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GEOM, energy-annotated 
molecular conformations for 
property prediction and molecular 
generation
Simon axelrod1,2 & Rafael Gómez-Bombarelli  2 ✉

Machine learning (ML) outperforms traditional approaches in many molecular design tasks. ML models 
usually predict molecular properties from a 2D chemical graph or a single 3D structure, but neither of 
these representations accounts for the ensemble of 3D conformers that are accessible to a molecule. 
Property prediction could be improved by using conformer ensembles as input, but there is no large-
scale dataset that contains graphs annotated with accurate conformers and experimental data. Here 
we use advanced sampling and semi-empirical density functional theory (DFT) to generate 37 million 
molecular conformations for over 450,000 molecules. The Geometric Ensemble Of Molecules (GEOM) 
dataset contains conformers for 133,000 species from QM9, and 317,000 species with experimental 
data related to biophysics, physiology, and physical chemistry. Ensembles of 1,511 species with BACE-1 
inhibition data are also labeled with high-quality DFT free energies in an implicit water solvent, and 534 
ensembles are further optimized with DFt. GEOM will assist in the development of models that predict 
properties from conformer ensembles, and generative models that sample 3D conformations.

Background & Summary
Accurate and affordable prediction of molecular properties is a longstanding goal of computational chem-
istry. Predictions can be generated with rule-based1 or physics-based2 methods, which typically involve 
a trade-off between accuracy and speed. Machine learning offers an attractive alternative, as it is far quicker 
than physics-based methods and outperforms traditional rule-based baselines in many molecule-related tasks, 
including property prediction and virtual screening3–5, inverse design using generative models6–10, reinforce-
ment learning11–13, differentiable simulators14,15, and synthesis planning and retrosynthesis16,17.

Advances in molecular machine learning have been enabled by algorithmic improvements18–22 and by refer-
ence datasets and tasks23. A number of reference datasets provide unlabeled molecules for generation tasks7,24–27 
or experimentally labeled molecules for property prediction23,28–31. The molecules are typically represented as 
SMILES32 or InChi33 strings, which can be converted into 2D graphs, or as single 3D structures. These rep-
resentations can be used as input to machine learning models that predict properties or generate new com-
pounds. However, these representations fail to capture the flexibility of molecules, which consist of atoms in 
continual motion on a potential energy surface (PES). Molecular properties are a function of the conformers 
accessible at finite temperature34,35, which are not explicitly included in a 2D or single 3D representation (Fig. 1). 
Models that map conformer ensembles to experimental properties could be of interest, but they require a dataset 
with both conformers and experimental data.

Here we present the Geometric Ensemble Of Molecules (GEOM), a dataset of high-quality conform-
ers for 317,928 mid-sized organic molecules with experimental data, and 133,258 molecules from the QM9 
dataset36. 304,466 drug-like species and their biological assay results were accessed as part of AICures (https://
www.aicures.mit.edu), an open machine learning challenge to predict which drugs can be repurposed to treat 
COVID-19 and related illnesses. 16,865 molecules are from the MoleculeNet benchmark31. They are labeled with 
experimental properties related to physical chemistry, biophysics, and physiology. Conformers were generated 

1Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, 02138, USA. 2Massachusetts 
Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA, 02139, USA. ✉e-mail: 
rafagb@mit.edu

DATA DEsCripTOr

OPEN

https://doi.org/10.1038/s41597-022-01288-4
http://orcid.org/0000-0002-9495-8599
https://www.aicures.mit.edu
https://www.aicures.mit.edu
mailto:rafagb@mit.edu
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-022-01288-4&domain=pdf


2Scientific Data |           (2022) 9:185  | https://doi.org/10.1038/s41597-022-01288-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

with the CREST program37, which uses extensive sampling based on the semi-empirical extended tight-binding 
method (GFN2-xTB38) to generate reliable and accurate structures. CREST ensembles from 1,511 species 
in the BACE dataset39 were also labeled with high-accuracy single-point DFT energies and semi-empirical 
quasi-harmonic free energies. Of these ensembles, 534 were further refined with DFT geometry optimizations.

GEOM addresses two key gaps in the dataset literature. First, the data can be used to benchmark new models 
that take conformers as input to predict experimental properties, such as biological assay results for antiviral 
activity, or physicochemical and physiological properties. Such models could not be trained on the above molec-
ular datasets, which contain only 2D graphs or single 3D structures. Some datasets provide single 3D structures 
for hundreds of thousands of molecules36,40,41, but do not include a full ensemble for each species. Others con-
tain a continuum of high-quality 3D structures for each species, but only contain hundreds of molecules42–47. 
Yet others contain conformers for tens of thousands of molecules with experimental data48, but the conformers 
are of force-field quality (see below). GEOM is unique in its size, number of conformers per species, conformer 
quality, and connection with experiment.

Second, GEOM can be used to train generative models to predict conformers given an input molecular 
graph. This is an active area of research that seeks to lower the computation cost compared to exhaustive tor-
sional approaches and to increase the speed, reliability and accuracy compared to stochastic approaches49–55. The 
size and simulation accuracy of the GEOM dataset make it an ideal training set and for pre-training generaliz-
able models. Moreover, machine learning models for conformer generation are orders of magnitude faster than 
the methods used to generate GEOM. Hence models trained on GEOM may be able to reproduce its accuracy 
on unseen molecules at a fraction of the cost. As discussed below, the CREST ensembles have high coverage of 
the true thermally accessible conformers. Hence GEOM is an excellent benchmark for the recall and diversity 
of conformer generation methods. However, the CREST statistical weights for each conformer are rather inac-
curate. Therefore, benchmarks that include conformer probabilities should use the DFT weights provided in 
GEOM.

