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a global dataset to parametrize 
critical nitrogen dilution curves for 
major crop species
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Josefina Lacasa1, Javier Fernandez  1, David Makowski  2 & Gilles Lemaire3

Precise management of crop nitrogen nutrition is essential to maximize yields while limiting pollution 
risks. For several decades, the critical nitrogen (N) dilution curve - relating plant biomass (W) to 
N concentration (%N) - has become a key tool for diagnosing plant nutritional status. Increasing 
number of studies are being conducted to parameterize critical N dilution curves of a wide range of 
crop species in different environments and N-fertilized conditions. A global synthesis of the resulting 
data is lacking on this topic. Here, we conduct a systematic review of the experimental data collected 
worldwide to parametrize critical N dilution curves. The dataset consists of 36 papers containing a 
total of 4454 observations for 19 major crop species distributed in 16 countries. The key variables of 
this dataset are the W and %N collected at three or more sampling times, containing three or more 
fertilizer N rate levels. this dataset can guide the development of generic critical N dilution curves, helps 
scientists to identify factors influencing plant N status, and leads to the formulation of more robust N 
recommendations for a broad range of environmental conditions.

Background & Summary
Nitrogen (N) is one of the most limiting factors for agricultural productivity, and mineral N fertilizers represent 
a key input for many cropping systems worldwide1. However, the over-application of N fertilizers to field crops 
has a significant impact on the environment through release of greenhouse-gas emissions and air pollutants2,3, 
groundwater pollution, and eutrophication of freshwater4 and marine ecosystems5. Increasing N use efficiency 
could reduce the footprint of N fertilization in agricultural systems while ensuring a high level of production. 
This goal could be achieved through more precise N rate recommendations and a better application schedule 
adapted to the crop N requirements.

Defining the optimal N fertilization is a daunting task, due to the large uncertainties in predicting soil N 
supply6, plant growth and N demand7. Nitrogen fertilization is often either insufficient (under high fertilizer 
prices) or excessive when growers adopt conservative overfertilization strategies8. Therefore, for improving N 
management and recommendation guidelines, both soil and plant processes should be considered for defining 
optimal N fertilization rates and application schedules.

Improving our understanding of the co-regulation of N uptake by the availability of N from the soil and plant 
N demand is relevant to define the overall critical N plant concentration (%Nc), herein defined as the minimum 
plant N concentration (%N) required to achieve maximum crop mass (W) for a given range of crop species in 
different environments and N-fertilized conditions. This critical value %Nc is known to decline over time as W 
increases, and the relationship between %Nc and W defines a function named “critical N dilution curve”9. This 
function is very useful to conduct crop N diagnosis because it allows the computation of the N nutrition index 
(NNI), defined as the ratio of the actual %N (%Nact) to the value of %Nc corresponding to the observed value 
of W (Wact). A NNI value close to 1 indicated N sufficiency, while a NNI below or above 1 reveal N deficiency 
and excessive N status, respectively.

Critical N dilution curves were established for several major field crops, including wheat (Triticum aestivum 
L.)10,winter oilseed rape (Brassica napus L.)11, maize (Zea mays L.)12, potato (Solanum tuberosum L.)13, rice 
(Oryza sativa L.)14, and tall fescue (Festuca arundinacea Schreb.)15, among other crops. These curves have been 
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parametrized using either data collected in single experiments or data set pooled from multi-year and multi-sites 
experiment networks. These curves are now used by many agricultural scientists and engineers for improving 
fertilization guidelines based on NNI. Many investigations were recently conducted to develop site-specific crit-
ical N dilution curves in different parts of the world for many crop species10–15. However, the scientific value of 
such local critical N dilution curves is debatable because these curves were parametrized using a small number 
of local data, leading to high uncertainty and to a risk of false discoveries16. Although sensitivity analyses were 
performed in some of these studies, they generally suffer from inadequate protocols and methods17. Thus, there 
is a need for generic and robust critical N dilution curves valid across a large number of crop species in different 
environments and N-fertilized conditions18. To date, any attempt to develop generic critical N dilution curves 
has been hampered by the lack of a reliable large-scale dataset. Yet, a global dataset including a large number of 
pairs of W and %N values is required to drive research efforts on N plant status diagnosis.

