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a studyforrest extension, MEG 
recordings while watching the 
audio-visual movie “Forrest Gump”
Xingyu Liu  1, Yuxuan Dai1, Hailun Xie1 & Zonglei Zhen  1,2 ✉

Naturalistic stimuli, such as movies, are being increasingly used to map brain function because of their 
high ecological validity. the pioneering studyforrest and other naturalistic neuroimaging projects 
have provided free access to multiple movie-watching functional magnetic resonance imaging (fMRI) 
datasets to prompt the community for naturalistic experimental paradigms. However, sluggish 
blood-oxygenation-level-dependent fMRI signals are incapable of resolving neuronal activity with the 
temporal resolution at which it unfolds. Instead, magnetoencephalography (MEG) measures changes in 
the magnetic field produced by neuronal activity and is able to capture rich dynamics of the brain at the 
millisecond level while watching naturalistic movies. Herein, we present the first public prolonged MEG 
dataset collected from 11 participants while watching the 2 h long audio-visual movie “Forrest Gump”. 
Minimally preprocessed data was also provided to facilitate the use of the dataset. as a studyforrest 
extension, we envision that this dataset, together with fMRI data from the studyforrest project, will 
serve as a foundation for exploring the neural dynamics of various cognitive functions in real-world 
contexts.

Background & Summary
The mechanisms of human brain function in complex dynamic environments is the ultimate mystery that cog-
nitive neuroscience aspires to quest. Most of the existing models on brain function have been obtained from 
tightly controlled experimental manipulations on carefully designed “artificial” stimuli. However, it remains 
unclear whether responses to these artificial stimuli can be generalized to ecological scenarios encountered in 
real-world environments, in terms of quantity, complexity, modality, and dynamics. To address these issues, 
naturalistic stimuli that encode a wealth of real-life contents have become increasingly popular for understand-
ing brain function in ecological contexts. Researchers have achieved significant advances in the areas of human 
memory, attention, language, emotions, and social cognition using naturalistic stimuli (for recent reviews, please 
refer to Sonkusare et al.1 and Jääskeläinen et al.2). Simultaneously, emerging deep learning technologies that 
could afford multiple levels of representations for naturalistic stimuli are continuously expanding the application 
of naturalistic stimuli for exploring human brain function3–6.

Notably, owing to their dynamics and multimodal contents, movies have been successfully utilized as nat-
uralistic stimuli to examine the mechanism by which the brain processes diverse psychological constructs and 
dynamic interactions. Functional magnetic resonance imaging (fMRI) is commonly employed to measure brain 
activity while watching a movie. In particular, the pioneering studyforrest and other naturalistic neuroimaging 
projects have released multiple fMRI datasets, collected from participants who had watched movie clips7–11. 
However, fMRI measures the relatively sluggish blood-oxygenation-level-dependent signal, therefore falling 
short of characterizing the complex neural dynamics underlying the cognitive processing of dynamic movies. 
In contrast, magnetoencephalography (MEG) measures the magnetic fields generated by neuronal activity on 
a millisecond time scale. Thus, MEG has great potential to pry open neural dynamics in processing naturalistic 
stimuli. Several studies have leveraged MEG to investigate brain activity for naturalistic movie stimuli in a short 
period (≤20 min)12–16. However, there is still a dearth of publicly accessible MEG recordings for naturalistic 
stimuli, especially prolonged MEG recordings for dynamic movies that are more likely to capture the temporal 
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dynamics of regular functional brain states that occur in everyday life, and contribute to unraveling human brain 
function in ecological contexts.