Table 1 provides summary statistics of the molecules that make up the dataset. The drug-like molecules 
from AICures are generally medium-sized organic compounds, containing an average of 44.4 atoms (24.9 heavy 

Fig. 1 Molecular representations of the latanoprost molecule. top SMILES string. left Stereochemical formula 
with edge features, including wedges for in- and out-of-plane bonds, and a double line for cis isomerism. right 
Overlay of conformers. Higher transparency corresponds to lower statistical weight.

AICures drug dataset (N = 304,466)

Mean Standard deviation Maximum

Number of atoms 44.4 11.3 181

Number of heavy atoms 24.9 5.7 91

Molecular weight (amu) 355.4 80.4 1549.7

Number of rotatable bonds 6.5 3.0 53

Stereochemistry (specified) 45,712 — —

Stereochemistry (all) 83,326 — —

QM9 dataset (N = 133,258)

Mean Standard deviation Maximum

Number of atoms 18.0 3.0 29

Number of heavy atoms 8.8 0.51 9

Molecular weight (amu) 122.7 7.6 152.0

Number of rotatable bonds 2.2 1.6 8

Stereochemistry (specified) 95,734 — —

Stereochemistry (all) 95,734 — —

Table 1. Molecular descriptor statistics for the QM9 and AICures molecules in the GEOM dataset.
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atoms), up to a maximum of 181 atoms (91 heavy atoms). They contain a large variance in flexibility, as demon-
strated by the mean (6.5) and maximum (53) number of rotatable bonds. 15% (45,712) of the molecules have 
specified stereochemistry, while 27% (83,326) have stereocenters but may or may not have specified stereochem-
istry. The QM9 dataset is limited to 9 heavy atoms (29 total atoms), with a much smaller molecular mass and few 
rotatable bonds. 72% (95,734) of the species have specified stereochemistry.

Table 2 summarizes the experimental properties in the GEOM dataset from the AICures dataset. Of note is 
data for the inhibition of SARS-CoV-2, and for the specific inhibition of the SARS-CoV-2 3CL protease. The 3CL 
protease has high sequence similarity to its SARS-CoV 3CL counterpart, for which there is significantly more 
experimental data. The similarity of the two proteases means that CoV-2 models may benefit from pre-training 
with CoV data, so GEOM can also be used to benchmark transfer learning methods. Another target of interest 
is the SARS-CoV PL protease56,57. The dataset also contains molecules screened for growth inhibition of E. Coli 
and Pseudomonas aeruginosa, both of which can cause secondary infections in COVID-19 patients.

Table 3 shows the species from MoleculeNet31 that are included in GEOM. We used every compound from 
the physical chemistry and physiology categories. These molecules have experimental data for three physical 
chemistry tasks and 659 physiology tasks. The latter include blood-brain barrier penetration, qualitative toxic-
ity, and whether a drug fails in clinical trials due to toxicity. GEOM also contains the BACE dataset39, which is 
part of the biophysics category of MoleculeNet. Each BACE molecule has an experimental binding affinity for 
human β-secretase 1 (BACE-1). The remaining biophysics datasets were excluded because of size, and because 
the AICures drug dataset is already sufficiently large. The “recovered” column in Table 3 shows that vacuum 
conformer-rotamer ensembles (CREs) were generated for over 98% of the molecules in each dataset other than 
SIDER. CREST CREs were also generated with an implicit solvent model of water for 99.9% of the BACE com-
pounds. As mentioned above, these conformers were further annotated with single-point DFT energies and xTB 
quasi-harmonic free energies.

GEOM contains vacuum CREs for 98% of the original molecules in all but one of the datasets within 
MoleculeNet. This means that future models using the CREs can be benchmarked against past predictions from 
2D and single-conformer models31. Care should still be taken when making such comparisons, as the missing 
molecules have similar characteristics, and may therefore bias the resulting data. For example, many missing 
compounds are extremely flexible. For most of these compounds, the CREST calculations ran for several days 
with 40 cores and did not finish. Other missing compounds failed during initial xTB optimization, often because 
of unusual topologies; this was most common in the SIDER dataset.

Target Species Hits Sources

SARS-CoV-2 5,832 101 78

SARS-CoV-2 3CL protease 817 78 79

SARS-CoV 3CL protease 289,808 447 80

SARS-CoV PL protease 232,708 696 56,57

E. Coli 2,186 111 3,81

Pseudomonas aeruginosa 1,968 48 78

Table 2. Experimental data for GEOM species from AICures.

