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A global database of woody tissue 
carbon concentrations
Mahendra Doraisami   1, Rosalyn Kish1, Nicholas J. Paroshy1, Grant M. Domke   2, 
Sean C. Thomas   3 & Adam R. Martin1 ✉

Woody tissue carbon (C) concentration is a key wood trait necessary for accurately estimating forest C 
stocks and fluxes, which also varies widely across species and biomes. However, coarse approximations 
of woody tissue C (e.g., 50%) remain commonplace in forest C estimation and reporting protocols, 
despite leading to substantial errors in forest C estimates. Here, we describe the Global Woody Tissue 
Carbon Concentration Database (GLOWCAD): a database containing 3,676 individual records of woody 
tissue C concentrations from 864 tree species. Woody tissue C concentration data—i.e., the mass of C 
per unit dry mass—were obtained from live and dead woody tissues from 130 peer-reviewed sources 
published between 1980–2020. Auxiliary data for each observation include tissue type, as well as 
decay class and size characteristics for dead wood. In GLOWCAD, 1,242 data points are associated 
with geographic coordinates, and are therefore presented alongside 46 standardized bioclimatic 
variables extracted from climate databases. GLOWCAD represents the largest available woody tissue C 
concentration database, and informs studies on forest C estimation, as well as analyses evaluating the 
extent, causes, and consequences of inter- and intraspecific variation in wood chemical traits.

Background & Summary
Forests play a critical role in the global carbon (C) cycle, with the world’s forests storing an estimated 861 ± 66 
Pg C across tropical (~471 Pg C), boreal (~272 Pg C), and temperate forest ecosystems (~119 Pg C)1. At the same 
time, C cycling in forested biomes is highly dynamic and transient, with estimates indicating that forests seques-
ter between ~2.15 to 2.4 Pg C y−1 globally on average1,2. Throughout the 2000s, structurally intact old-growth 
forests accounted for ~0.85 Pg C y−1, while C sequestration was ~1.30 Pg C y−1 in secondary forests2. Tropical 
regions are particularly important in sequestering atmospheric carbon dioxide (CO2) in both regenerating3–5 
and intact forests1,6,7. Nevertheless, recent analyses from both temperate8 and tropical regions7 have indicated 
that the magnitude of C sinks in old-growth forests are declining.

The amount of C stored within, and transferred to and from, trees and forests have been estimated from field- 
or remote-sensing-based observations of tree attributes, which are used to obtain estimates of tree- or forest 
aboveground biomass (AGB)1,9–12. Estimates of AGB are then converted into C estimates by multiplying these 
values by a woody tissue C concentration, commonly referred to in the literature as a C fraction13–16 (i.e., the 
mass of C per unit dry mass). Accurate woody tissue C concentration data are therefore critical in (1) accurately 
estimating terrestrial forest C budgets and sequestration rates17, (2) estimating the C emissions associated with 
land-use change18, and ultimately (3) informing decision-making related to the identification of forests with 
high C storage capacity11. Indeed, the Intergovernmental Panel on Climate Change’s (IPCC) Tier 3 C accounting 
protocols suggests that a “specific carbon fraction…should also be incorporated” when estimating C stocks and 
fluxes in AGB13. Moreover, woody tissue C concentration data can be employed in studies on the abiotic or biotic 
predictors of variation in – and possible adaptive significance of – wood chemical traits across tree species19,20, 
as well as evaluating the role that different sample extraction, preparation, and analytical methods have on wood 
C fractions17. Owing at least in part to a lack of large woody tissue C datasets, these research areas have received 
relatively little attention in comparison to other suites of plant traits21.

To date, most C estimation and reporting protocols use generic approximations of woody tissue C concen-
trations (namely, an assumption that 50% of AGB is comprised of C13), which has led to substantial systematic 
errors in forest C estimates. For example, our recent analyses indicated that generic woody tissue C fractions 
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overestimate C stocks by approximately 8.9% in tropical forests19. Similar issues exist for the accounting of C 
stocks and fluxes in dead wood, with recent analyses indicating that generic dead wood C fractions may result in 
dead wood C pools being overestimated by ~3.0 Pg C globally22. Although multiple studies evaluating woody tis-
sue C concentrations in trees globally through field- or meta-analyses now exist19,23–25, there is no single woody 
tissue C data repository to aid researchers in accessing and using these data.