Here, we present a new dataset resulting from a systematic search of all data made publicly available on 
critical N dilution curves. Our dataset contains 4454 observed pairs of plant W and %N for 19 major crop 
species collected between 1982 to 2021 in 16 countries worldwide. These data were extracted from a total of 36 
peer-reviewed scientific manuscripts. It offers a unique source of information for developing generic critical N 
dilution curves and identifying knowledge gaps to guide future research programs on N plant status diagnosis.

Methods
Data collection. A literature search was executed between June and August 2021 (2 months) using the fol-
lowing keywords: ‘Nitrogen dilution curve’ & ‘Nitrogen nutrition index’ & ‘Critical nitrogen concentration’ & the 
name of each crop. The search was performed in the scientific databases ‘ScienceDirect’, ‘Scopus’, and ‘Science 
Citation Index (Web of Science)’. A last update on this revision to conclude the dataset and include any potential 
new studies was executed during January 2022. The overall selection process was conducted using the R pack-
age revtools19. A total of 1612 potentially critical papers were identified by screening the title of the paper, and 
the following steps on the selection process are highlighted in Fig. 1. The first step filtered papers by excluding 
studies that did not have relevant keywords and abstract information, resulting in the exclusion of 1124 papers. 
As the second step, manuscripts not reporting data of W and %N for different sampling times (corresponding to 
different vegetative stages of fields crops) were excluded; a total of 320 papers were removed at this step. At the 
third step, relevant studies were selected using the following criteria: i) at least 3 or more sampling dates during 
the vegetative period are recommended to explore a large variation on both plant W and %Nact to achieve a 
reasonable level of uncertainty for the critical N dilution curve (Fig. 2), ii) reporting of plant W and %Nact, iii) at 
least 3 or more fertilizer N rate levels, iv) reporting of crop, location, and year of experiment. In each study, three 
or even more N fertilizer rates are required to discriminate the non-limiting from the limiting N data, and then to 
determine the maximum plant W (Wmax) achieved at each sampling date. Data were visually inspected to verify 
that at least one biomass could be considered obtained under non-limiting nitrogen conditions on each obser-
vation date. This step helps to assure that from the studies included within a crop, a plateau of plant W has been 
achieved reducing the uncertainty for the estimation of the critical plant %N in the dilution model. In addition, 
the determination of critical %N-W data point require the fitting of a linear and plateau %N -W model (Fig. 2). To 
avoid issue related to lack of identifiability (lack of sufficient data to allow the estimation of the linear-plus-plateau 
model and the determination of the critical %N-W model), it is necessary to have at least three fertilizer N rate 
to fit this type of model (Fig. 3). Based on these criteria, 132 papers were discarded (Fig. 1). The total number of 
papers retained from this search were 36, each paper provided data for one crop except for two papers providing 
data for two crops each and another one for four crops, totalizing 41 entries (further details presented in Table 1).

The data from all those papers were manually extracted (with the main plant traits reported or derived), 
together with relevant details from each study (e.g., author, year of experimentation, fertilizer N rates, descrip-
tion of treatments). If the data were not available in table format, information was retrieved from figures. Data 
extraction was assisted using the R package juicr20. The main crop species, papers, number of observations 
and geographical distribution of the data are presented in Fig. 3. Among the 36 papers selected (between 1982 
and 2021), 33 report data for one crop species, 2 papers report data on 2 crops, and one study provides data on 

Fig. 1 Sankey diagram describing paper search, collection, filtering, and selection.
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4 crops. The dataset includes 4454 pairs of observed W and %N for different field crops and N fertilizer rates 
(Table 1). For each of the 19 crop species reported on this study, the total number of pairs of observed W and %N 
per crop was: annual ryegrass (Lolium multiflorum Lam.) 174, broomcorn millet (Panicum Miliaceum L.) 144, 
cotton (Gossypium hirsutum L.) 80, fodder beet (Beta vulgaris L. ssp. vulgaris) 72, hybrid ryegrass 294, maize 
1530, oat (Avena sativa L.) 70, perennial ryegrass (Lolium perenne L.) 19, potato 89, rescue grass (Bromus cathar-
ticus H.B.K.) 30, rice 709, sorghum (Sorghum bicolor L.) 95, sugarcane (Saccharum officinarum) 112, sunflower 
(Helianthus annuus L.) 67, sweet potato (Ipomoea batatas) 120, tall fescue 346, timothy grass (Phleum pratense 
L.) 256, wheat 234 and white cabbage (Brassica oleracea L.) 13 observations in 16 countries (Fig. 4).