Category Dataset Property Tasks Species Recovered Sources

Physical chemistry

ESOL Water solubility 1 1,113 99.6% 28

FreeSolv Hydration free 
energy 1 642 100.0% 29

Lipophilicity log Koctanol-water 1 4,194 99.9% 24,101

Biophysics BACE BACE-1 inhibition 1 1,511 99.9% 39

Physiology

BBBP Blood-brain barrier 
penetration 1 1,959 99.2% 102

Tox21 Qualitative toxicity 12 7,677 98.0% 103

ToxCast Qualitative toxicity 617 8,405 98.0% 104

SIDER Drug side effects 27 1,356 95.1% 105

ClinTox Toxicity of failed, 
approved drugs 2 1,438 98.7% 106,107

Table 3. Experimental data for GEOM species from MoleculeNet31. “Species” denotes the number of 
MoleculeNet compounds that have CREST CREs in vacuum. “Recovered” gives this quantity as a percentage of 
the original number of compounds in MoleculeNet. The original numbers in each dataset, used to compute the 
“recovered” percentage, are slightly different than in ref. 31. This is because several of the original compounds 
were found to be identical after SMILES pre-processing and conversion to InChi keys. Note that 1,511 BACE 
species (99.9%) also have CREST CREs in water.
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Methods
CrEsT. Generation of conformers ranked by energy is computationally complex. Many exhaustive, stochastic, 
and Bayesian methods have been developed to generate conformers58–65. The exhaustive method is to enumerate 
all the possible rotations around every bond, but this approach has prohibitive exponential scaling with the num-
ber of rotatable bonds60,66. Stochastic algorithms available in cheminformatics packages such as RDKit64 suffer 
from two flaws. First, they explore conformational space very sparsely through a combination of pre-defined dis-
tances and stochastic samples67 and can miss many low-energy conformations. Second, in most standalone appli-
cations, conformer energies are determined with classical force fields, which are rather inaccurate47. Enhanced 
molecular dynamics simulations, such as metadynamics (MTD), can sample conformational space more exhaus-
tively, but need to evaluate an energy function many times. Ab initio methods, such as DFT, can assign energies to 
conformers more accurately than force fields, but are also orders of magnitude more computationally demanding.

An efficient balance between speed and accuracy is offered by the newly developed CREST software37. This 
program uses semi-empirical tight-binding DFT to calculate the energy. The predicted energies are signifi-
cantly more accurate than classical force fields, accounting for electronic effects, rare functional groups, and 
bond-breaking/formation of labile bonds, but are computationally less demanding than full DFT. Moreover, the 
search algorithm is based on MTD, a well-established thermodynamic sampling approach that can efficiently 
explore the low-energy search space. Finally, the CREST software identifies and groups rotamers, conformers 
that are identical except for atom re-indexing. It then assigns each conformer a probability through

p
d E k T
d E k T

exp( / )
exp( / ) (1)

i
i i

j j j
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−
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Here pi is the statistical weight of the ith conformer, di is its degeneracy (i.e., how many chemically and per-
mutationally equivalent rotamers correspond to the same conformer), Ei is its energy, kB is the Boltzmann con-
stant, T is the temperature, and the sum is over all conformers. Equation (1) is an approximation to the true 
probability, ∝ −p G k Texp( / )i i B , where G is the free energy [Eqs. (3–4)]. The solvation free energy can be incor-
porated into E with a solvent model, but the translation, rotation, and vibrational free energies are missing. The 
addition of these terms is discussed below.

To generate conformers and rotamers, CREST takes a geometry as input and uses its flexibility to determine 
an MTD simulation time tmax (between 5 and 200 ps). The initial structure is deformed by propagating Newton’s 
equations of motion with an NVT thermostat68 from time t = 0 to tmax. The potential at each time step is given by 
the sum of the GFN2-xTB potential energy and a bias potential,

V k exp( ) ,
(2)i

n

i i ibias
2∑ α= − Δ

which forces the molecule into new conformations. The collective variables Δi are the root-mean-square dis-
placements (RMSDs) of the structure with respect to the ith reference structure, n is the number of reference 
structures, ki is the pushing strength and αi determines the potentials’ shapes. A new reference structure from 
the trajectory is added to Vbias every 1.0 ps, driving the molecule to explore new conformations. Different mole-
cules require different (ki, αi) pairs to produce best results, so twelve different MTD runs are used with different 
settings for the Vbias parameters.

Conformers are defined by rotation about dihedral angles. In MTD simulations with RMSD collective var-
iables, the biasing potential in Eq. (2) generates energy for overcoming torsional barriers. Since it takes less 
energy to cross a rotational barrier than to break a covalent bond, the biasing term leads to exploration of con-
formational space through rotation, rather than to trivial fragmentation37,68. Indeed, the bare energy without 
the biasing term keeps the molecule from exploring ultra-high energy regions, and thus reduces the size of the 
3N-6-dimensional PES to be explored, where N is the number of atoms. This also makes it more efficient at 
finding accessible minima than an exhaustive enumeration of dihedral angles, since the latter would include 
high-energy, thermally inaccessible structures.

Geometries from the MTD runs are then optimized with GFN2-xTB. Conformers are identified as structures 
with ΔE > Ethr, RMSD > RMSDthr, and ΔBe > Bthr, where ΔE is the energy difference between structures, ΔBe is 
the difference in their rotational constants, and thr denotes a threshold value. Rotamers are identified through 
ΔE > Ethr, RMSD > RMSDthr, and ΔBe < Bthr. Duplicates are identified through ΔE < Ethr, RMSD < RMSDthr, 
and ΔBe < Bthr. The defaults, which are used in this work, are Ethr = 0.1 kcal/mol, RMSDthr = 0.125 Å, and 
Bthr = 15.0 MHz. Conformers and rotamers are added to the CRE and duplicates are discarded.

If a new conformer has a lower energy than the input structure, the procedure is restarted using the con-
former as input, and the resulting structures are added to the CRE. The procedure is restarted between one and 
five times. The three conformers of lowest energy then undergo two normal molecular dynamics (MD) simula-
tions at 400 K and 500 K. These are used to sample low-energy barrier crossings, such as simple torsional motions, 
which are needed to identify the remaining rotamers. Conformers and rotamers are once again identified and 
added to the CRE. All accumulated structures are then used as inputs to a genetic Z-matrix crossing algo-
rithm68,69, the results of which are also added to the CRE. All geometries accumulated throughout the sampling 
process are optimized with a tight convergence threshold, identified as conformers, rotamers or duplicates, and 
sorted to yield the final set of structures. The process is restarted after the regular MD runs or the tight optimiza-
tion if any conformers have lower energy than the input, with no limit to the number of restarts. The final CRE 
contains conformers and rotamers up to a maximum energy Ewin. The default Ewin = 6.0 kcal/mol provides a 
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safety net around errors in the xTB energies, as only conformers with E 2 5.  kcal/mol have significant popu-
lation at room temperature.

