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Inter-species cell detection -  
datasets on pulmonary 
hemosiderophages in equine, 
human and feline specimens
Christian Marzahl  1,2 ✉, Jenny Hill3, Jason Stayt3, Dorothee Bienzle  4, Lutz Welker5, 
Frauke Wilm  1, Jörn Voigt2, Marc aubreville6, andreas Maier  1, Robert Klopfleisch  7, 
Katharina Breininger1,8 & Christof a. Bertram7,9

Pulmonary hemorrhage (P-Hem) occurs among multiple species and can have various causes. Cytology 
of bronchoalveolar lavage fluid (BALF) using a 5-tier scoring system of alveolar macrophages based 
on their hemosiderin content is considered the most sensitive diagnostic method. We introduce 
a novel, fully annotated multi-species P-Hem dataset, which consists of 74 cytology whole slide 
images (WSIs) with equine, feline and human samples. to create this high-quality and high-quantity 
dataset, we developed an annotation pipeline combining human expertise with deep learning and 
data visualisation techniques. We applied a deep learning-based object detection approach trained 
on 17 expertly annotated equine WSIs, to the remaining 39 equine, 12 human and 7 feline WSIs. The 
resulting annotations were semi-automatically screened for errors on multiple types of specialised 
annotation maps and finally reviewed by a trained pathologist. Our dataset contains a total of 297,383 
hemosiderophages classified into five grades. It is one of the largest publicly available WSIs datasets 
with respect to the number of annotations, the scanned area and the number of species covered.

Background & Summary
In recent years, deep learning has revolutionised microscopy-based image recognition. Outstanding results can 
be achieved in well-defined tasks under the condition that sufficient high-quality datasets are available1–3. For 
certain species and/or certain pathologies, however, available data may be sparse. Approaches such as transfer 
learning and domain adaptation provide the possibility to develop algorithms that generalise across species 
although they come with their own challenges and limitations2. The generalised applicability of deep learning 
models between species could offer enormous scientific and economic value. For domains that lack appropriate 
training data, for example due to data protection and privacy restrictions, approaches that allow for this trans-
ferability may especially be useful in the context of animal models for human diseases.

To be able to develop, investigate and apply these algorithms, suitable cross-species datasets have to be avail-
able. The dataset described in this work aims to tackle several gaps present in currently available datasets. Firstly, 
whereas there are a couple of highly domain and target specific whole slide image (WSI) datasets publicly availa-
ble for tissue1–3, to the authors’ knowledge none for cytologic research questions. Secondly, no publicly available 
dataset provides annotated WSIs from multiple species for the same pathology. Finally, as shown in our previous 
publication4,5, there is a high inter- and intra-observer variability for grading pulmonary hemosiderophages, 
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which can be reduced by algorithmically supporting experts during labelling. For the development of these 
algorithms, large high-quality datasets are required, which is a further motivation for this publication.

In the following sections, we will describe the creation of a novel multi-species Pulmonary hemorrhage 
(P-Hem) WSI dataset. P-Hem describes repeated bleeding into the lung and can have a broad range of causes like 
congestive heart failure, leukaemia, physical exercise, or autoimmune disorders6–11 with possible life-threatening 
consequences12. In sport horses, a specific disease entity called exercise-induced pulmonary hemorrhage (EIPH) 
has very high incidences and may lead to reduced athletic performance9,13,14. This disease has therefore high rel-
evance for the equine sport industry and has been used as an animal model for human P-Hem15. P-Hem is often 
diagnosed by cytologic examination of pulmonary fluid (bronchoalveolar lavage fluid (BALF)) with quantifica-
tion of hemosiderin content in alveolar macrophages7,16. In chronic bleeding, macrophages (hemosiderophages) 
degrade red blood cells into hemosiderin, which is a protein complex containing iron. Usually special stains for 
iron, such as Prussian Blue or modified Turnbull’s Blue (Quincke reaction), are used to highlight the hemosid-
erin concentration in alveolar macrophages. For diagnosis of P-Hem in humans, a 5-tier grading system has 
been developed by Golde et al.7 and Doucet and Viel17 have adapted this system for EIPH in horses. Hooi et al.11 
have recently described a similar scoring system for cats.