Data Records
The data are accessible on the figshare repository21, available at https://doi.org/10.6084/m9.figshare.19105049.
v1, and which includes the following files:

 1. “NNI_Database.csv” includes the data.
 2. “Summary of the database.docx”, includes a summary of the dataset (meta-data), defining each column, 

trait collected in the data and the units for each variable.
 3. “List of references.docx”, presents all the references of the publications included in the dataset.
 4. “Figures_NNI.zip”, includes all the codes to build the figures of this study.

Fig. 2 Standard framework considered to determine critical N dilution curve for plant N concentration (%) 
and plant biomass (W). The white points correspond to observations (bars indicate the standard error of the 
mean) and the black points correspond to critical %N (minimum %N leading to maximum biomass Wmax) 
determined by fitting a linear-plus-plateau response model at each sampling time. The critical N dilution curve 
passes through the black points. Here between 3 and 6 different fertilizer N rates are available at each sampling 
dates. Data and figure redrawn from Plénet and Lemaire12.

Fig. 3 Theoretical representation of the linear-plus-plateau model for the plant N concentration (%N) and plant 
biomass (W) for three different scenarios (A) with an identifiable linear-plus-plateau model with four fertilizer 
N rates, (B) non-identifiable linear-plus-plateau model with three fertilizer N rates (“lack of identifiability”), 
and lastly (C) an identifiable linear-plus-plateau model with three fertilizer N rates.
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StudyID Author/year Species Country
Experimental 
design

Years of 
study

Fertilizer N 
levels & rates 
(kg ha−1) Genotypes

Observations 
&sampling 
times Main topics

1 Agnusdei  
et al. (2010) Annual ryegrass Argentina

Split-plot in 
randomized 
complete block

1994/1995/ 
1997

6 (0, 50, 100, 
150, 200 & 250) Grasslands Tama 102 (6)

Critical N concentration; 
N nutrition index; 
Forage grasses

2 Marino et al. 
(2004) Annual ryegrass Argentina Split-plot 1994/1995 6 (0, 50, 100, 

150, 200 & 250) Grasslands Tama 72 (6)
Critical N dilution; N 
nutrition index; NUE 
and its components

3 Liu et al.
(2021)

Broomcorn 
millet China Split-plot 2019/2020 3 (0, 75 & 150) 86, 111, 184, 230, 

235, or 298 144 (4)
Dry matter 
accumulation; Low-N-
tolerance

4 Hou et al. 
(2021) Cotton China Randomized 

complete block 2018 4 (250, 300, 350 
& 400) Not available 80 (5)

Seed cotton yield; N 
uptake; N use efficiency; 
Soil NO3-N

5 Chakwizira 
et al. (2016) Fodder beet New Zealand Randomized 

complete block
2011/2012/ 
2013/2014

4 (0, 50, 100 & 
200) Not available 72 (6)

Allometric relationship; 
N deficiency; Luxury 
uptake

6 Sandaña et 
al. (2019) Hybrid ryegrass Chile Split-plot 2016

7 (0, 50, 100, 
200, 350, 525 
& 700)

Trojan and Shogun 294 (10 and 
11)

Forage yield; N 
concentration; NNI

7 Barbieri et al. 
(2013) Maize Argentina

Split-plot in 
randomized 
complete block

1996/1999/ 
2000

4 (0, 90, 140 & 
180) DK639 and DK615 86 (4) Maize; row spacing; N 

status

8 Chen et al. 
(2013) Maize China Randomized 

complete block 2011 5 (0, 70, 140, 
210 & 280) Zhengdan 958 40 (8) Critical N curve; NNI; 

remote sensing

9 Ciampitti  
et al. (2013) Maize United States Split-split-plot 2010/2011 3 (0, 112 & 224) 2M750 and 2T789 432 (6) N use efficiency; shoot N 

remobilization; grain N

10 Li et al. 
(2012) Maize China Randomized 

complete block 2008/2009 6 (0, 70, 140, 
210, 280 & 350) Zhengdan 958 169 (5)