CREST generates ensembles with good coverage of the true CREs. For example, ref. 37 compared the experi-
mental conformations of gas-phase citronellal, inferred through microwave spectroscopy70, with computational 
predictions. Each of the 15 lowest-energy experimental conformers was found in the CREST ensemble. The 
1H-NMR spectrum was then computed in chloroform using CREST conformers, together with DFT for energy 
re-ranking and computation of the coupling and shielding constants. The spectrum with the ensemble matched 
experiment far better than with only one conformer37. Investigation of macrocycles, a protonated peptide, 
metal-organic systems, and the 1-Naphthol dimer yielded similarly good results.

DFt. CREST offers an excellent balance between cost and accuracy for generating an initial CRE. The 
GFN2-xTB method is fast enough to be used in long MTD runs, and its conformational energies are accurate to 
within 2 kcal/mol (see Technical Validation). The number of energy and force calculations can easily reach into 
the millions for a single CREST run, making full DFT prohibitive and xTB quite practical. Further, the CREST 
safety window of 6.0 kcal/mol ensures that the vast majority of accessible conformers should be present in the 
CRE. However, the typical xTB errors of 2 kcal/mol are too large for the accurate ranking of the conformers by 
statistical weight. This is because p is exponential in ΔE/kBT, and at room temperature kBT = 0.59 kcal/mol, which 
is 3.4 times smaller than the average error. Further, the weights do not take into account the zero-point energy 
or the roto-translational and vibrational entropy (see below). Each of these contributions to the free energy is 
conformation-dependent, and can lead to non-negligible changes in statistical weight.

DFT can be used to optimize conformers and compute their relaxed energies. However, each ensemble 
can contain hundreds of conformers, which makes DFT optimization extremely resource-intensive. Further, 
a Hessian calculation is required to compute the zero-point energy and entropic corrections to the free energy. 
Such calculations are among the most computationally demanding in quantum chemistry. Thus a full DFT opti-
mization of each ensemble, together with an accurate free energy calculation, is a daunting task.

To address these issues, the developers of CREST recently introduced the CENSO program71. CENSO uses 
a series of optimizations at increasingly accurate levels of DFT theory. The free energy cutoff for discarding 
conformers is reduced at each stage, leading to fewer conformers in each successive round. Further, CENSO 
uses the recently developed r2scan-3c meta-GGA functional72 for the final optimization. r2scan-3c with the 
custom-made mTZVPP basis set is extremely accurate, yielding conformational energies that are within 0.3 kcal/
mol of the CCSD(T) complete basis set limit72. It is also quite affordable given its accuracy, with a cost that is 
100–1000 times lower than hybrid functionals with large basis sets72. The optimization is further accelerated 
by discarding duplicate conformers and high-energy geometries that are close to converged71. Lastly, CENSO 
computes entropic and zero-point corrections using the new biased Hessian method73. This technique uses 
xTB, which is quite computationally affordable, together with an extra biasing potential. The biasing poten-
tial accounts for energy differences between xTB and DFT, which allows xTB Hessians to be computed for 
DFT-optimized geometries.

The statistical weight computed by CENSO for the ith conformer is

p
G k T

G k T
exp( / )
exp( / )

,
(3)
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where Gi is the conformation-dependent free energy. Note that unlike CREST, CENSO does not include rotamer 
degeneracy in the calculation of p. The reason is that accounting for all rotamers, though attempted by CREST, is 
still a difficult task, and the difference in rotamers among different conformers should be small. The free energy 
is given by71:

δ= + + .G E G T G T( ) ( ) (4)i
i i i

gas
( )

solv
( )

trv
( )

Here Egas is the gas phase energy, G T( )solvδ  is the solvation free energy, and G T( )trv  is the free energy due to 
translation, rotation and vibration. δGsolv can be calculated with implicit solvent methods such as COSMO-RS74,75 
or C-PCM76. The solvation free energy predicted by r2scan-3c/COSMO-RS is typically accurate to within 
0.5 kcal/mol71. Given the Hessian matrix and the associated normal modes, G T( )trv  can be computed within the 
standard modified rigid-rotor harmonic-oscillator approximation77. This term can be predicted quite accurately, 
with sub-chemical accuracy attainable even for semi-empirical methods71.

CENSO qualitatively reproduces the optical rotation of organic molecules measured in solution, which is 
a challenging task that depends sensitively on the CRE71. Further, it makes very accurate predictions of the 
octanol-water partition coefficients and pKa values of various organic molecules71. Conformers and statistical 
weights generated by CENSO are thus quite reliable.