For the creation of this novel dataset, we digitised and fully annotated 55 equine, seven feline and 12 human 
BALF samples with a total of 297,383 manually verified macrophage annotations in form of bounding boxes. 
To improve labelling efficiency and data quality, we applied expert-algorithm cooperation in the following 
manner. Firstly, we incorporated a publicly available pre-trained EIPH model4 for equine WSI grading to our 
multi-species dataset resulting in 585,600 candidate annotations. Secondly, visualisation and clustering tech-
niques were applied to semi-automatically remove 45,944 false positive annotations. Afterwards, a trained 
pathologist (C. A. B.) performed a screening and reviewed the complete dataset which left 303,289 hemosi-
derophages. As a final validation step, the hemosiderophages were arranged and presented according to their 
grade and conclusively checked by the same trained pathologist (C. A. B.) resulting in a total of 297,383 manu-
ally verified annotated hemosiderophages.

As a result of this expert-algorithm pipeline which is visualised in Fig. 1), we present the largest publicly 
available fully-annotated multi-species cytology WSI dataset to date. Our dataset provides researchers with 
unprecedented opportunities to develop new inter-species algorithms and can help to overcome domain adap-
tation limitations. We evaluated the quality of the dataset by conducting a species-wise 3 × 3 cross validation and 
performed an ablation study to estimate how many annotated WSIs are needed to adapt to new species.

Methods
The following section describes the sample collection, staining and digitisation procedure followed by our anno-
tation processing pipeline. The balf samples of the three species were collected at different institutes for routine 
diagnostic evaluation of respiratory disease. Therefore, no animal was harmed for the creation of this dataset. 
Individual case histories were not considered in the present study and all samples we received were anonymised 
by the providing laboratory. Approval for use of animal specimens was given by the State Office of Health and 
Social Affairs of Berlin (approval ID: StN 011/20) and for human samples by the University of Lübeck (approval 
ID: AZ 19–428). The 74 cytological slides were prepared by cytocentrifugation and stained for iron content with 
Prussian Blue (n = 37) or modified Turnbull’s Blue using the Quincke reaction (n = 37). Both staining methods 
result in similar insoluble blue pigments18 and therefore similar hemosiderophages appearances. Digitisation of 
the glass slide was performed using a linear scanner (Aperio ScanScope CS2, Leica Biosystems, Germany) at a 
magnification of 400× (resolution: . µ0 25 m

px
). To be as consistent as possible in the data pre-processing phase, all 

samples were stained and digitised in the same laboratory (Institute of Veterinary Pathology, FU Berlin).

Equine datasets. Fifty-seven equine samples were prospectively collected at the VetPath Laboratory Services 
(Australia) from 29 BALFs samples of 25 horses with clinical signs of lower respiratory tract disease. Samples were 
prepared by cytocentrifugation (CYTOPRO 7620, Wescor Inc, Logan, UT, USA) at 510 × g for 3 minutes using a 
variable volume of BALFs depending on cellular density. Subsequently unstained slides were shipped to the FU 
Berlin, Germany, and stained with both staining methods and digitalized as described above.

Manually expert labelled equine (MELE) dataset. A preliminary dataset using 17 equine WSIs was developed 
for a previous publication4 and revised for this publication. Initially, these slides were fully annotated by one 
expert (C. A. B.) with the open source software SlideRunner19 in a two stage process. First all macrophages/
hemosiderophages were annotated by screening the WSIs and afterwards cell annotations were assigned a cor-
responding grade. From these 17 WSIs, 16 were added to this publication and one was removed due to a sig-
nificant fungal contamination (>1% of the cells) in the Turnbull’s blue staining, resulting in 10 Prussian Blue 
and 6 Turnbull’s Blue samples from 16 horses. Subsequently (for this publication), the same expert (C. A. B.) 
modified this dataset by a second screening process and review of the grades with the help of density maps (see 
section Density map). In the following, we will refer to this dataset as manually expert labelled equine (MELE) 
dataset.