To address these issues, we created and describe here the “Global Woody Tissue Carbon Concentration 
Database” (hereafter GLOWCAD26), which contains woody tissue C concentrations measured on live and dead 
tree tissues, spanning all forested biomes. By organizing and standardizing data from a range of taxonomic 
groups and woody tissue-types (described below), GLOWCAD represents a resource that helps improve our 
understanding of both global forest C dynamics and inter- and intraspecific variability in wood chemical traits. 
GLOWCAD only includes data from peer-reviewed sources. In addition to associated information on the taxo-
nomic identities and woody tissue types for each woody tissue C data point, GLOWCAD includes geographical 
and associated bioclimatic data obtained from climate databases27.

Data records in GLOWCAD are stored in 3 easy-to-use Comma Separated Values (.csv) spreadsheets (Fig. 1). 
All spreadsheets comprise plain text, with the first spreadsheet (titled “Wood Carbon Database”) containing 
the core data (i.e., woody tissue C concentrations and related information), while the other spreadsheets pro-
vide descriptive supporting information including references (titled “References”) and column descriptions 
(titled “Column Descriptions”). GLOWCAD has been made publicly available through the Dryad Digital 
Repository, with existing applications including studies on: (1) woody tissue C concentrations variation across 
live trees19,23,25; (2) variation in dead woody tissue C concentrations22; (3) relationships between woody tissue C 
concentrations and tree life-history strategies19,22; and (4) climate correlates of woody tissue C concentrations 
in trees28.

Fig. 1  Structure of Global Woody Tissue Carbon Concentration Database (GLOWCAD). Teal boxes represent 
the three spreadsheets contained in GLOWCAD and include the column names of each record. Details for all 
measurements in the “Wood Carbon Database” worksheet are described in Supplementary Tables 1 and 2. Thick 
gray lines indicate links between worksheets, while gray dashed line indicates a sub-table containing sub-units 
of a primary variable.
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Methods
Literature review.  Data compilation expanded earlier versions of the GLOWCAD first initiated in 201225, 
and more recently published in 201819 and 202129. GLOWCAD is therefore based on a systematic search on 
primary literature of all peer-reviewed papers that cited previously published studies on woody tissue C con-
centrations19,23–25. We searched key terms “carbon”, “tree”, “wood carbon”, “coarse woody debris”, “dead wood”, 
and “wood nutrient”, as well as “carbon” alongside major tree tissue types (including “wood”, “bark”, “root” and 
“stem”), within four web-based platforms (Google Scholar, Web of Science, Web of Knowledge, and Scopus),  
in order to identify peer-reviewed publications that present species- specific woody tissue C concentration data.

In addition to peer-reviewed papers, other sources of data included in GLOWCAD include the TRY Plant 
Trait Database (v. 5.0)29 and the Global Root Traits (GRooT) Database28. The TRY datasets included are the 
Subarctic Plant Species Database (dataset ID 105), Plant Traits for Pinus and Juniperus Forests in Arizona 
(dataset ID 193), Plant Physiology Database (dataset ID 97), Panama Tree Traits Database (dataset ID 230), 
FRED database (dataset ID 339), and the ECOCRAFT Database (dataset ID 12). While most root C val-
ues in GRooT were included in the FRED database (v. 2.0)30, data from 10 papers in GRooT were added to 
GLOWCAD (n = 197 data points): Isaac et al.31; Liu et al.32; Wang et al.33; Minden et al.34; Alameda et al.35; 
Aubin et al.36; Fernández-García et al.37; Grechi et al.38; Ineson et al.39; and Pregitzer et al.40.

Wood C data attributes.  To be included in GLOWCAD, the species-specific binomial nomenclature and 
tissue-specific information for each woody tissue C sample was required. A detailed field and lab methodology 
was also necessary, in order to maximize our sample size while permitting reliable species- and tissue-specific 
analysis. Where a single paper contained multiple tissue- and species-specific woody tissue C records, all the 
published values were recorded. In the majority of cases, woody tissue C data were extracted directly from pub-
lished tables or from supplementary data of the articles. In instances where woody tissue C data were published 
as figures, the data was extracted using the WebPlotDigitizer v4.2 software41. If species-by-tissue-specific woody 
tissue C data were not published, the corresponding authors were contacted to provide data.