Herein, we present an MEG dataset obtained while watching the 2 h long audio-visual movie “Forrest Gump” 
(R. Zemeckis, Paramount Pictures, 1994). The recordings measure brain activation with a temporal resolution 
at the millisecond level, thus providing a timely and efficient extension to the studyforrest dataset. Specifically, 
MEG data were collected from 11 participants while they were watching the Chinese-dubbed movie “Forrest 
Gump” in eight consecutive runs, each lasting for roughly 15 min. High-resolution structural MRI was addition-
ally acquired for all participants, allowing the incorporation of the detailed anatomy of the brain and head in the 
source localization of MEG signals. Together with the raw data, preprocessed MEG and MRI data with standard 
pipelines were also provided to facilitate the use of the data. Considering MEG and fMRI are complementary 
to each other, synergy between our present MEG recordings and fMRI data from the studyforrest project will 
provide a valuable resource to study brain function in the real-life contexts. We believe the dataset is suitable for 
addressing many questions pertaining to the neural dynamics of various aspects, including perception, memory, 
language, and social cognition.

Methods
participants. A total of 11 participants (mean ± SD age: 22 ± 1.7 years, 6 female participants) from the 
Beijing Normal University, Beijing, China, volunteered for this study. They completed both the MEG and MRI 
sessions. All participants were right-handed, native Chinese speakers, with normal hearing and normal or cor-
rected-to-normal vision. None of them had ever watched the film “Forrest Gump” before, except one who had 
watched some clips, however not the entire movie. Of the 10 participants, four had heard about the movie plot, 
while others did not. The study was approved by the Institutional Review Board of the Faculty of Psychology, 
Beijing Normal University. Written informed consent was obtained from all participants, prior to their partic-
ipation. All participants provided additional consent for sharing their anonymized data for research purposes.

procedures. Figure 1 depicts the overall flow of data collection and preprocessing. Prior to data acquisition, 
all participants completed a questionnaire on their demographic information and familiarity with the movie 
“Forrest Gump”. The data acquisition consisted of two sessions for each participant, namely, one MEG session 
to record their neural activities during movie watching and an MRI session with a T1-weighted (T1w) scan to 
measure the brain structure for the spatial localization of the MEG signal. The MRI scan immediately followed 
the MEG session for all participants, except for sub-07 and sub-11, who finished their MRI session a week later.

Stimulus material and presentation. The audio-visual stimuli were generated from the Chinese-dubbed 
“Forrest Gump” DVD, released in 2013 (ISBN: 978-7-7991-3934-0). The movie was split into eight segments, each 
of which lasted for approximately 15 min. The stimuli were initially obtained by concatenating all original VOB 
files from the DVD release into one MPEG-4 file, using FFmpeg (https://ffmpeg.org). The concatenated MPEG-4 
file contained a video stream and a Chinese-dubbed audio stream, which was down-mixed from multi-channel 

Fig. 1 Schematic of the data collection and preprocessing procedure.Data collection comprised of one MEG 
session followed by one MRI session. The neuromagnetic signals were recorded with a whole-scalp-covering 
MEG while the participants watched the audio-visual movie “Forrest Gump”. An anatomical T1w imaging was 
acquired in the MRI session. The raw MEG data and MRI data were preprocessed with MNE and fMRIPrep 
toolbox, respectively. The MEG-MRI coregistration was performed on the preprocessed data.
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to 2Channel stereo. The stimuli were then divided into eight segments using Adobe Premier software (Adobe 
Premiere Pro CC 2017, Adobe, Inc., San Jose, CA, USA). Each segment conformed to the following specifica-
tions: video codec = avc1, display aspect ratio = 4:3, resolution = 1024 × 768 pixels, frame rate = 25 FPS, color 
space = YUV, video bit depth = 8 bits, audio codec = mp4a-40-2, audio sampling rate = 48.0 kHz, and audio chan-
nels = 2. Each successive segment began with a 4 s repetition of the end of the previous segment. It should be 
noted that the Chinese-dubbed “Forrest Gump” is an abridged edition of the German version; some segments in 
the German version are not included in the Chinese version. To align with the stimuli of the studyforrest dataset as 
much as possible, a short clip from the German-dubbed DVD released in 2011 (EAN: 4010884250916) was added 
to our stimuli. Table 1 summarizes the sources of the MEG stimuli from both the Chinese and German versions. 
Figure 2 characterizes the alignment between the MEG stimuli (current study) and fMRI stimuli (studyforrest 
project) for each run.