Critical N concentration; 
N nutrition index; 
spring maize

11 Massignam 
et al. (2009) Maize Australia Randomized 

complete block 1999/2001
Different N 
rates (0, 20, 50, 
70, 150, 250, or 
300)

Hycorn53 73 (7, 8 and 9)
Grain yield; Biomass; N 
uptake; Radiation use 
efficiency

12
Plénet and 
Lemaire 
2000)

Maize France Randomized 
complete block

1990/1991/ 
1992/1993

Different N 
rates (30, 50, 80, 
100, 120, 130, 
180, 240, 280, 
or 300)

Volga 215 (6, 7 and 
12)

Critical N concentration; 
plant nitrate test, 
radiation use efficiency; 
N use efficiency

13 Ranjbar et al. 
(2020) Maize Iran Randomized 

complete block 2015/2016
7 (0, 50, 100, 
150, 200, 250 
& 300)

SC 704 84 (6) Canopy cover; dry 
matter; N management

14 Texeira et al. 
(2014) Maize New Zealand Randomized 

complete block 2012/2013 3 (30, 75 & 250) Pioneer 39G12 30 (5) Corn; Radiation; N; 
Sustainability; Water

15 Wen et al. 
(2015) Maize China Split-plot 2012/2013 5 (0, 80, 160, 

240 & 320) Fengtian no. 6 167 (6) Irrigation regimes; N; 
yield

16 Zhao et al. 
(2018) Maize China Randomized 

complete block 2015/2016
Different N 
rates (0, 75, 90, 
150, 180, 225, 
270, or 300)

Zhengdan 958 and 
DH605 90 (5)

Summer maize; Critical 
N concentration; N 
nutrition index

17 Zaidi et al. 
(2008) Maize Canada Randomized 

complete block 2004/2005

Different N 
rates (20, 50, 
73, 100, 125, 
150, 178, 200, 
or 250)

P39W54, P39D82, 
P38A24 and DKC-
4627 BT

144 (4, 5 
and 6)

Critical N concentration; 
N nutrition index; N 
concentration

18 Agnusdei et 
al. (2010) Oat Argentina

Split-plot in 
randomized 
complete block

1994/1995 6 (0, 50, 100, 
150, 200 & 250) Grasslands Tama 70 (6)

Critical N concentration; 
N fertilization; N 
nutrition index; Forage 
grasses

19 Salette et al. 
(1982)

Perennial 
ryegrass France Split-plot 1982 3 (0, 120 & 180) Not available 19 (6)

Dry matter 
accumulation curve, N 
uptake; %N curves

20 Belanger et 
al. (2001) Potato Canada Split-plot 1996 4 (0, 50, 100 & 

250) Russet Burbank 44 (5 and 6) N fertilizer; irrigation; 
cultivars

21 Trawczyński 
(2019) Potato Poland Randomized 

block 2008/2010 5 (0, 50, 100, 
150 & 200)

Gwiazda, Etiuda, 
and Gustaw 45 (3) Leaf greenness index; N 

nutritional status

22 Agnusdei et 
al. (2010) Rescue grass Argentina

Split-plot in 
randomized 
complete block

1997 6 (0, 50, 100, 
150, 200 & 250) Martin Fierro 30 (6)

Critical N concentration; 
N nutrition index; 
Forage grasses

23
Ata-UI-
Karim et al. 
(2013)

Rice China Not available 2010/2011 5 (0, 80, 160, 
240 & 320)

Lingxiangyou-18 
and Wuxiangjing-14 120 (6)

Critical N dilution 
curve; Nitrogen 
nutrition index; Shoot 
biomass

Continued
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The “NNI_Database” contains all the information collected on this systematic analysis. The “Summary of the 
database” presents a description of the “NNI_Database” file with the information separated into three categories:

Category I, general details about the dataset, comprising information for author and publication year, and 
DOI or other identification for each study included in the dataset.