Expert-algorithm labelled equine (EALE) dataset. For the creation of the expert-algorithm labelled equine 
(EALE) dataset, we used 39 additional WSIs from 26 horses. A detailed overview regarding the dataset’s 
meta-data can be accessed at the supplementary Table images_meta_data.csv. The samples were prepared at 
the same laboratory as the MELE dataset and were processed according to the same protocol. The dataset con-
sists of 18 Prussian Blue and 21 Turnbull’s Blue samples. The database was created by interference of the WSIs 
with an algorithm developed on the initial dataset (MELE) and multiple steps of quality control (Clustering, 
Screening, Density maps) as summarised in Fig. 1.
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Expert-algorithm labelled feline (EaLF) dataset. Seven feline samples were retrospectively obtained 
from the study by Hooi et al.11, which was designed to evaluate the presence of hemosiderophages in feline BALF 
samples. Samples were initially prepared by cytocentrifugation and stained with Wright’s stain11. For this study 
specimens were de-stained and re-stained with Turnbull’s Blue. The re-staining of WSIs is assumed to have a 
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Fig. 1 Overview of the macrophage annotation and validation pipeline: The publicly available RetinaNet 
object-detection model trained on equine slides4 is used to perform inference on the unannotated slides, 
followed by a semi-automatic clustering step which clusters cells by size. Error-prone cells are highlighted and 
can then be efficiently deleted by a human expert. Afterwards, a human expert screens all WSI to increase the 
dataset consistency. Finally, a regression-based clustering system is applied to support experts searching for 
misclassifications of the hemosiderin grade.
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negligible effect on dataset creation in light of the applied expert-algorithm collaboration pipeline which can cor-
rect for algorithmic confusions due the lower quality of the input data4,5. Labels were created by interference and 
a multi-step quality control (Clustering, Screening, Density maps). In the following, we will refer to this dataset 
as expert-algorithm labelled feline (EALF).

Expert-algorithm labelled human (EaLH) dataset. The samples were collected by a BALF procedure 
using local anaesthesia bronchoscopy. In all cases humans did not undergo any steroid or other immunoregu-
latory therapy. After the volume of recovered BALF had been assessed, the fluid was filtered through a layer of 
sterile gauze, centrifuged (15 min, 4 °C, 65 × g) and resuspended. Total cell counts were assessed in a Neubauer 
chamber and viability was determined by trypan blue exclusion. Each cytospin slide was prepared from BALF 
with 50,000 cells (600 cpm, 15 min; Heraeus Sepatech Omnifuge 2.0 RS, Hanau, Germany). Following staining 
with May-Grünwald-Giemsa and HEMATOGNOST Fe® SIGMA routine cytological examination were per-
formed to confirm P-Hem due to different underlying diseases. Supplementary preparations were made of 12 
cases with proven P-Hem and unstained specimens were subsequently send to FU Berlin and three stained with 
Turnbull’s blue and nine with Prussian Blue. In the following, we will refer to this dataset as expert-algorithm 
labelled human (EALH) dataset.

Labelling and visualisation platform. To create this multi-species WSI dataset, we used the open source 
online platform EXACT20, which was specifically modified for this project. The software supports the creation of 
this dataset with multiple features which we will briefly summarise in the following section. Manual WSI annota-
tions are supported by a special screening mode, which allows for systematic screening of slides in a user-defined 
magnification while saving the progress per expert and therefore allowing to conveniently resume the work at a 
later point in time. Furthermore, a bounding box annotation process is streamlined by a single-click annotation 
mode which incorporates the average hemosiderophages size and therefore minimises the need to further adjust 
the bounding box to the cell size. Annotation versioning supports the tracking of changes and provides detailed 
and reproducible insights into the development process of datasets.

Inter-species inference from a pre-trained model. At the time of dataset development, no annotations 
for feline or human P-Hem slides were publicly available, which resulted in limited options to perform transfer 
learning-based methods. Therefore, we directly applied the publicly available4 equine P-Hem deep learning model 
trained on the MELE dataset to the WSIs of the EALH, EALF and EALE dataset (Fig. 1 Inference). The equine 
deep learning model uses a custom RetinaNet-model4,21 optimised for hemosiderophage WSI detection. The 
model was trained with the Adam optimiser on 14 fully annotated WSI from the MELE dataset until convergence 
was reached by a maximal learning rate schedule of 0.01. The model was validated on three remaining fully anno-
tated WSIs from the same dataset. As described in section MELE, for this publication, we excluded one slide due 
to considerable fungal contamination, resulting in 16 MELE slides.

Inference on the 58 unannotated WSIs of the EALE, EALF, EALH datasets took on average 120 seconds per 
WSI on an NVIDIA Quadro P5000 graphics card. To minimise the probability of missing hemosiderophages, 
we applied a classification probability threshold of 0.35 to all slides to obtain a highly sensitive and less specific 
model resulting in 585,600 macrophage/hemosiderophage candidate annotations.