The detailed configuration of the MEG system is illustrated in Fig. 3. The movie stimuli were presented 
using Psychophysics Toolbox Version 317 in MATLAB 2016 (MathWorks, Natick, MA, USA), which drives the 
PC hardware directly to generated stimuli. The audio stimuli were generated with a standard PCI sound card 
(Sound Blaster Audigy 5/Rx) and then amplified with an insert earphone. The insert earphone comprised of a 
small stimulator (E-A-RTONE 3 A; 3 M, Minnesota, USA), a thin plastic tube (Tygon B-44-4x tubing, length: 
1.88 m, I.D.:1/8, O.D.: 3/16; Saint Gobain Tygon division), and an earplug (ER3-14A; Etymotic Research, Inc., 
Elk Grove Village, IL, United States). The visual stimuli were generated with a standard PCI graphics card 
(GeForce GT620; NVIDIA, Santa Clara, California, USA) and projected onto a screen in full-screen mode via 
a DLP projector (NP63 + ; NEC, Tokyo, Japan) with 1024 × 768-pixel resolution. The participants watched the 
visual stimuli on a rear projection screen through mirror reflection (visual field angles = 31.17° × 23.69°; view-
ing distance = 751 mm). The participants were instructed to watch the movie, without performing any other 
tasks and to keep still as best as possible.

The average latencies between the stimulus initiation and the actual receipt of the stimulus was 33 ms and 
15 ms for the visual and audio stimuli, respectively. The latencies were measured independently from the MEG 
movie experiment. A standard pulse stimulus (visual: white patch, audio: pure tone) was requested to be pre-
sented by Psychophysics Toolbox, while the corresponding onset trigger was sent to the trigger channel. A photo 
(visual) / acoustic (audio) sensor connected to one of the MEG Analog-to-Digital Converter (ADC) channels, 
placed near the MEG helmet, was used to detect the stimuli. The latencies were then calculated as the difference 
between the recorded time of the ADC channel and the trigger channel. The latencies were measured multiple 
times and the average latencies were calculated for visual and audio stimulation respectively.

MEG data acquisition. MEG data were recorded using a 275-channel whole-head axial gradiometer DSQ-
3500 MEG system (CTF MEG, Canada) at the Institute of Biophysics, Chinese Academy of Sciences, Beijing, 
China. Three channels (i.e., MLF55, MRT23 and MRT16) were out of service due to failure of sensors. The neu-
romagnetic signals were recorded in continuous mode at a sampling rate of 600 Hz, without online digital band 
filters. A third-order synthetic gradiometer was employed to remove far-field noise. The precise timing of each 
frame was recorded. After each frame was requested to be presented to the participants, we recorded a trigger 
pulse lasting for five samples in the stimulus channel UPPT001. The beginning of the movie was indicated with 

Segment Frames Duration Start (cn) End (cn) Start (de) End (de)