Each published woody tissue C record was then classified according to the forest biome in which it was sam-
pled. A small number of studies (e.g.42) presented both boreal and temperate data, which were differentiated in 
our database based on the sampling location coupled with a consultation of species distribution maps. Species 
taxonomy was first recorded as presented as in published articles. A final list of taxa was then compared with, 
and resolved according to, the Taxonomic Name Resolution Service v. 4.043. Both original and resolved taxon-
omy is maintained in GLOWCAD. Inclusion of new published data was halted as of Dec. 31, 2020.

Dead wood C data attributes.  When classifying dead wood data, we considered three primary factors 
associated with woody tissue decomposition and related chemical change: A) decay class (DC), B) position, and 
C) size (diameter and length). In the majority of publications, dead woody tissue C values were reported along a 
conventional 1–5 DC scale. These values were included in GLOWCAD as published, while noting the DC scale 
employed. In cases where DC was reported as a two-category range (e.g. DC 1–2), the higher DC was included in 
GLOWCAD. In cases where a multiple category DC was presented (e.g. DC 3–5), the middle DC value was used 
in GLOWCAD. In the few instances DC was reported along a 0–5 point scale (where DC of 0 was defined as dead 
and not live wood), dead wood reported with a DC of 0 was classified as DC 1. Lastly, in a subset of papers the 
number of years since tree death (instead of DC) was reported. In these cases, years since death were converted to 
DC based on published decay class transition metrics (e.g.44). When classifying position of dead wood, “standing” 
referred to snags and suspended woody debris, and “downed” referred to anything sampled from the forest floor. 
The default position was “downed” for the few publications that did not specify position.

GLOWCAD structure.  The structure of GLOWCAD is simple to navigate (Fig. 1). Within GLOWCAD, all 
the woody tissue C data is present under the “Wood Carbon Database” spreadsheet. In this spreadsheet, a unique 
number (i.e., ‘unique.id’) of all woody tissue C data is specified beside the reference from which it was obtained. 
The value of the ‘reference.number’ corresponds to the detailed citation presented in the “References” spread-
sheet, which links the ‘reference.number’ with the author(s)’ name and publication year, title, journal, volume, 
issue, and pages.

When inputting woody tissue C data from publications into GLOWCAD, the latitude and longitude were 
also recorded in the database when explicitly stated in the original publication. General climate information 
such as mean annual temperature (MAT) and mean annual precipitation (MAP) of the study region were 
recorded as an average. The study regions’ latitude and longitude were also used to further describe its climate 
with WorldClim (v.2) data27. However, when a range of geographic coordinates or a map was provided, climate 
data were not generated from these since averages MAT and MAP may be imprecise. We used MAT and MAP 
obtained from WorldClim (v.2) to label the study region’s dominant Whittaker biome45, and therefore catego-
rize the region as one of Boreal forest, Subtropical desert, Temperate grassland/desert, Temperate rain forest, 
Temperate seasonal forest, Tropical rain forest, Tropical seasonal forest/savanna, or Woodland/shrubland. A 
list containing the details collected from each publication is presented (Supplementary Table 1). Bioclimatic 
variables and other climate data associated with each study location were retrieved from WorldClim (v.2)27 and 
added alongside woody tissue C data (Supplementary Table 2).

Previous versions of GLOWCAD.  GLOWCAD is the fourth iteration of the woody tissue C dataset, though 
these earlier versions did not use the same acronym, and contained differing sets/ subsets of data based on differ-
ent research questions. Three earlier versions are publicly hosted in the TRY Plant Trait Database, such that: 1) the 
first version contained n = 973 observations of dead wood C only, from 121 species; 2) the second version con-
tained n = 1,145 observations of live woody tissue C only, from 415 species paired with geographic coordinates 

https://doi.org/10.1038/s41597-022-01396-1


4Scientific Data |           (2022) 9:284  | https://doi.org/10.1038/s41597-022-01396-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

and climate data; and 3) the third version contained n = 2,432 observations of live woody tissue C only, from 636 
species including all of the observations of the previous version .

GLOWCAD is a single data product which consolidates the dead and live woody tissue C observations of all 
prior iterations (where n = 3,405), and includes 271 new woody tissue C observations from 10 additional publi-
cations31–40,46. In sum, n = 3,676 data points in the GLOWCAD version described here. Unlike previous versions, 
GLOWCAD also includes information on growth habit or ‘woodiness’ (described below) and the original bino-
mial nomenclatures as listed in their publications.