In this work we apply CENSO to 534 species, yielding the highest-accuracy ensembles ever generated for 
drug-like molecules. Calculations are performed in implicit water solvent for 35% of the molecules in the BACE 
dataset31,39, which contains experimental binding affinities for inhibitors of BACE-1 (Table 3). Binding affinity 
models that incorporate CREs can be trained with this data. Models trained on a single conformer can also ben-
efit from the CENSO ensembles. Since many of the drug-like molecules are quite flexible, the typical approach 
of optimizing a single force field conformer with DFT is likely to miss the true lowest-energy structure. Thus the 
lowest-energy CENSO structures are far more reliable inputs to single-conformer models. Lastly, the ensembles 
can be used for transfer learning (TL), so that generative models trained on the large CREST dataset can be 
fine-tuned with the CENSO data.
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In addition to the fully optimized CREs, we provide single-point DFT energies for all 1.3 million CREST 
conformers in 1,511 out of 1,513 BACE species (99.9%). We also provide xTB vibrational frequencies to com-
plete the calculation of G. Together, these calculations give statistical weights that are much more accurate than 
those of CREST, and somewhat less accurate than CENSO. Since nearly all BACE species have single-point 
calculations, future binding affinity models using the re-ranked CREs can be benchmarked against predictions 
from past 2D and 3D models31. All geometries with DFT energies are also annotated with DFT dipole moments, 
partial charges, and molecular orbital energies. This data can be used for multi-task learning to improve TL for 
conformer generation.

Conformer generation. SMILES pre-processing. SMILES strings from the QM9 dataset were used as 
given. SMILES strings and properties of the drug-like molecules were accessed from ref. 78 and https://github.
com/yangkevin2/coronavirus_data/tree/master/data (original sources are3,56,57,79–81). Each SMILES string was 
converted to its canonical form using RDKit. This allowed us to assign multiple properties from multiple sources 
to a single species, even if different non-canonical SMILES strings were used in the original sources.

3.9% of the drug molecules accessed (11,886 total) were given as clusters, either with a counterbalancing ion 
(e.g. “.[Na+]”, “.[Cl-]”) or with an acid to represent the protonated salt (e.g. “.Cl”). For non acid-base clusters we 
identified the compound of interest as the heaviest component of the cluster. For the acid/base SMILES strings, 
used reaction SMARTS in RDKit to generate the protonated molecule and counterion. This product SMILES 
was used in place of the original SMILES. Original SMILES strings are available in the dataset with the key 
uncleaned_smiles (see https://github.com/learningmatter-mit/geom for details). Not only does de-salting 
identify the drug-like compound in each cluster and correct its ionization state, it also homogenizes the molec-
ular representations in the drug datasets. For MoleculeNet we also selected the heaviest component from each 
cluster SMILES, but did not perform protonation.

Initial structure generation. To generate conformers with CREST one must provide an initial guess geometry, 
ideally optimized at the same level of theory as the simulation (GFN2-xTB). For the drug molecules we therefore 
used RDKit to generate initial conformers from SMILES strings, optimized each conformer with GFN2-xTB, 
and used the lowest energy conformer as input to CREST.

Conformers were generated in RDKit using the EmbedMultipleConfs command with 50 conform-
ers (numConfs = 50), a pruning threshold of similar conformers of 0.01 Å (pruneRmsThresh = 0.01), 
a maximum of five embedding attempts per conformer (maxAttempts = 5), coordinate initialization from 
the eigenvalues of the distance matrix (useRandomCoords = False), and a random seed. If no conformers 
were successfully generated then numConfs was increased to 500. Each conformer was then optimized with the 
MMFF force field82 in RDKit using the default arguments. Duplicate conformers, identified as those with an 
RMSD below 0.1 Å, were removed after optimization. Optimization was skipped for any molecules with cis/trans 
stereochemistry (indicated by “\” or “/” in the SMILES string), as such stereochemistry is not always maintained 
during RDKit optimization.

The ten MMFF-optimized conformers with the lowest energy were further optimized with xTB using Orca 
4.2.083,84. The conformer with the lowest xTB energy was selected as the seed geometry for CREST. The QM9 
molecules are already optimized with DFT, and so in principle did not need to be optimized further for CREST. 
However, since it is recommended to seed CREST with a structure optimized at the GFN2-xTB level of theory, 
we re-optimized each QM9 geometry with xTB before using it in CREST.

CREST simulation. A single xTB-optimized structure was used as input to the CREST simulation of each spe-
cies. Default values were used for all CREST arguments, except for the charge of each geometry. CREST runs on 
the AICures drug dataset took an average of 2.8 hours of wall time on 32 cores on Knights Landing (KNL) nodes 
(89.1 core hours), and 0.63 hours on 13 cores on Cascade Lake and Sky Lake nodes (8.2 core hours). QM9 jobs 
were only performed on the latter two nodes, and took an average of 0.04 wall hours on 13 cores (0.5 core hours). 
13 million KNL core hours and 1.2 million Cascade Lake/Sky Lake core hours were used in total.

CREST calculations on MoleculeNet species were run across several compute clusters, each with various 
node types and different core counts per node. KNL nodes were not used. Excluding species already present in 
the AICures dataset, each MoleculeNet job took 6.3 hours of wall time using 18.1 cores on average. These values 
are skewed by extremely flexible molecules whose CREST jobs took several days to finish: the median wall time 
was 1.4 hours, and the median core count was 12.0. 1.5 million CPU hours were used in total.

Graph re-identification. It was necessary to re-identify the graph of each conformer generated by CREST, for 
the following reasons. First, stereochemistry may not have been specified in the original SMILES string, but nec-
essarily existed in each of the generated 3D structures. Second, reactivity such as dissociation or tautomerization 
may have occurred in the CREST simulations (CREST has specific commands to generate tautomers, but they 
were not used here). This would also lead to conformers with different graphs.