1 22499 15:00.07 63 22562 35 22534

2 22599 15:04.08
22463 32374 22438 32349

36410 49098 36385 49073

3 22599 15:04.08

48999 57860 48974 57835

58531 63717 58506 63692

— — 63692 64621

63718 71341 64621 72244

4 22599 15:04.08

71242 85132 72146 86036

88427 97136
89332 93902

94464 98603

5 22599 15:04.08

97037 111719
98504 105793

109959 117352

115101 118317 120733 123949

118797 123498 125347 130048

6 22599 15:04.08
123398 145602 129948 152152

147736 148131 154286 154681

7 22599 15:04.08 148032 170631 154582 177181

8 17661 11:46.56 170532 188193 177082 194743

Table 1. Stimulus sources from the Chinese (cn) and German (de) version of “Forrest Gump”. The start time 
and end time are different for the same movie clip in the two versions. Additionally, to better align with the 
existing studyforrest dataset, a clip from the German version (frames from 63692 to 64621, ~37 sec) was added 
into segment 3 after removing the vocal sound track of the clip. Specifically, the visual stream remains identical 
to the German version while the audio stream only contains the background sound track.
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a value of 255. Owing to the limited bit-width of the stimulus channel, the frame number could not be marked 
with an accurate value >20,000. The frame numbers were therefore marked as the ceiling of the timestamp of 
that frame divided by 10, resulting in step-like increasing marker values starting from 1 with a step width of 250 
(25 fps * 10 s).

At the beginning of each session, three HPI coils were attached to the participants’ nasion (NAS), left preau-
ricular (LPA), and right preauricular (RPA) points to continuously measure their head position in the MEG 
helmet. A customized wooden chin-rest supporter was introduced to prevent possible head movements. The 
MEG session consisted of eight runs, with each run playing one movie segment. Eight segments were played 
chronologically. The participants took a self-paced break between runs. Following the completion of the MEG 
scan, the participants underwent an anatomical T1w scan. The HPI coils were replaced with three custom-
ized MRI-compatible vitamin E capsules in the MRI scan to provide spatial reference for the spatial alignment 
between the MEG and MRI data.

Fig. 2 Stimulus alignment between the MEG and fMRI dataset. Both the matched and the mismatched parts 
between the MEG (green) and fMRI (blue) stimuli were marked in the timeline for each segment (i.e., run). The 
mismatched segments were particularly annotated with frame number, duration, and a brief scene description. 
The shared fraction was shown in both time length and percentage (the yellow bar). For display purpose, the 
length of segments are not represented in the real scale.

Fig. 3 Configuration diagram of the MEG system.Both the audio and visual stimulus systems were custom 
made as a whole, though most of their components are commercially available. The average latencies between 
the time at which the stimulation was received and the time of trigger pulse were 33 ms and 15 ms for the visual 
and audio stimuli, respectively.

https://doi.org/10.1038/s41597-022-01299-1
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MEG data preprocessing. MEG data processing was performed offline using the MNE-Python v0.22 pack-
age18. The MEG preprocessing pipeline was conducted at the run level (Fig. 1). First, the bad channels were 
detected and marked. As a result, no bad channels were identified in all acquisitions except two in run-05 of sub-
05. Second, a high-pass filter of 1 Hz was applied to remove possible slow drifts from the continuous MEG data. 
Finally, artifact removal was performed using an independent component analysis (ICA) with FastICA wrapped 
in the MNE. Artifact-ICs were classified mainly using the spatial topography and time course information fol-
lowing the guide provided by Bishop & Busch19. The number of independent components (IC) was set to 20. 
Two raters (i.e., X.L. and Y.D.) manually identified the head movement, eye movement, eye blinks, and cardiac 
artifacts (Fig. 4b). On average, 3.21 ICs (SD: 0.85) were classified as artifacts. The denoised MEG data were even-
tually reconstructed from all the non-artifact components and residual components (Fig. 4c). Both the raw and 
preprocessed data were provided in the released dataset.

MRI data acquisition and preprocessing. High-resolution anatomical MRI was collected for each partic-
ipant using a 3 T SIEMENS Prismafit scanner (Siemens Healthcare GmbH, Erlangen, Germany), with a 20-channel 
headneck coil. All participants underwent a T1w scan with a 3-D magnetization-prepared rapid gradient-echo 
pulse sequence with identical parameters (TR = 2530 ms, TE = 1.26 ms, TI = 1100 ms, flip-angle = 7°, 176 sagittal 
slices, slice thickness = 1 mm, matrix size = 256 × 256, and voxel size = 1.0 × 1.0 mm), except that sub-01 was 
scanned with slightly different parameters (TR = 2200 ms, TE = 3.37 ms, TI = 1100 ms, flip-angle = 7°, 192 sagit-
tal slices, slice thickness = 1 mm, matrix size = 224 × 256, and voxel size = 1.0 × 1.0 mm). Earplugs were used to 
attenuate the scanner noise. A foam pillow and extendable padded head clamps were utilized to restrain the head 
motion.