Semi-automatic data cleaning via customised clustering. The accuracy of deep learning models 
depends on multiple factors, which are oftentimes difficult to control. One influencing factor, that may lead to 
varying results, is the quality of the source dataset, which, in turn, strongly depends on various pre-analytic steps 
such as image acquisition. Additionally, the label quality used for training deep learning models has a strong 
influence on the final performance, and for P-Hem grading a high inter- and intra-observer variability has pre-
viously been described4,5. Special stains for iron are ideal to quantify the intracytoplasmatic hemosiderin content 
(stained as blue pigment), but introduce considerable difficulties in differentiation of different cell types due to 
the weak staining of cellular components. One additional aspect is the domain shift between species, which might 
manifests in altered cell morphology and texture compared to the source domain (i.e., equine tissue). An example 
for this domain shift artefacts is the reduced performance of the initial algorithm on the feline samples due to 
false-positive detections of granulocytes or multiple bounding box predictions per cell.

To minimise the effect of the above-described implications on this dataset, we established the following 
semi-automatic pipeline. Firstly, all cell patches of a slide were copied into a new image on the EXACT server 
and sorted by width in ascending order on the x-axis (Fig. 1 3rd row, Clustering). Predictions were grouped by 
width-to-hight-ratio of the bounding box in a annotation map. Thereby a human expert could remove obvious 
false positive predictions (small cell types and non-maximum-suppression artefacts) using the web interface. 
This is implemented by drawing a rectangle with a computer mouse around groups of cells to delete them from 
the dataset. Aforementioned size-based visualisation also allowed the efficient re-labelling of false-positive gran-
ulocytes in feline samples due to their significant smaller cell size compared to macrophages. The semi-automatic 
data cleaning step removed 17.45% of the cells created at the inference step.

Experts screening. For labelling data, expert-algorithm collaboration is considered suitable for creating 
high quality datasets5. Diligent expert review of algorithmic predictions is indispensable, especially for WSIs 
that may potentially exhibit a significant domain shift to the initial training data. To keep the screening process 
as consistent as possible, the same veterinary pathologist (C. A. B.) performed all annotation tasks. To enable an 
efficient validation of all algorithm-created annotations across the WSIs, we used the screening mode provided 
by the EXACT software. With this mode, it is possible to check a WSI patch by patch and correct errors on a 
user-selected magnification. An overlap of 15% per patch is applied, and the expert’s progress is saved automat-
ically (Fig. 1 Screening). In this screening step, the expert removed 44.8% of the automatically detected cells 
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(236,367) and introduced 560 new hemosiderophages on 51,110 patches. These numbers are in line with the high 
sensitivity and low specificity expected from setting low cutoff values for algorithmic predictions. Similar to the 
screening of the computer aided annotations, the original manual annotations from the equine MELE dataset 
initially developed for a previous publication4 were reviewed. Here, the expert deleted 17,050 of the 77,004 anno-
tations (22.1%) and introduced 30 new annotations. Deletion of such a high number of manual and algorithmic 
labels was mostly attributed to the difficulty of classifying different cell types (macrophages versus other cell 
types) with the special iron stain. Clear identification of macrophages (including hemosiderophages) in BALF 
is largely based on morphology of the cell nucleus which is, however, only very weakly highlighted with iron 
stains. Cellular size and shape alone are only vague cell classification criteria. We have noticed that the task of 
distinguishing hemosiderophages against neutrophils may be complicated by the positive iron staining of both 
cell types. While the initial manual labelling of the MELE had a high sensitivity for labelling hemosiderophages, 
its re-evaluation suggested that many neutrophils had been wrongly annotated. During expert screening, unam-
biguous non-macrophagic cells, especially cells with a small cell size, were deleted, however this had no influence 
on the overall hemosiderin score of the respective WSI.