To re-identify the graphs we used xyz2mol85 (code accessed from https://github.com/jensengroup/xyz-
2mol) to generate an RDKit mol object. These mol objects were used to assign graph features to each conformer 
(see Data Records). It should be noted that xyz2mol sometimes assigned resonance structure graphs instead 
of the original graphs. In some cases this caused different conformers of the same species to have different 
graphs. This happened, for example, when the conformers had different cis/trans isomerism about a double bond 
that was only present because of the resonance structure used (see the RDKit tutorial at https://github.com/
learningmatter-mit/geom). This is conceptually different from species whose conformer graphs differ because of 
reactivity. One may want to distinguish these two cases when analyzing the conformer mol objects. We also note 
that CREST changed the atom ordering of the input geometry, and hence of the subsequent conformers. This 

https://doi.org/10.1038/s41597-022-01288-4
https://github.com/yangkevin2/coronavirus_data/tree/master/data
https://github.com/yangkevin2/coronavirus_data/tree/master/data
https://github.com/learningmatter-mit/geom
https://github.com/jensengroup/xyz2mol
https://github.com/jensengroup/xyz2mol
https://github.com/learningmatter-mit/geom
https://github.com/learningmatter-mit/geom


7Scientific Data |           (2022) 9:185  | https://doi.org/10.1038/s41597-022-01288-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

means that, even if a conformer did not react, we could not simply create an RDKit mol object with its canonical 
SMILES and set its coordinates.

CENSO simulation. 534 molecules from the BACE dataset (35%) were optimized with CENSO. Initial CREs 
were generated with CREST using the ALPB model for water86. The CREs were refined with CENSO 1.1.2, using 
Orca 5.0.187 to perform the DFT calculations. The C-PCM76 model of water was used for DFT and the ALPB 
model was used for xTB. Conformer and rotamer duplicates were removed throughout the optimization using 
CREST (crestcheck = “on”). Default values were used for all other parameters. We used the same clusters 
and nodes for CENSO as for CREST with MoleculeNet species. The average CENSO job took 1 day and 4 hours 
of wall time using 54 cores. 781,000 CPU hours were used in total.

Single point calculations. We performed single-point DFT calculations on all CREST conformers in the BACE 
dataset without further optimization. We used Orca version 5.0.2 and the same level of theory as in CENSO 
optimization (r2scan-3c functional, mTZVPP basis, C-PCM model of water, and default grid 2). The average 
run took 6.4 minutes of wall time using 8 cores. Calculations took a total of 1.1 million CPU hours for 1.3 million 
conformers.

Hessian calculations. We performed Hessian calculations on all CREST conformers in the BACE dataset, using 
xTB with the ALPB model for water. The average run took 41 seconds of wall time using 4 cores. Calculations 
took a total of 63,000 CPU hours for 1.3 million conformers.

Conformational property prediction. The GEOM dataset is significant because it allows for the training 
of conformer-based property predictors and generative models to predict new conformations. The first applica-
tion will be explored in a future publication. The second application is necessary for using conformer-based ML 
models in practice, since generating CREST structures from scratch is too costly for the virtual screening of new 
species. Such work is already underway88, paving the way for graph → conformer ensemble → prop-
erty models that can be trained end-to-end. Here we give an example of a simpler application in the same vein, 
benchmarking methods to predict summary statistics of each conformer ensemble, rather than the conformers 
themselves. Our proposed tasks are similar to the benchmark QM9 tasks, which measure a model’s ability to pre-
dict properties that are uniquely determined by geometry. Here, since we provide conformer ensembles for each 
species, we measure a model’s ability to predict properties defined by the ensemble. Because one chemical graph 
spawns a unique conformer ensemble, these tasks are also a metric of the performance of graph-based models to 
infer properties mediated through conformational flexibility.

We trained different models to predict three quantities related to conformational information. A summary of 
these quantities can be found in Table 4 and Fig. 2. The first quantity is the conformational free energy, G = −TS, 
where the ensemble entropy is = − ∑S R p plogi i i

37. Here the sum is over the statistical probabilities pi of the ith 
conformer, and R is the gas constant. The conformational entropy is a measure of the conformational degrees of 
freedom available to a molecule. A molecule with only one conformer has an entropy of exactly 0, while a mole-
cule with equal statistical weight for an infinite number of conformers has infinite conformational entropy. The 
conformational Gibbs free energy is an important quantity for predicting the binding affinity of a drug to a tar-
get. The affinity is determined by the change in Gibbs free energy of the molecule and protein upon binding, 
which includes the loss of molecular conformational free energy89. The second quantity is the average conforma-
tional energy. The average energy is given by = ∑E p Ei i i, where Ei is the energy of the ith conformer. Each 
energy is defined with respect to the lowest-energy conformer. The third quantity is the number of unique con-
formers for a given molecule, as predicted by CREST within the default maximum energy window37.

We trained a kernel ridge regression (KRR) model90, a random forest91, and three different neural networks 
to predict conformer properties. The random forest, KRR and feed-forward neural network (FFNN) models 
were trained on Morgan fingerprints92 generated through RDKit. Two different message-passing neural net-
works93 were trained. The first, called ChemProp, has achieved state-of-the-art performance on a number of 
benchmarks20. The second is based on the SchNet force field model94,95. We call it SchNetFeatures, as it learns 

AICures drug dataset

Mean Std. deviation Maximum

S (cal/mol K) 8.2 2.6 16.8

-G (kcal/mol) 2.4 0.8 5.0

⟨ ⟩E (kcal/mol) 0.4 0.2 2.4

Conformers 102.6 159.1 7,451

QM9 dataset

Mean Std. deviation Maximum

S (cal/mol K) 3.9 2.8 14.2

-G (kcal/mol) 1.2 0.8 4.2

⟨ ⟩E (kcal/mol) 0.2 0.2 2.2

Conformers 13.5 42.2 1,101

Table 4. CREST-based statistics for the QM9 and AICures drug datasets.
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from 3D geometries using the SchNet architecture, but also incorporates graph-based node and bond features. 
The SchNetFeatures models were trained on the highest-probability conformer of each species.