Category II, relevant to the study, defining species, country, experimental design, years of study, fertilizer N 
rates levels (and rates, kg ha−1), crop material (varieties/hybrids).

Category III, key for the dataset related to the pairs of crop biomass (W) and plant N concentration (%N), 
number of observations per identification number (ID). All the information of W and %N are reported in dry 
matter basis, as expressed in the data collected from those respective studies.

StudyID Author/year Species Country
Experimental 
design

Years of 
study

Fertilizer N 
levels & rates 
(kg ha−1) Genotypes

Observations 
&sampling 
times Main topics

24 He et al. 
(2017) Rice China

Completely 
randomized 
block

2013/2014

Different N 
rates (0, 75, 90, 
150, 180, 225, 
270, 300, or 
360)

Tanliangyou-83, 
Zhongjiazao-17, 
Tianyouhuazhan, 
Yueyou- 9113

218 (5, 6 
and 7)

Late rice; early rice; 
critical N dilution curve; 
N nutrition index, shoot 
biomass; yield

25 Yang et al. 
(2014) Rice China Randomized 

block 2011/2012 5 (0, 75, 150, 
225, 300 & 375)

Xiushui63 and 
Hang43 221 (5)

Grain yield; leaf 
position; N nutrition 
index; SPAD values

26 Yang et al. 
(2018) Rice China Randomized 

block 2010 5 (0, 75, 150, 
225, 300 & 375) Xiushui63 30 (5)

N nutrition index; SPAD 
values; leaf position; N 
concentration

27 Yao et al. 
(2021) Rice China Randomized 

block 2018/2019 5 (0, 75, 150, 
225 & 300)

Huiliangyou 898,Y 
Liangyou 900 120 (6) Critical N concentration; 

N nutrition index

28 Cosentino  
et al. (2012) Sorghum Italy Split-plot 1999 4 (0, 60,120 & 

180) Keller 95 (8)
Sweet sorghum; 
biomass; water balance; 
critical N dilution curve

29 De Oliveira 
et al. (2013)

Sugarcane(first 
season and 
ratoon)

Brazil
Split-plot under 
a complete 
randomized 
block

2005/2006/ 
2007

Different N 
rates (0, 40, 50, 
80, 100, 120 or 
150)

SP81-3250 112 (4, 5 
and 6)

N fertilization; critical N 
level; N nutrition index; 
Saccharum spp.

30 Massignam 
et al. (2009) Sunflower Australia Randomized 

complete block 1999/2001
Different N 
rates (0, 20, 50, 
70, 150, 250, or 
300)

Hysun 36 67 (7 and 8)
Grain yield; Biomass; N 
uptake; Radiation use 
efficiency

31 Lv, Zunfu  
et al. (2020) Sweet potato China Randomized 

block 2018/2019 5 (0, 45, 90, 135 
& 180)

Xinxiang and 
Shang19 120 (6) Critical N concentration; 

N nutrition index

32 Agnusdei  
et al. (2010) Tall fescue Argentina

Split-plot in 
randomized 
complete block

1996 5 (0, 50, 100, 
150, 200 & 250)

El Palenque and 
Maris Kasba 39 (4)

Critical N concentration; 
N nutrition index; 
Forage grasses

33 Errecat et al. 
(2014) Tall fescue Argentina Split-plot 2008/2009/ 

2009
Different N 
rates (0, 75, 150, 
225 350 & 500)

El Palenque MAG 
INTA 195 (6)

Critical N concentration; 
Water availability.
evapotranspiration

34
Lemaire 
and Denoix 
(1987)

Tall fescue France Not available 1977 4 (0, 50, 100 & 
150) Ludelle 28 (7)

Growth curves; 
water consumption; 
evapotranspiration

35
Gastal and 
Lemaire 
(1988)

Tall fescue France Split-plot 1987
Different N 
rates (0, 40, 50, 
80, 100, 120, 
150, or 160)

Clarine 44 (4 and 5)
Growth curves, N 
uptake and plant %N 
curves.