Density map. Initially, all hemosiderophages were classified into discrete grades from zero to four depending 
on their hemosiderin concentration, both for computer-aided annotations for the EALE, EALF, EALH dataset 
and the expert-created annotations for the MELE dataset. However, the hemosiderophages hemosiderin absorp-
tion is a continuous process which is only mapped to a discrete grading system. This can lead to inconsistent clas-
sification between neighbouring grades as previously described by Marzahl et al.4. To overcome this limitation, we 
utilised the provided cell-based regression approach4 to assign a continuous grade between zero and four to each 
hemosiderophage. Afterwards, we created a new image-map where the hemosiderophages were arranged in an 
ascending order along the x-axis according to their hemosiderin score. These novel image-maps were created for 
each WSI individually and reviewed by the same trained pathologist (C. A. B.) to make the process of identifying 
mislabelled cells on the border between two grades (Fig. 2 Density Map) as consistent as possible. On the density 
maps the expert changed the grade of 38,799 (13.04% Up: 13,591 Down: 25,208) annotations from which 99.92% 
were changes within one grade. The density maps also provided another opportunity to review the cell type of the 
annotations, which were deleted in 5,906 (1.95%) instances.

Data Records
We provide the 55 equine, 12 human and seven feline original WSIs in the Aperio SVS format without any iden-
tification properties publicly available on figshare22. Alongside, we supply all hemosiderophage annotations after 
each of the four processing steps (Inference, Cluster, Screening, DensityMap) as comma-separated files for easy 
access, as binary files which are compatible to our training and evaluation pipelines, and in the sqlite format for 
SlideRunner19. Each annotation provides the following information:

•	 The annotation source slide name
•	 A universally unique identifier (UUID)
•	 The absolute bounding box coordinates (x1,y1,x2,y2) on the WSI
•	 The EIPH grade in a discrete range from zero to four

Additionally, we provide a Docker build with all packages installed to download the WSIs and annotations 
for reproducing our experiments. Table 1 gives an overview of the dataset’s meta-data. A detailed per-image 
statistic can be examined in the supplementary Table images_meta_data.xlsx. The dataset column distinguishes 
between MELE, EALE, EALF and EALH datasets. The version column indicates the processing steps (Inference, 

Fig. 2 Left: Statistics on the density map at the EXACT user interface. Right: Visualisation of a density map 
which was screened by an expert for mislabelled cells (especially regarding the label class). Subfigure a) displays 
six manually deleted annotations. Visualisations b) to e) show the border region between two grades, with 
the first two columns representing the lower grade and the last two the upper grade, which were sometimes 
corrected by the expert as visualized by the different color of the bounding box.
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Cluster, Screening, DensityMap) to which the following statistical data refer. The EIPH score was calculated by 
the method of Doucet and Viel17.

In total, the expert screened 51,110 patches on 74 WSIs from three species which covers a total area of 
5,196.17 mm2. This resulted in 297,383 annotated macrophages/hemosiderophages, making this the largest pub-
lished multi-species dataset of macrophages/hemosiderophages and one of the largest cytology WSI datasets in 
general.

technical Validation
To gain a deeper understanding of the data and to establish a baseline for future studies, we conducted multiple 
experiments. Firstly, during the screening phase, we noticed that the expert (C. A. B.) deleted a high number of 
his own manually created annotations from the dataset of our previous work (MELE dataset). Furthermore, our 
deep learning method, which was trained on these initial annotations, also introduced many false positive anno-
tations even at conservative thresholds. This effect was amplified by the decision to configure the model with a 
relatively high sensitivity in order to miss as few cells as possible. The observation that the initial object detection 
model was configured to have a high sensitivity (and therefore a low specificity) is backed by the statistics that 
only 560 new hemosiderophages were introduced in the screening phase of the dataset development (EALH, 
EALF, EALE) compared to 229,054 deleted cells. The combination of these effects caused the manual deletion of 
large quantities of annotations as shown in Table 1. To quantify and compensate for this effect, in the following 
first experiment, we investigated if the trained deep learning model can be efficiently adapted to this change in 
annotation behaviour by retraining on the updated annotations from the MELE dataset created for this pub-
lication. In a second experiment, we evaluated inter-species domain transfer and performed an inter-species 
cross-validation study. This experiment is followed by an ablation study to estimate the quantities of annotations 
needed to train an accurate EIPH object detector. To evaluate the object detection performance of the models 
trained in our experiments, we used the mAP metric introduced in the 2007 PASCAL VOC challenge23.