Data Records
GLOWCAD is stored in .csv format at the Dryad Digital Repository (https://doi.org/10.5061/dryad.18931zcxk). 
Data outputs consist of a single database of 3,676 woody tissue C observations from 130 sources17,23,24,30–40,42,44,46–159 
published between 1980 and 2020 (Fig. 2), which includes C concentrations of woody tissues from 864 tree/
shrub species sampled across all continents except Antarctica (Fig. 3). While data exists from papers published 
since 1980, the large majority (86%) of the data in GLOWCAD (n = 3,154 data points) is derived from sources 
published in or after 2010 (Fig. 1).

GLOWCAD includes woody tissue C values from 414 genera and 107 families, with the Pinaceae (n = 927 
data points), Fabaceae (n = 383 data points), Fagaceae (n = 335 data points), Cupressaceae (n = 159 data points) 
and Betulaceae (n = 146 data points) being most well represented (Supplementary Tables 3–5). Across biomes, 
most woody tissue C data in GLOWCAD are derived from tropical forests (n = 1,513 data points), followed by 

Fig. 2  Number of peer-reviewed publications (Panel (a)) and observations (Panel (b)) included in Global 
Woody Tissue Carbon Concentration Database (GLOWCAD) across publication year. Gray bars indicate the 
number of publications or woody tissue carbon values included in GLOWCAD (corresponding to the y-axis), 
while black circles and dotted lines correspond to a cumulative probability density function (corresponding to 
the z-axis).
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Fig. 3  Woody tissue carbon concentration sampling sites for data sources included in the Global Woody Tissue 
Carbon Concentration Database (GLOWCAD). Data point colours correspond to tree status, where dead woody 
tissue is represented in green and live woody tissue is represented in purple. Point sizes are proportional to the 
number of woody tissue C observations recorded at a site on a continuous scale, ranging from 1–85 observations.

Fig. 4  Variation in woody tissue C concentrations (% dry mass) in GLOWCAD. Panel (a) compares the 
distribution of C concentrations between live woody tissues (light grey bars) and dead woody tissues (dark grey 
bars). Panel (b) compares the distribution of C concentrations among woody tissue types: stem, heartwood 
and sapwood (purple bars); root, coarse root and fine root (blue bars); branch and twig (green bars); and bark 
(yellow bars).

Tissue type

Live woody tissue Dead woody tissue

n Minimum Maximum n Minimum Maximum

Bark 319 36.0 65.0 229 41.0 59.0

Branch 337 28.0 59.2 85 41.5 53.8

Coarse root 345 28.0 58.3 0 NA NA

Fine root 545 29.8 75.12 0 NA NA

Heartwood 28 47.1 55.1 0 NA NA

Root 39 18.4 51 57 44.5 50.0

Sapwood 33 47.1 54.1 0 NA NA

Stem 828 30.5 60.68 634 29.4 60.2

Twig 197 33.0 54.9 0 NA NA

Table 1.  Sample sizes and ranges of woody tissue carbon concentration data in the Global Woody Tissue 
Carbon Concentration Database (GLOWCAD).
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temperate (n = 1,202 data points), subtropical/ Mediterranean (n = 518 data points) and boreal (n = 301 data 
points) forests. Across the entire database, woody tissue C ranged from 18.4–75.1% (Fig. 4).

In GLOWCAD, 73% of data points were obtained from woody tissue measurements of live plants (n = 2,671 
data points), while the remaining 27% (n = 1,005 data points) came from dead plant measurements. In regard to 
tissue types, stems (inclusive of heartwood and sapwood; n = 1,523 data points), roots (inclusive of fine-root and 
coarse-root; n = 986 data points) and branches (inclusive of both large and small branches/twigs; n = 619 data 
points) were most well represented (Table 1; Fig. 4). Additionally, woody tissue C data were retrieved from pub-
lications spanning a wide climatic range, with a MAT ranging from −5.4–29 °C (across n = 1,326 data points), 
and MAP ranging from 160–5,130 mm (n = 1,455 data points).