36 Salette et al. 
(1982) Tall fescue France Split-plot 1979

Different N 
rates (50, 60, 
100, 120, 150, 
or 180)

Ludelle 40 (7)
Growth curves, N 
uptake and plant %N 
curves

37 Bélanger and 
Ziadi (2008) Timothy grass Canada Split-split-plot 1999/2000/ 

2001/2002
4 (0, 60, 120 & 
180) Champ 256 (4)

Critical N and P 
concentrations; Critical 
N concentration

38 Guo et al. 
(2020) Wheat China Split-plot 2016 5 (0, 90, 180, 

270 & 360) Zhoumai 27 70 (7)
Water conditions; 
critical N concentration; 
N nutrition index

39 Justes et al. 
(1994) Wheat France Randomized 

complete block 1985 4 (80, 123, 166 
& 210) Fidel 24 (6)

N concentration; 
biomass; critical N 
dilution

40 Ziadi et al. 
(2010) Wheat Canada Randomized 

complete block
2004/2005/ 
2006

6 (0, 40, 80, 120, 
160 & 200) AC Barrie 140 (3, 4, 5 

and 7)
Critical N dilution 
curve; N nutrition index

41
Ekbladh 
and Witter 
(2010)

White cabbage Sweden Not available 2001 4 (0, 100, 225 
& 375) Heckla 13 (3) Growth rate; Leaf area; 

N use efficiency

Table 1. Study identification (ID), author/year, species, country, experimental design, years of study, fertilizer 
N levels and rates, genotypes, number of observations (and sampling times), and main topics for 19 crop species 
around the globe.
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Table 1 describes the main characteristics of the 41 selected studies, including a specific identification num-
ber for each study by crop (ID, from 1 to 41 total), species, country for the study location, author, experimental 
design of the field trial, years where the study was carried out, number and N fertilizer rates, information on crop 
material, number of total observations, and relevant keyword for the study.

Data of plant %N and W are presented in Fig. 4 for all 19 species across sampling times starting at early 
vegetative growth stages. The W-%N relationships presented for different crops reveal contrasted plant N status 
(Fig. 5).

Observed values of W and %N are typically used to fit critical N dilution curves. Fitted curves can help to 
delineate situations of luxury (excess of N), sufficiency, and deficient (lack of N) plant N status. A recent review 
of critical N curves obtained for maize crop18 reported negligible differences across studies. This result revealed 
that it is more relevant to fit generic critical N dilution curves from a large set of studies covering different 
environments rather than fitting individual curves to local data. Below, we show that our dataset can be used to 
establish more universal critical N dilution curve than those generally parametrized from local data.

technical Validation
To demonstrate the practical value of the dataset, data collected can be used to parametrize a generic critical N 
dilution curve for the given field crop. After the step on checking for outliers, the field crop W and %N data is 
used to fit a critical N dilution curve using the Bayesian modeling approach proposed by Makowski et al.22. The 
fitted curve for the field crop can be then compared with a reference curve available in the scientific literature. 
Lastly as the final part of the second step, an independent dataset can be utilized to assess the plausibility of the 
NNI values derived from the fitted curve compared to the NNI values derived from the reference critical N dilu-
tion model established in the literature. Details of all steps are provided below.

Step 1 - Technical validation of the range of biomass and N%.  This first step is relevant for inspect-
ing the data and detecting potential outliers. Errors of data extraction were eliminated by comparing the extracted 
data with tables and figures of the original manuscripts. For each crop and paper, the data were inspected for 
outliers (by study and sampling time) based on the interquartile range (IQR) rule detection method23 and with 
boxplots, as summarized in the Supplementary material. Any observation with W or %N beyond the threshold 
of 1.5 difference for the IQR to third quartile was pinpointed as a potential outlier for each trait documented for 
those studies (Fig. 5).