100,000 species were sampled randomly from the AICures drug subset of GEOM. We used the same 60-20-
20 train-validation-test split for each model. The splits, trained models, and log files can be found at96, under the 
heading “synthetic”. Hyperparameters were optimized for each model type and for each task using the hyper-
opt package. Details of the hyperparameter searches, optimal parameters, and network architectures can be 
found in the same location as the models. Source code is available at https://github.com/learningmatter-mit/
NeuralForceField.

Results are shown in Table 5. ChemProp and SchNetFeatures are the strongest models overall, followed in 
order by FFNN, KRR, and random forest. Of the three models that use fixed 2D fingerprints, we see that the 
FFNN is best able to map these non-learnable representations to properties. ChemProp has the added flexibility 
of learning an ideal molecular representation directly from the graph, and so performs even better than the 
FFNN. The SchNetFeatures model retains this flexibility while incorporating extra information from one 3D 
structure. Compared to ChemProp, its prediction error is 10% lower for G, nearly equal for E⟨ ⟩ , and 5% lower 
for ln(unique conformers). The small improvement in performance is not surprising, as the ensemble properties 
are mainly determined by molecular flexibility, which is a function of the graph through the number of rotatable 
bonds. A single 3D geometry would not provide extra information about this flexibility.

We see that various models can accurately predict conformer properties when trained on the GEOM dataset. 
With access to the dataset, researchers will therefore be able to predict results of expensive simulations without 
performing them directly. This has implications beyond ensemble-averaged properties, as generative models 
trained on the GEOM dataset will also be able to produce the conformers themselves88.

Data Records
The dataset is available online at97, and detailed tutorials for loading and analyzing the data can be found at 
https://github.com/learningmatter-mit/geom.

The data is available either through MessagePack, a language-agnostic binary serialization format, or through 
Python pickle files. There are two MessagePack files for the AICures drug dataset and two for QM9. Each of the 
two files contains a dictionary, where the keys are SMILES strings and the values are sub-dictionaries. In the file 
with suffix crude, the sub-dictionaries contain both species-level information (experimental binding data, 
average conformer energy, etc.) and a list of dictionaries for each conformer. Each conformer dictionary has its 
own conformer-level information (geometry, energy, degeneracy, etc.). In the file with suffix featurized, 
each conformer dictionary contains information about its molecular graph.

The Python pickle files are organized in a different fashion. The main folder is divided into sub-folders for 
QM9, AICures, and MoleculeNet data, plus separate folders for BACE calculations in water and with CENSO. 

Fig. 2 Violin plots of CREST-based statistics for the QM9 and AICures drug datasets.

Model G (kcal/mol) E (kcal/mol)
In(unique 
conformers)

Random Forest 0.406 0.166 0.763

KRR 0.289 0.131 0.484

FFNN 0.274 0.119 0.455

ChemProp 0.225 0.110 0.380

SchNetFeatures 0.203 0.113 0.363

Table 5. Prediction mean absolute error (MAE) for three conformer-related properties. Models were trained 
and tested on the AICures drug dataset.
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Each sub-folder contains one pickle file for each species. Each pickle file contains both summary information 
and conformer information for its species. Each conformer is stored as an RDKit mol object, so that it contains 
both the geometry and graph features. One may only want to load the pickle files of species with specific proper-
ties (e.g., those with experimental data for SARS-CoV-2 inhibition); for this one can use the summary JSON file. 
This file contains all summary information along with the path to the pickle file, but without the list of conform-
ers. It is therefore lightweight and quick to load, and can be used to choose species before loading their pickles.

technical Validation
The quality of the data was validated in three different ways. First, we checked that the conformer data was accu-
rately parsed from the CREST calculations. To do so we randomly sampled one conformer from 20 different 
species and manually confirmed that its data matched the data in the CREST output files.

Second, we re-identified the graphs of the conformers generated by CREST using xyz2mol. The graph 
re-attribution procedure succeeded for 88.4% of the QM9 molecules and 94.7% of the drug molecules, recov-
ering the original molecular graph that was used to generate each conformer. Note that to compare graphs we 
removed stereochemical indicators from the original and the re-generated graph. This was done because of cases 
in which stereochemistry was not specified originally but was specified in the generated conformers. All of the 
failed QM9 graphs underwent some sort of reaction, which can be explained by the presence of highly strained 
and unstable molecules. However, manual inspection of 53 cases in the AICures drug dataset suggests that 70% 
of the drug graphs failed only because of poor handling of resonance forms by xyz2mol (see above). This 
means that the original graph was likely recovered for 98.4% of all drugs. 21% of cases failed because of tautom-
erization (1% of all cases), and 9.4% failed because of a different reaction (usually dissociation or ring formation; 
0.5% of all cases). The high success rate of the graph re-identification indicates that, in the vast majority of cases, 
the geometries generated by CREST were actual conformers of the species.

