters71. Hence, we analyzed the 1,167 compounds of the 
ABC_BPMDS for their number of H-bond donors, H-bond acceptors, and rotatable bonds. Figure 4 visualizes 
the found distributions amongst the entire ABC_BPMDS. Together with CLogP and MW, H-bond donors and 
acceptors play a major role in the drug-likeliness as defined by Lipinsky72, particularly influencing drug absorp-
tion, distribution, and permeation. Considering the ‘Lipinski rule of five’ (CLogP ≤ 5; MW ≤ 500; H-bond 
donors ≤ 5; H-bond acceptors ≤10), a large majority of compounds of the ABC_BPMDS fulfils these require-
ments. In particular, (i) 73.8% of compounds have CLogP values of ≤5, (ii) 84.0% of compounds have a MW of  
≤500, (iii) 99.7% of compounds have ≤5 H-bond donors, and (iv) 98.6% of compounds have ≤10 H-bond accep-
tors. Table 5 summarizes the median and mean values of H-bond donors, H-bond acceptors, and rotatable bonds 
of the entire ABC_BPMDS as well as important sub-classes. Hence, the ABC_BPMDS contains suitable templates 
for future drug design and therapeutic development purposes, however, leaves also enough molecular-structural 
and physicochemical space for explorational analyses beyond the ‘Lipinski rule of five’ for the creation of inho-
mogeneous high-quality compound collections and compound libraries.

inhibitor class count
CLogP 
median

CLogP 
mean

MW 
median

MW 
mean

MR 
median

MR 
mean

TPSA 
median

TPSA 
mean

ABC_BPMDS 1,167 4.33 4.26 403.39 418.38 11.27 11.73 73.86 77.87

All ABCB1 525 4.40 4.78 432.43 458.67 12.07 12.90 73.63 79.56

All ABCC1 344 3.91 3.88 420.44 442.92 11.72 12.37 76.10 84.82

All ABCG2 866 4.34 4.25 396.37 415.32 11.13 11.64 74.73 79.01

Selective ABCB1 88 5.22 5.47 452.11 481.94 13.08 13.70 61.42 65.98

Selective ABCC1 61 3.37 3.41 374.49 377.22 11.07 10.70 69.77 75.29

Selective ABCG2 409 4.38 4.35 372.38 381.58 10.39 10.67 73.86 75.14

Dual ABCB1/ABCC1 38 5.03 4.80 475.56 471.03 13.19 13.20 70.05 78.29

Dual ABCC1/ABCG2 212 4.42 4.52 420.23 434.62 11.86 12.32 75.69 75.83

Dual ABCC1/ABCG2 58 3.62 3.68 376.91 398.33 10.52 11.23 76.26 80.98

Triple ABCB1/ABCC1/ABCG2 187 3.95 3.91 432.44 472.47 11.91 13.10 79.44 90.45

Table 4. Statistical survey of median and mean values of the important physicochemical properties CLogP, 
MW, MR, and TPSA amongst the entire ABC_BPMDS as well as important sub-classes as determined by MOE 
version 2019.01.

          (a)   H-bond donors          (b)         H-bond acceptors      (c)                   rotatable bonds 
0 1 2 3 4 5 6 7 8 9
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Fig. 4 Distribution of H-bond donors (a), H-bond acceptors (b), and rotatable bonds (c) amongst the 1,167 
compounds of the ABC_BPMDS as determined by MOE version 2019.01.
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Usage Notes
Status Quo. Practical Use. An easy-to-use sort function allows the user to discriminate the compounds 
regarding their bioactivities toward the targets, physicochemical properties, or molecular-structural features, but 
also in terms of the 604 different substructures. Hence, the user can retrieve the necessary binary pattern infor-
mation for subsequent virtual screening and rational drug design approaches.

Special Considerations. The majority of the compounds was evaluated in proper full-blown concentration 
effect curves within the original report, providing either only one single IC50 or two IC50 values from different 
assays for biological validation, resulting mostly in minor standard deviations or standard errors. However, 
considering established reference compounds, many IC50 values have been reported that are not fully covered 
by the deep literature search. Moreover, these drugs and drug-like compounds were tested in various assays, 
and thus, their IC50 values vary in a greater span than of other compounds. In addition, data processing prior 
to the original publication varied from laboratory to laboratory [e.g., number of concentrations tested, manner 
of assay performance (non-standardized procedures), manner of data analysis (e.g., three- vs four-parameter 
logistic equation, relative vs absolute inhibition), data presentation (single-point screening graphic vs full-blown 
concentration effect curve, number of significant digits, in- or exclusion of standard deviation and/or stand-
ard error)] – contributing to a greater uncertainty of these particular data. Furthermore, the assays themselves 
that were considered for the ABC_BPMDS were various [e.g., influx vs efflux assay, fluorescence labeling vs 
radionuclide detection, manner of substrate (e.g., calcein AM vs mitoxantrone), selected cells vs transfected 
cells vs membrane vesicles) – contributing to a general variation in data that is hidden due to the fact that most 
compounds were only evaluated in one particular assessment system. These aspects should be considered when 
using the ABC_BPMDS, however, at the same time, it should be taken note that our previous work demon-
strated the strength of substructural patterns based on the previous version of the ABC_BPMDS7,26,27. A list 
of compounds affected by these variations in assessment systems can be found in the curation protocol under 
the https://www.zenodo.org50 URL (https://doi.org/10.5281/zenodo.6405752) or on the http://www.panabc.info 
web site.