Lastly, an overall N responsiveness (i.e., the difference between minimum and maximum fertilizer N rate 
reported by each study within a crop) was calculated to portray the variation on both W and %N obtained 
from this dataset due of differential N availability (Fig. 6). The N responsiveness was calculated as the differ-
ence between the medians of the maximum minus minimum fertilizer N rates across studies within a crop 
species [((median for maximum rate – median for minimum rate)/(median for minimum rate)) × 100]. Species 
were then ranked according to their responsiveness to N fertilizer for W and %N, respectively. For W, the spe-
cies order from high to low responsiveness was: rescue grass (431%), hybrid ryegrass (217%), annual ryegrass 
(183%), oat (163%), perennial ryegrass (152%), tall grass (152%), timothy grass (83%), wheat (68%), maize 
(49%), rice (47%), broomcorn millet (45%), sunflower (40%), fodder beet (39%), white cabbage (32%), sweet 
potato (42%), potato (36%), cotton (21%), sorghum (9%) and sugarcane (6%). The ranking was similar for %N, 

Fig. 4 Geographical distribution of the observations included in the dataset. The distinct sizes of the circles 
indicate the amount of data (one observation corresponds to a pair of crop biomass and plant N concentration) 
for a given species at a given location, while point colors indicate crop species.
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with grasses portraying the largest differences near 100% between N rates. In contrast, negligible differences 
between N rates were observed for sorghum.

Step 2- Fitting a critical N dilution curve for maize.  For this step, a case study was established for maize 
field crop utilizing a subset of the plant W-%N data from the 11 studies on this crop analyzed using a Bayesian 
model for estimating coefficients of the critical N dilution curve (Fig. 7). A standard equation was used to relate 
%Nc to W, specifically %Nc = A1 × W−A2, where A1 and A2 are two parameters9–12,18,22. The modeling and valida-
tion of the critical N dilution curve were performed into four phases:

 (i) A pre-processing of the data was conducted following the approach used by Plénet and Lemaire12 for maize 
crop. First, the data were filtered to include plant W above 1 Mg ha−1. In addition, dates of measures were 
selected to include maize vegetative and reproductive growth until silking plus 25 days (or approximately 
until milk stage, R3 growth stage).

 (ii) A Bayesian hierarchical model was fitted to the data following the procedure defined by Makowski et al.22. 
A Markov chain Monte Carlo algorithm (MCMC) was implemented using the R package rjags24. The algo-
rithm was first run with three chains of 50,000 iterations each. Convergence was achieved approximately 
near 50,000 iterations according to visual inspection of the trace plots and Gelman-Rubin diagnosis. These 
first 50,000 samples were discarded as “burn-in”, and the algorithm was run again during 100,000 addition-
al iterations to determine the posterior medians and 95% credible intervals of A1 and A2 for maize crop.

 (iii) The results obtained were used to compute the posterior distribution for the critical N dilution curve. The 
critical N dilution for maize crop was estimated from 1 Mg ha−1 to the maximum value of W in the dataset. 
Median and 95% credible intervals were determined and plotted against the reference curve established for 
maize crop by Plénet and Lemaire12 (Fig. 7A).

 (iv) The critical N% determined using the Bayesian procedure on this data was compared against the corre-
sponding values estimated by the reference curve for maize12. This reference N dilution curve was derived 
from five studies located in France. To avoid any bias due to the use of the same data for fitting and testing, 
an independent dataset of four maize studies25–27 was used to compute NNI using the two fitted critical N 
dilution curves (Bayesian N curve fitted to our global dataset vs. the traditional model for maize12). Error 
metrics describing the agreement between NNI values were computed using the metrica package28. The 
root mean square error (RMSE) and mean absolute error (MAE) are standard measures of prediction 

Fig. 5 Relationship between plant N concentration (%N) and crop biomass (W) for 19 different crop species 
(annual ryegrass, broomcorn millet, cotton, fodder beet, hybrid ryegrass, maize, oat, perennial ryegrass, potato, 
rescue grass, rice, sorghum, sugarcane, sunflower, sweet potato, tall fescue, timothy grass, wheat, and white 
cabbage). Colors represent different crop species, and n represents the number of studies for each species.