Third, we compared the CREST energies and coordinates to those from higher levels of theory. Figure 3 
compares the GFN2-xTB calculations of CREST with single-point r2scan-3c calculations, both performed in 
water for 1,511 species in the BACE dataset. Panel (a) shows the relative energies of the two methods. The mean 
absolute error (MAE) of xTB is 1.96 kcal/mol, which is similar to reported values in conformational energy 
benchmarks38. The ranking accuracy can be measured with the Spearman correlation coefficient ρ, which lies 
between 1 and −1 (perfect correlation and anti-correlation, respectively). The Spearman coefficient is 0.47 when 
using all geometries from all species. However, it is more meaningful to judge the energy rankings among dif-
ferent conformers in a single species. Computing ρ separately for each species yields the distribution in panel 
(b). The distribution of ρ is quite wide, with an average value of 0.39 and a standard deviation of 0.35. The mean 
value of ρ indicates moderate correlation between the methods. The correlation is significantly better than for 
classical force fields such as MMFF9482, UFF98, and GAFF99: For instance, the median ρ between MMFF94 and 
single-point DFT for drug-like molecules is between −0.1 and −0.45, meaning that the two methods are actu-
ally weakly anti-correlated (Supporting Information of ref. 47).

Figure 4 compares single-point DFT calculations on CREST geometries (“SP”) with DFT results on fully 
optimized geometries (“CENSO”). Panel (a) shows the distribution of ρ for conformer energies. The average 
Spearman correlation is 0.69 and the standard deviation is 0.27, indicating good agreement between the two 
methods. Indeed, the MAE between optimized and single-point relative energies is 0.54 kcal/mol, which is 3.6 
times lower than the xTB error (the MAE of the absolute energy, equal to the average energy released after opti-
mization, is 5.74 kcal/mol). Panel (b) shows that the geometries change very little during optimization, with a 
mean RMSD of only 0.36 Å. This shows that the CREST geometries are quite good, thus validating the quality of 
the GEOM ensembles. The median RMSD among heavy atoms is 0.25 Å; this is 2.4 times lower than the value of 
0.6 Å between MMFF94 and PM7 geometries100 for drug-like molecules47.

Similar comparisons can be made between CENSO geometries and their most similar CREST counterparts 
(i.e., the CREST geometry with the lowest RMSD relative to a CENSO geometry). These may not be the same 
as the CREST geometries used to seed the optimization. We have found that using the most similar geome-
tries does not significantly affect the results; for example, the Spearman coefficient only climbs to 0.72 ± 0.27, 
while the RMSD only drops to 0.33 ± 0.19. Note also that the comparison of the methods only includes con-
formers with non-negligible weight after optimization (ΔG ≤ 2.5 kcal/mol), since CENSO discards high-energy 

Fig. 3 Comparison of GFN2-xTB (CREST) energies and single-point r2scan-3c (DFT) energies. (a) xTB vs. 
r2scan-3c energies for all geometries in the BACE-1 dataset. The ideal correlation is shown with a dashed 
white line. (b) Distribution of Spearman rank correlation coefficients ρ, measuring the accuracy of xTB energy 
ranking for each of the ensembles.
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conformers during optimization. Hence high-energy conformers were not fully optimized and thus not included 
in the comparison.

Figure 5(a) compares the ordering of geometries with CREST and with CENSO. The Spearman correlation is 
ρ = 0.43 ± 0.41, which is similar to the correlation between CREST and single-point energies. This result should 
be interpreted with caution, however, since only the lowest-energy CENSO geometries are included in the com-
parison, whereas the rank correlation in Fig. 3 includes all CREST conformers. Lastly, Fig. 5(b) compares the 
ordering of CENSO geometries by energy and by free energy. The correlation is quite high (ρ = 0.85 ± 0.18), and 
the MAE between energies and free energies is only 0.33 kcal/mol. Hence energies alone can be quite good for 
ordering conformers by statistical weight. This also means that the statistical weight errors in GEOM are domi-
nated by xTB errors, and that the quasi-harmonic errors are comparably negligible.

Usage Notes
Researchers are encouraged to use the data-loading tutorials given in https://github.com/learningmatter-mit/
geom. We suggest loading the data through the RDKit pickle files, as RDKit mol objects are easy to handle and 
their properties can be readily analyzed. The MessagePack files, while secure and accessible in all languages, 
represent graphs through their features rather than objects with built-in methods, and are thus more difficult 
to analyze. To train 3D-based models we suggest following the tutorial and README file at https://github.com/
learningmatter-mit/NeuralForceField.

Code availability
Tutorials for loading the dataset and code for training 3D-based neural network models are publicly available 
without restriction (https://github.com/learningmatter-mit/geom and https://github.com/learningmatter-mit/
NeuralForceField). CREST and xTB are both freely available online (https://github.com/grimme-lab/crest/
releases and https://github.com/grimme-lab/xtb/releases). CREST version 2.9 was used with xTB version 6.2.3 to 
generate the initial CREs. CENSO 1.1.2 was used with Orca 5.0.187 and xTB 6.4.1 to refine the ensembles. Orca 
5.0.2 was used for all single-point calculations. A race condition bug in version 5.0.1 meant that some CENSO 
energies were clearly incorrect (conformational energies above 1,000 kcal/mol), while some energy calculations 
failed to converge for reasonable geometries. Therefore, we discarded ensembles with failed energy calculations 
or conformational energy ranges exceeding 30 kcal/mol at any stage of the optimization. We also performed new 
single-point calculations on all converged CENSO geometries with Orca 5.0.2; 0.44% of the energies were found 
to be incorrect and were replaced.

Fig. 4 Comparison of CENSO and single-point DFT calculations. (a) Distribution of Spearman coefficients, 
measuring the accuracy of single-point ranking for each of the ensembles. (b) RMSDs between CREST 
geometries and DFT-optimized geometries.

Fig. 5 (a) Comparison of CENSO and CREST calculations. The distribution of Spearman coefficients shows 
the accuracy of CREST ranking for each of the ensembles. (b) Comparison of energy and free-energy ranking 
with CENSO. The distribution of Spearman coefficients shows the accuracy of energy ranking for each of the 
ensembles.
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