The raw DICOM files of T1w images were converted to NIFTI files using dcm2niix (https://github.com/ror-
denlab/dcm2niix). The T1w images were then minimally preprocessed using the anatomical preprocessing pipe-
line from fMRIPrep v20.2.1, with default settings20. In brief, the T1w data were skull-stripped and corrected for 
intensity nonuniformity with ANTs and N4ITK21. Brain surfaces were reconstructed using FreeSurfer22. Spatial 
normalization to both MNI152NLin6Asym and MNI152NLin2009cAsym was performed through nonlinear 
registration with ANTs, using the brain-extracted versions of both T1w volume and template.

MEG-MRI coregistration procedure. To reconstruct the source of MEG sensor signals, MEG data were 
co-registered with the high-resolution anatomical T1w MRI data for each participant. The NAS, LPA, and RPA 
points marked in both MEG and MRI sessions were used as fiducial points for the alignment of the MEG and MRI 
data. Specifically, following the generation of a high-resolution head surface using MNE make_scalp_surfaces 

Fig. 4 Typical artifact-ICs and MEG signals from the raw and preprocessed data.(a) MEG signals of example 
channels from the raw data. (b) Timeseries and scalp field distribution of three typical artifact-ICs (A-ICs), 
namely A-IC 1 for eye blink, A-IC 2 for horizontal eye movement, and A-IC 3 for heartbeat. (c) MEG signals of 
example channels from the preprocessed data. Data from the run-04 of sub-04 were used for this illustration.
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based on FreeSurfer reconstruction, we performed MEG-MRI coregistration for each participant in the MNE 
COREG GUI18. First, the three fiducial points were manually pinned on the MRI-reconstructed head surface. 
An iterative algorithm (nearest-neighbor calculations) was then run to align the MEG and MRI coordinates. 
The co-registration was refined by manual adjustment. The results showed that the average distances between 
the three fiducials in the coregistered MEG and MRI coordinate systems were 0.96 mm, 4.22 mm, and 4.90 mm 
for NAS, LPA, and RPA, respectively. Both the MRI-fiducials files and MEG-MRI coordinate transformation files 
were included in the released data.

Data Records
The dataset can be accessed at OpenNeuro (dataset accession number: ds003633, version 1.0.3, https://open-
neuro.org/datasets/ds003633/versions/1.0.3)23. The facial information was removed from the published dataset 
using pydeface (https://github.com/poldracklab/pydeface) to ensure anonymity. The data was organized accord-
ing to the MEG-Brain Imaging Data Structure24 v1.4.0 using the MNE-BIDS v0.8 toolbox25 (Fig. 5). Besides 
dataset and participant description files, the data were sorted into different directories, including “sub- < partic-
ipant_id > ,” “derivatives,” and “code” directory for raw data from each participant, preprocessed data, and the 
code used for stimuli presentation, MEG and MRI data preprocessing, respectively (Fig. 5a).

Raw data. The raw data of each participant were stored separately in the “sub-<participant_id>” folders 
(Fig. 5b), consisting of two subfolders, namely “anat” and “meg”. The T1w MRI data (“*T1w.nii.gz”) and asso-
ciated sidecar json files were located in the “anat” folders. The raw MEG data were provided as CTF ds files 
(“*_meg.ds”) for each run, and located in the “meg” folder along with sidecar json files. In addition, “*_channel.
tsv” files with MEG channel information, “*_events.tsv” files with the presentation timing of stimuli frames, and 
“*coordsystem.json” files with coordinate system information of the MEG sensors were included in the “meg” 
folder.