https://doi.org/10.1038/s41597-022-01395-2


8Scientific Data |           (2022) 9:277  | https://doi.org/10.1038/s41597-022-01395-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

accuracy, quantifying the average magnitude of the errors in the predictions. The concordance correlation 
coefficient (CCC) is a measure of both accuracy and precision of the model, quantifying the agreement 
between an estimated and a reference value. From these metrics, the CCC reflected a strong agreement 
between both models (CCC = 0.96) and both the RMSE (RMSE = 0.053) and MAE (MAE = 0.046) con-
firmed that the critical N dilution curve developed with this dataset is very similar to the well-established 
reference curve12 available for maize (Fig. 7B). Lastly, the lack of departure of the two critical N dilution 
curves from the 1:1 line also confirm that these two models derived in similar NNI values. Thus, these 

Fig. 6 Boxplots for plant biomass (W) and N concentration (%N) for each species for the minimum (Min) and 
the maximum (Max) fertilizer N rates (median values included in each boxplot for all crop species) utilized in 
each study. The difference between Max and Min fertilizer N rates defines the N responsiveness of each plant 
trait (W and %N) for each species. The dots presented in each boxplot refer to the detected outliers based on the 
interquartile range (IQR) rule detection method21.

Fig. 7 Validation of a critical N dilution curve for maize field crop estimated using the current dataset. (A) Blue 
line represents the reference N dilution curve for maize defined by Plénet and Lemaire:12 %Nc = 3.4 W−037. Red 
and dashed lines represent the critical N curves (median) and their 95% credible intervals (CI), respectively: 
%Nc [95%CI] = 3.86 [3.68,4.06] W−0.44 [0.42,0.47]. (B) Comparison between the NNI computed using the reference 
curve by Plénet and Lemaire12 and the critical N dilution curve based on this dataset. Symbols represent the 
four independent studies (i.e. not included in the main dataset) used for comparison of the NNI estimates. The 
metrics determined using the metrica package27 were concordance correlation coefficient (C), relative root 
mean square error (RMSE), and mean absolute error (MAE).
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critical curves are not statistically different, confirming the past findings for maize crop from Ciampitti et 
al.18. Likewise, Fernandez et al.15 reported a universal critical N dilution curve for 14 environments and 
N-fertilized conditions for tall fescue. A similar method could be used to fit critical N dilution curves for 
other species from our data.

Usage Notes
The current data set can be used to develop critical N dilution curves for the diagnostic of N nutritional status of 
wide range of crop species in different environments and N-fertilized conditions. Specifically, our dataset can be 
used to fit critical N dilution curves, assess their uncertainties, and determine the statistical significance of the 
difference between two critical N dilution curves.

In addition, the current data set could be used for testing the universality of critical N dilution curves among 
crop species. For example, when comparing the N dilution curves of multiple grasses (annual, hybrid and per-
ennial ryegrass, oat, rescue grass, timothy grass, and wheat crop), we found that the parameters of the model (A1 
and A2) did not differ significantly (Fig. 8). For the different species, the N dilution models were benchmarked 
with the critical N dilution curves established in previous studies. Results show that the curves were relatively 
similar for all species considered. Results also reveal the uncertainty (reflected as the length of the 95% credibil-
ity interval) is higher for the A2 parameter than for the A1 parameter, except wheat crop. The level of uncertainty 
depends on the number of observations within a study and on the total number of studies for a crop. When the 
number of data is small, the determination of the critical N curve can produce estimates with large uncertainty 
(wide credibility intervals).

In the future, our dataset could be easily updated with data generated by new studies and, also, with previous 
studies where data were not available. Studies to be incorporated in this global dataset may be sent to the corre-
sponding author (IAC, ciampitti@ksu.edu). The goal of our global initiative is expand the dataset by including 
more data and involve more collaborators. The ambition is the make the largest possible amount of W and %N 
data available and stimulate the development of reliable critical N dilution curves. In addition to %N, this data-
base could be expanded in near future to cover other nutrients such as phosphorus, sulfur, and potassium, and 
their interaction with other environmental factors such water stress. Such a collaborative approach may set a 
milestone in plant physiology and nutrition from which more universal and reliable models could be developed 
to improve fertilizer management practices and reduce their environmental footprint.

Code availability
Scripts using R programming language are provided to produce figures. Additional code and related files are 
available at figshare repository21: https://doi.org/10.6084/m9.figshare.19105049.v1.
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