Reevaluation of the inference step. To investigate whether and how efficient the deep learning model 
can adapt to the changed annotation behaviour, we trained models with the initial and reviewed MELE dataset 
and optimised thresholds for the different datasets individually. To make the results comparable to the initial 
publication4, we used the original 17 slides, including the slide with fungal contamination. We applied the cus-
tomised RetinaNet architecture with a ResNet-18 pre-trained on ImageNet. The network was trained with the 
Adam optimiser using a maximal learning rate of 0.001 until the validation loss started to increase. As a metric to 
quantify how effective the deep-learning model adapted to the new annotations we calculated the mAP score with 
an intersection over union (IoU) >0.5 and compared total cell numbers. The mAP score increased with the new 
annotations by 5 percent from 0.66 to 0.71 compared to the object detection results reported in earlier works. This 
indicates that the experts annotations are more consistent. The optimal threshold calculated on the validation 
set for equine samples increased from 0.35 to 0.65 and for humane and feline slides from 0.35 to 0.80. The total 
number of detections decreased from originally 585,600 to 301,109 (ground truth 297,383) while the number of 
false negatives increased from 560 to 7,351 according to the final dataset. In conclusion the deep-learning model 
is able to adapt to new annotation behaviours and a stronger focus on finding optimal thresholds could lead to 
decreased manual interactions but introduces the risk of overlooking false-negative annotations.

species dataset slides Version Total Cells Score

Count of Cells by Grade

0 1 2 3 4

Equine

MELE 16

MELE 77,004 102 29,017 26,810 13,178 6,577 1,422

S 59,954 112 19,733 21,545 11,442 5,963 1,271

D 58,956 109 19,246 21,595 11,829 5,552 734

EALE 39

I 245,397 95 97,904 80,715 47,789 17,437 1,552

S 168,333 108 54,432 60,189 39,316 13,404 992

D 164,365 101 51,797 67,798 36,339 7,810 621

Human EALH 12

I 168,411 133 31,035 64,833 58,320 12,776 1,447

C 128,012 133 21,532 53,704 42,553 8,932 1,291

S 54,580 156 47,26 20,688 23,323 5,090 753

D 53,864 156 43,84 18,357 26,563 4,433 127

Feline EALF 7

I 94,788 38 58,879 35,659 122 8 120

C 88,848 38 54,867 33,868 103 5 5

S 20,422 33 13,631 6,747 41 2 1

D 20,198 45 11,124 9,039 35 0 0

Total SDATA 74

I 585,600 98 216,835 208,017 119,409 36,798 4,541

S 303,289 113 92,522 109,169 74,122 24,459 3,017

D 297,383 109 86,551 116,789 74,766 17,795 1,482

Table 1. Overview of the dataset meta-data, including the species, the dataset name, the number of slides, the 
version of the post-processing refinement step (Inference, Cluster, Screening, DensityMap) and the number of 
labels per hemosiderin score.
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Inter-species domain adaptation. As shown by Bullone et al.15, equines can be used to better under-
stand human asthma on an immunopathological level. To support scientific research in this direction, the use 
of machine learning models across species is of great scientific and economic importance. To investigate the 
potential and limitations of transferability across different species, we have carried out a 3 × 3 cross-validation 
in which we trained on one species and validated on all other species separately. To support the comparability of 
the results across the species with their varying amount of available WSIs and to keep the computational effort 
within reasonable limits, we decided to use only five WSIs for training and two other WSIs for validation (See 
Table 2). This is further motivated by availability of only 7 feline WSIs. For the other two species, the training 
and validation subset was selected by using the seven most balanced slides with respect to the number of grade 
zero and one macrophages/hemosiderophages (see Table 2). We used this WSI sampling strategy to minimise the 
effect of an imbalanced dataset which could negatively impact the transferability study. Due to the circumstance 
that feline WSIs only contain hemosiderophages with the grades zero and one we only used these two classes 
for the cross-validation for all species and reason that the transferability of these two classes can be generalised 
to the remaining classes. Example patches and results from this cross-validation experiment are visualised in 
Fig. 3. The experiment achieves best results if the source is equal to the target domain with an mAP value of 0.90 
(Equine 0.88, Human 0.90, Feline 0.91). The training on equine slides resulted in an mAP of 0.88 on human data 
which indicates that a domain transfer without adaptions to the deep learning model might be possible. Further 
studies need to show if this algorithms can be used for specific disease of humans such as COVID-1924. When the 
source domain is human or feline, the average inter-species mAP is 0.8 (min 0.77, max 0.81). Moreover, EIPH 
can also affect other species such as dogs11 and future studies may evaluate if the described domain transfer can 
be reproduced.