In parallel with the “sub-<participant_id>” directories, a “sub-emptyroom” directory hosted empty-room 
MEG measurements, which recorded the environmental noise of the MEG system. The empty-room measure-
ments lasted for 34 s and were acquired on each data acquisition day, except for the day 20190603.

preprocessed data. All preprocessed data were deposited in the “preproc_meg-mne_mri-fmriprep” sub-
directory under the “derivatives” (Fig. 5c). The preprocessed data of each participant were separately saved in the 

Fig. 5 File structure of the dataset.(a) File structure of the project directory. (b) File structure of the raw data for 
each individual participant. (c) File organization of the derived (preprocessed) data.
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“sub-<participant_id>/ses-movie” directory, which contains two subfolders, namely “anat” and “meg”. The “anat” 
folder comprised the preprocessed MRI volume, reconstructed surface, and other associations, including trans-
formation files. The “meg” folder included preprocessed MEG recordings, including “*_meg.fif.gz”, “*_ica.fif.
gz” and “*_decomposition.tsv”, and “*_trans.fif ” for the preprocessed data, ICA decomposition, and MEG-MRI 
coordinate transformation, respectively. In addition, the FreeSurfer surface data, the high-resolution head surface 
(“freesurfer/sub-<participant_id>/bem/*”), and the MRI-fiducials (“freesurfer/sub-<participant_id>/bem/*fi-
ducials.fif ”) were provided in “freesurfer/sourcedata” directory for MEG-MRI coregistration.

technical Validation
We assessed the data quality of both the raw and preprocessed data using four measures as follows: head motion 
magnitude, stimuli-induced time-frequency characteristics, homotopic functional connectivity (FC), and 
inter-subject correlation (ISC).

Motion magnitude distribution. Head movements during MEG scans are one of the significant factors 
that degrade both sensor- and source-level analyses. Herein, we calculated the motion magnitude for each sam-
ple as the Euclidian distance between the current and the initial head position while the movie segment began 
playing. The head motion across all runs and all participants were summarized for each of the three fiducials 
(NAS, LPA, and RPA) to provide an overview of the head movement of the dataset. As shown in Fig. 6, motion 
magnitude of 95% of the samples had head motions lower than 3.43 mm, 4.11 mm, and 3.87 mm for NAS, LPA, 
and RPA, respectively. Furthermore, 50% of the samples had head motions smaller than 0.99 mm, 1.10 mm, and 
1.46 mm for NAS, LPA, and RPA, respectively. These findings indicated low head motion magnitude on average. 
The head motion magnitudes of each participant are presented in Supplementary Fig. 1.

time-frequency characterization of brain activity. Next, we validated whether MEG recordings 
could successfully detect the change in stimuli-induced brain activity. Because the movie stimuli do not have 
explicit condition structures as in conventional design, we selected two exemplar movie clips, within which the 
audio or visual features showed pronounced changes to examine if the expected change in MEG signals could 
be detected at the related sensors. In one clip (Seg 3: frame 15864 ± 125 [10:35 ± 5 sec], the scene where Gump 
was marching during the Vietnam War), the audio features changed significantly (a vocal voice developed from 
background music), whereas the visual features were stable. In contrast, the other clip (Seg 1: frame 21768 ± 125 
[14:30 ± 5 sec], the scene where young Gump and Jenny were sitting on the tree waiting for stars), comprised 
of stable audio features, whereas the visual features changed from landscape to human figures. Validation was 
performed according to the following procedure26–28: first, time-frequency analysis with Morlet wavelets was 
conducted for each sensor in the occipital and temporal lobes. The baseline was set to 1000 ms before the change 
points of the audio or visual features, and the baseline mean was subtracted for each channel. Second, the 
time-frequency representations were averaged across the participants. Finally, the time-frequency representations 
were averaged across the sensors from the occipital and temporal lobes. As shown in Fig. 7, the time-frequency 
representations from the occipital sensors, and not the temporal sensors, were locked with changes in visual fea-
tures. The opposite pattern was observed for the audio feature changes in the stimuli. The results demonstrated 
that current MEG data could accurately detect stimulus-induced brain activity.