Future Perspective. Extension – New Compounds. The ABC_BPMDS provides the core application for 
extension to other, less- and under-studied ABC transporters. Particularly, the addressing of under-studied ABC 
transporters by multitarget agents poses a promising prospect for future drug discovery and development. Several 
compounds of the ABC_BPMDS have been demonstrated to address other ABC transporters as well5,25,26, such 
as benzbromarone5,7,25–27, cyclosporine A5,7,25–27, dipyridamole7,27,73–77, erlotinib7,27,78,79, imatinib5,7,25–27, nilo-
tinib7,27,78,80,81, ritonavir7,27,82, verapamil5,7,25–27, and verlukast5,7,25–27,33. These ‘truly multitarget pan-ABC trans-
porter inhibitors’25 are the primary focus for extension of the ABC_BPMDS, particularly with respect to their 
substructural elements that promote multitargeting. On the other hand, the addition of multitarget agents that 
are not part of the ABC_BPMDS will contribute valuable input to the polypharmacological space as charted by 
the future ABC_BPMDS_1.2.

Extension – New Substructures (‘ABC_BPMDS_1.2’). The substructural elements of the mentioned truly multi-
target pan-ABC transporter inhibitors include 4-anilinopyrimidine7,27, benzyl7, cyano7,27, 3,4-dimethoxyphenyl7, 
fluorine7,27, furan7,26, ethylene diamine7, ethylene hydroxy7, hydroxy7, isopropyl7,27, methylene hydroxy7, 
phenethyl7, piperazine7,27, pyrimidine7,26, quinazoline7,27, thiazlole7,26, and thioether7. These and other substruc-
tures will be re-evaluated with respect to true multitargeting, and thus, receive a differential value dependent on 
the purpose of the subsequent studies. Furthermore, the addition of multitarget agents that are not part of the 
ABC_BPMDS will contribute valuable input to the substructure catalog, extending the substructural output of 

inhibitor class count

H-bond 
donors 
median

H-bond 
donors 
mean

H-bond 
acceptors 
median

H-bond 
acceptors 
mean

rotatable 
bonds 
median

rotatable 
bonds mean

ABC_BPMDS 1,167 1 1.12 4 4.43 6 6.50

All ABCB1 525 1 1.07 4 4.95 7 7.72

All ABCC1 344 1 1.28 4 4.87 6 6.91

All ABCG2 866 1 1.15 4 4.42 5 6.51

Selective ABCB1 88 1 0.75 4 4.70 8 7.70

Selective ABCC1 61 1 1.46 4 4.03 6 5.57

Selective ABCG2 409 1 1.14 4 3.79 5 5.35

Dual ABCB1/ABCC1 38 1 0.895 4 4.32 6 6.74

Dual ABCC1/ABCG2 212 1 0.986 4 4.78 7 7.87

Dual ABCC1/ABCG2 58 1 1.14 4 4.40 4.5 5.66

Triple ABCB1/ABCC1/ABCG2 187 1 1.35 4 5.40 6 7.76

Table 5. Statistical survey of median and mean values of H-bond donors, H-bond acceptors, and rotatable 
bonds amongst the entire ABC_BPMDS as well as important sub-classes as determined by MOE version 
2019.01.
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the future ABC_BPMDS_1.2. Specifically, this information beyond known multitarget fingerprints will enable 
the exploration and exploitation of under-studied ABC transporters as potential drug targets of the future.

Extension – New Modes and Targets. Particularly, the inclusion of, for example, different modes of modula-
tion (e.g., activation), bioactivity measurements [e.g., in vitro (ATPase assays or MDR reversal assays), in silico 
binding mode analyses (e.g., molecular docking or molecular dynamics simulations), or structural information 
(e.g., x-ray, cryo-EM, homology-modelling, or AlphaFold83)] will promote the discovery of drug candidates 
with distinctive mode of action. Furthermore, the logistics outlined in this work also provide a useful frame-
work for similar data mining and descriptor approaches with respect to different pharmacological targets [e.g., 
under-studied human/bacterial ABC transporters, G-protein coupled receptors (GPCRs), ion channels (ICs), 
solute carriers (SLCs; PANSLC, http://www.panslc.info) or tyrosine kinases (TKs)].

Code availability
The ABC_BPMDS is available without any restrictions under the http://www.zenodo.org28 URL  
(https://doi.org/10.5281/zenodo.6384343). In addition, a detailed curation protocol including a GraphPad 
Prism file are provided under the https://www.zenodo.org50 URL (https://doi.org/10.5281/zenodo.6405752). 
All information is also available on the http://www.panabc.info website and the use is free of charge.
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