ablation study. Annotating WSIs manually is a laboursome and expensive task. Therefore, one of the most 
interesting questions in creating datasets and training deep learning models is the number of WSIs and anno-
tations needed to reach a converging performance. To answer this question, we started training for each spe-
cies separately on one uniquely sampled patch (size 1024 × 1024 pixels, number of annotations: mean = 6.19, 
SD = 3.74) from one slide and then doubled the number of patches from the same slide every time training 
reached convergences on the validation set. The training set was chosen to have a balanced number of grade 
zero and one hemosiderophages. The cell-covered area of each WSI contains on average 1,000 unique patches, 
therefore we continued the ablation study using up to five different WSIs for training after reaching the values 
of 1024 training patches on the first slide. To increase the comparability between our experiments, we used the 
same network, parameters, annotations and slides as described in the section domain adaptation. As visualised 
in Fig. 4, the performance of the model increased significantly independent of the species until 128 patches 
with around 1000 unique hemosiderophages and started to converge afterwards even if additional WSIs were 
introduced and the total number of annotations was increased up to twentyfold. As described above, to keep 
the experiments between species comparable, we only used grade one and two hemosiderophages and therefore 

File Species

Count of Cells by Grade

0 1 2 3 4

15.svs Equine 2884 3124 2138 733 12

22.svs Equine 2147 2441 2025 899 69

30.svs Equine 2815 2464 1523 606 26

19.svs Equine 1197 1012 316 36 0

02.svs Equine 2094 2560 1291 364 2

2707.svs Human 1434 2954 1034 122 0

11480.svs Human 391 1221 674 20 0

10080.svs Human 284 3015 2375 342 9

10052.svs Human 120 1739 3744 739 9

10120.svs Human 112 2225 4656 1502 105

1.svs Feline 1200 2287 22 1 0

6.svs Feline 3009 895 0 0 0

14.svs Feline 2393 495 2 0 0

13.svs Feline 4663 810 2 0 0

2.svs Feline 57 502 10 0 0

27.svs Equine 1392 1359 364 93 1

17.svs Equine 2725 2625 715 166 14

10227.svs Human 1265 1943 324 5 0

2702.svs Human 963 523 413 67 2

10.svs Feline 412 371 4 1 0

12.svs Feline 1897 1387 1 0 0

Table 2. The filenames of the five training and two validation slides (below the double line) per species used 
for the ablation and inter species cross-validation study. The slides have been selected and ordered according to 
their ratio of grade zero and one cells to represent a balanced sub-dataset.
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Fig. 3 Each of the nine figures show on the left the species source training domain and on the top the species 
target domain with the obtained mAP. Green bounding boxes represent grade zero hemosiderophages while red 
show grade one.

Fig. 4 Results of the ablation study using our customised RetinaNet object detector on an increasing number of 
humane, equine and feline training patches of size 1024 × 1024 pixel from one WSI or up to five complete WSIs. 
The boxes represent the total number of hemosiderophages used for training in combination with the mAP 
graphs for each species.
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reason that around five hundred cells per type are sufficient to reach convergence. To put this into perspective: 12 
human samples contain only 127 grade four hemosiderophages, making the shown inter-species domain transfer 
highly valuable for creating deep learning models for human data. This is especially valid for P-Hem, which has a 
particularly high incidence in horses.

Usage Notes
Due to multiple dependencies of our repository we provide a docker file to streamline the setup process and 
install all necessary packages for tracing and reproducing our results. The most prominent dependencies are: fast.
ai25, a deep learning library which is build on PyTorch26, matplotlib27 for visualisation, object-detection-fastai 
with our custom RetinaNet implementation and OpenSlide28.

The repository is structured as follows: On the top level the “Download.ipynb” jupyter notebook will down-
load all slides and annotations from figshare22 automatically. The folder Statistics contains notebooks 
which analyse the dataset annotations and general information about the slides. Inference contains code 
to train the described models and perform inference on slides. Regression trains the regression models to 
predict a continuous EIPH grade and is used for creating the density maps. Cluster contains code to create 
custom annotation maps and synchronise the generated images and annotations with EXACT.

Code availability
All code used in the experiments to generate results, plots and tables was written in Python and is available 
through our GitHub repository for EIPH analysis [https://github.com/ChristianMarzahl/EIPH_WSI/] in the 
folder SDATA and is referenced on Zenodo29.
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