Homotopic functional connectivity. A basic principle of the brain’s functional architecture is that FC 
between inter-hemispheric homologs (i.e., homotopic regions) is particularly stronger than other interhemi-
spheric (i.e., heterotopic) FCs29,30. Herein, we tested if MEG data for dynamic movies at the sensor level could 
reveal strong homotopic FC. First, the absolute envelope amplitude of the MEG signal for each sensor (i.e., chan-
nel) was calculated using the Hilbert transform and then down-sampled to 1 Hz. Second, the homotopic FC 
between a certain sensor and its homotopic sensor was calculated as the Pearson correlation coefficient. For 
comparison, the heterotopic FC was also calculated for each sensor as the average correlation between it and all 

Fig. 6 Ensemble distribution of head motion magnitude across all runs and all participants. The density and 
accumulative histogram of motion magnitude of all samples from all acquisitions for three fiducials (NAS, LPA, 
and RPA) have been plotted. The dashed lines indicate 50% and 95% of the cumulative density. Left Y-axis: 
normalized histogram; Right Y-axis: cumulative histogram.
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its heterotopic sensors. Finally, the homotopic and heterotopic FC values were averaged across all runs and all 
participants. The homotopic FCs were generally stronger than the average heterotopic FCs (Fig. 8a). Importantly, 
the high homotopic FC primarily appeared at the sensors located in the occipital and temporal cortices, thereby 
indicating strong couplings driven by the movie stimuli (Fig. 8b).

Inter-subject correlation. ISC analysis uses the brain responses of a subject to naturalistic stimuli as a 
model to predict the brain responses of other subjects31. Numerous studies have demonstrated that visual and 
auditory cortices display significant ISC while watching audio-visual movies. We validated if a high ISC could be 
detected in our MEG data. For simplicity, the ISC analysis was conducted at the sensor-level. The MEG recordings 
captured neural oscillations at different frequency bands32. Therefore, the ISC was calculated in five bands (delta: 
1–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz, and gamma: 30–100 Hz). First, the MEG signal was filtered 
for each band. Second, the absolute envelope amplitude of each band was calculated via the Hilbert transform 
and down-sampled to 1 Hz. Third, for each frequency band, a leave-one-participant-out ISC was calculated for 
the left participant as the temporal correlation between the envelope amplitude from the participant and the 
average of other participants. Finally, the mean ISC was calculated by averaging the ISC across all participants. As 

Fig. 7 Time-frequency characterization of the brain activity for stimuli. MEG signals from two movie clips with 
pronounced changes in either audio or visual features of the stimuli have been examined. The time-frequency 
(TF) spectrum is shown for each condition with a unit of log ratio between the TF spectrum calculated from the 
signal of interest and that from the baseline signal (1000 ms before the onset). The occipital sensors (top) display 
significant signal changes with a change in the visual features of the stimuli. The temporal sensors (bottom) 
display significant changes with a change in the audio features.

Fig. 8 Sensor-level homotopic functional connectivity (FC) is stronger than heterotopic FC. (a) Density 
histogram of the sensor-level homotopic FC and heterotopic FC pooled across all runs and participants. 
(b) Topographic maps of the sensor-level homotopic (left) and heterotopic (right) FCs averaged across all 
acquisitions. Identical homotopic FC values are displayed for the corresponding homotopic sensors from the 
two hemispheres. Sensors in the central axis with no corresponding homotopic sensors were not included in the 
analysis.

https://doi.org/10.1038/s41597-022-01299-1
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shown in Fig. 9, sensors with higher ISC were located near the visual and audio cortices in the preprocessed data, 
which reportedly displayed high ISC during movie watching in previous studies14,33–35. In particular, the high ISC 
predominantly occurred in the delta, theta, and alpha bands, consistent with previous studies14,34,35. Together, the 
dataset demonstrated good validity in detecting ISC.