The foremost drying method employed by publications incorporated into GLOWCAD was conventional 
oven-drying (n = 1,941 data points), while the least common was the Minimizing the Loss of Carbon (MLC) 
method described by Jones and O’Hara (201696; n = 9 data points). Drying temperatures ranged widely from 

Fig. 5  Phylogenetic coverage of species represented within the Global Woody Tissue Carbon Concentration 
Database (GLOWCAD). Colours mapped onto the phylogenetic tree correspond to 1) two major plant clades 
including gymnosperms (in blue, n = 100 species), angiosperms (in purple, n = 772 species), and 2) angiosperm 
‘palm’ family, Arecaceae (in yellow, n = 8 species). Each branch represents a species in GLOWCAD (n = 864 
total). Bars on the outer ring depict the sample sizes for each species (number of observations proportional to 
the logarithm of base 10), which are presented in full in Supplementary Tables 3–5. Phylogeny here is based on 
the Angiosperm Phylogeny Group megatree (R2012089.new) with branch lengths corresponding to clade ages 
based on fossil records165,166.
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18–110 °C, with drying durations spanning 5–360 hours. The majority of publications made use of Elemental 
Analyzers (corresponding to n = 2,760 data points) when estimating woody tissue C concentrations. In sum, 
34% of observations in GLOWCAD (n = 1,241 data points) were associated with exact geographic coordinates 
of their sampling locations (i.e, not a range of latitude and longitude), and only these observations were assigned 
climate information from WorldClim (v.2)27.

Technical Validation
Trait data validation.  All 3,676 records included in GLOWCAD were obtained from peer-reviewed sci-
entific journals, or indirectly, through the TRY Functional Trait Database or Global Root Traits Database. Each 
specific record is linked to its original reference, allowing users to verify and validate the accuracy of tissue C data 
and data source. All data in GLOWCAD was thoroughly screened to ensure accuracy, and appropriate methods 
of data acquisition. Specifically, woody tissue C values had to be measured directly, and not approximated based 
on secondary sources. Data that did not meet these criteria were excluded from GLOWCAD.

Taxonomic validation.  Across the 40-year period during which data was collected (Fig. 1), tree species may 
have been misidentified or had their taxonomic information updated. To address these discrepancies and ensure 
that the most up-to-date taxonomic information is included in GLOWCAD, taxonomic information was directly 
recorded from original papers, and then verified and adjusted accordingly to reflect the appropriate name listed 
in the Taxonomic Name Resolution Service v. 4.033. All woody tissue C records included binomial nomenclature, 
and records without this degree of specificity were omitted from GLOWCAD. Phylogenetic coverage associated 
with the resolved taxonomy within GLOWCAD are presented in Fig. 5.

Growth habit validation.  Growth habit or ‘woodiness’ was evaluated for all species included in GLOWCAD 
to ensure that woody tissue C data corresponded only to woody plant species, based on a functional definition 
of “woody”: i.e., having a persistent aboveground stem160. Therefore, all species were cross-referenced with those 
included in a global growth habit dataset160 and growth habits – defined here as trees, shrubs, or shrub/tree– 
were assigned. Species of the Arecaceae (palm) family (n = 8 species) were also included in GLOWCAD (n = 32 
data points) since these 1) met the functional definition of “wood” and are 2) are important contributors to 
aboveground biomass C in Neotropical forests, relative to other biogeographic locations161, monocot species162 
and non-conventional woody species (e.g. tree ferns)163.

Climate data validation.  Bioclimatic variables were assigned to observations which were accompanied 
by the specific geographic coordinates (excluding ranges) of their sample location, using WorldClim (v.2). In 
GLOWCAD 34% of woody tissue C observations include a WorldClim-derived estimate of MAT and MAP 
(n = 1,241 data points). Linear regression models indicated that statistically significant positive relation-
ships existed between (1) publication- vs. WorldClim-derived estimates of MAT (p<0.001, r2 = 0.95, model 
slope = 0.97 ± 0.01 (s.e.)) and (2) publication- vs. WorldClim-derived estimates of MAP (p<0.001, r2 = 0.82, 
model slope = 1.23 ± 0.02 (s.e.)).

Usage Notes
GLOWCAD is openly available for use in any application. It can be accessed via (1) the DRYAD Digital 
Repository (https://doi.org/10.5061/dryad.18931zcxk), (2) a GitHub repository, (3) the TRY Plant Trait 
Database, and (4) upon request to the corresponding author. GLOWCAD is licensed under CC-BY 4.0.

Code availability
All analyses used to generate figures and summary statistics were performed in R (v.4.1.2)164. No custom 
computer code or algorithms were used to generate the data presented in the manuscript.
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