In addition, the high ISC around the orbital area in the raw data implies a synchronized eye movement across 
participants, which may have been generated by the participants’ high engagement with the movie36. These 
similar eye movement patterns produced similar electrooculography artifacts, which in turn caused high ISC 
around the orbital area in the raw data. The fact that the high ISC around the orbital area is only observed in the 
raw data but not in the ICA denoised data testified this speculation. Therefore, these results also reflect a good 
validity of our preprocessing protocol.

Usage Notes
We presented the first public MEG dataset for a full-length movie. The MEG signals were recorded while the 
participants watched the 2 h long Chinese-dubbed audio-visual movie “Forrest Gump”. The dataset provided 
a versatile resource for studying information processing in real-life contexts. First, MEG data could be inde-
pendently used to study the neural dynamics of sensory processing and higher-level cognitive functions under 
real-life conditions. Second, as a studyforrest extension, the dataset could be integrated with publicly available 
fMRI data from the studyforrest project. The fusion of fMRI and MEG may shed new light on the relationship 
between spatially localized networks observed in fMRI and the MEG-derived temporal dynamics. Moreover, 
our massive MEG recordings enable the direct training of deep neural networks (DNNs) with neural activity 
patterns. In contrast to the DNNs that were usually trained with stimuli without referring to any neural rep-
resentation, this kind of brain-constrained DNNs would act more like the human brain and generalize well 
across many tasks37,38.

Moreover, our dataset is also compatible with multiple stimulus annotations provided by the existing stu-
dyforrest project39–41. Because the visual stimuli for the MEG and fMRI datasets can be precisely aligned via 
the technique demonstrated in Fig. 2, the various non-speech related visual stimulus annotations from the 
German-dubbed fMRI stimuli in the studyforrest project can be used to complement the MEG data to explore 
the spatiotemporal dynamics underlying cognitive processing of annotated features. Besides, although the MEG 
and fMRI auditory stimuli cannot be strictly aligned at the phoneme level due to the language differences, 
annotations describing semantic features (e.g. semantic conflict) for fMRI stimuli should also work for the MEG 
dataset.

Despite the importance of the aforementioned dataset as an extension of the studyforrest dataset in studying 
the spatiotemporal dynamics underlying cognitive processing in real-life contexts, the limitations should be 
acknowledged. First, the participants in our MEG data did not overlap with that in the studyforrest project. 
Therefore, the fMRI-MEG fusion can be only performed at the group level (i.e., across participants) instead of at 
the individual level (i.e., within participants), thereby hampering the ability to study the individual differences 
in the coupling between spatially localized networks and temporal dynamics. Second, the dubbed languages 
used in our dataset and the studyforrest project were radically different, limiting the application of the data in 
examining spatiotemporal dynamics of brain activity underlying auditory processing and language. In addition, 
time differences between the stimuli in the MEG and fMRI data should be treated with caution. Considering the 
lower sensitivity of fMRI signals to the exact timing than that of MEG signals, we recommend the use of MEG 
stimuli for fusing fMRI and MEG data.

Fig. 9 Topographic maps of ISC in different frequency bands derived from both the raw and preprocessed 
MEG data. A high ISC occurs near the visual and audio cortices in the delta, theta and alpha bands in the 
preprocessed data. The high ISC around the orbital area is only observed in the raw data but not in the ICA 
denoised data.
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code availability
All custom codes for data preprocessing and technical validation are available at https://github.com/BNUCNL/
MEG_Gump. Preprocessing was performed using MNE-BIDS v0.8 (https://mne.tools/stable/index.html), MNE 
v0.22 (https://mne.tools/stable/install/mne_python.html), fMRIPrep v20.2.1 (https://fmriprep.org/en/stable/), 
pydeface v2.0.0 (https://github.com/poldracklab/pydeface), and dcm2niix v1.0.20180622 (https://github.com/
rordenlab/dcm2niix).
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