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a global record of annual terrestrial 
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Human Footprint, the pressure imposed on the eco-environment by changing ecological processes 
and natural landscapes, is raising worldwide concerns on biodiversity and ecological conservation. Due 
to the lack of spatiotemporally consistent datasets of Human Footprint over a long temporal span, 
many relevant studies on this topic have been limited. Here, we mapped the annual dynamics of the 
global Human Footprint from 2000 to 2018 using eight variables that reflect different aspects of human 
pressures. the accuracy assessment revealed a good agreement between our mapped results and the 
previously developed datasets in different years. We found more than two million km2 of wilderness 
(i.e., regions with Human Footprint values below one) were lost over the past two decades. the biome 
dominated by mangroves experienced the most significant loss (i.e., above 5%) of wilderness, likely 
attributed to intensified human activities in coastal areas. The derived annual and spatiotemporally 
consistent global Human Footprint can be a fundamental dataset for many relevant studies about 
human activities and natural resources.

Background & Summary
The intensified human activities are influencing the ecological processes and anthropogenic biomes1, causing 
distinct changes in species distributions and habitats2. Globally, biodiversity is declining at an alarming rate due 
to the increased risk of species extinction caused by human activities3,4. Most studies about human activities 
investigate the conversion of land cover and land use alone4,5, which are inadequate to capture diverse pres-
sures from human activities. Meanwhile, some studies considering the single pressure (e.g., nighttime light6 or 
population density7) are limited in exploring the synthesized effect of multiple human activities8,9. Presently, 
many ecosystems suffer various ecological and environmental pressures beyond their tolerances for recovery10. 
Consequently, mapping spatiotemporally consistent datasets of Human Footprint is urgently required in prac-
tical applicatioins11.

Studies of mapping global human pressures have been conducted to understand the influence of humans 
on habitat and biodiversity. The first temporally comparable global Human Footprint maps were developed 
by Venter et al.12,13 with two phases (i.e., 1993 and 2009). These maps have been extensively used in studies 
about biodiversity12, ecological landscape14,15, and climate change10,16. New definitions were derived using the 
conventional approach of mapping Human Footprint13,17, including the wilderness (Human Footprint < 1), the 
intact areas (Human Footprint < 4), and the highly modified (Human Footprint ≥ 4) regions18,19. The Human 
Footprint data can greatly extend their applications under different scenarios20–24. For example, Watson et al.25 
investigated the relationship between Human Footprint and native forests. They found the integrity of intact 
forest ecosystems is crucial to maintaining biodiversity. Marco et al.20 found the wilderness derived from Human 
Footprint can significantly reduce the rate of species loss than that in non-wilderness areas.

Previous studies about Human Footprint mapping mainly focus on the spatial heterogeneity of the derived 
results, with little consideration of the temporal dynamics of human activities13,18,23. This significantly lim-
ited the wide application of Human Footprint maps in practical applications. Humans have considerably 
impacted the natural ecosystems in the Anthropocene over the past decades26. However, due to the rapid 
urbanization and population increase, mapping Human Footprint with relatively coarse temporal resolution  
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(e.g., five years or decade) is inadequate, particularly when facing rapidly changing environments (e.g., urbani-
zation). Hence, a consistent record of Human Footprint across space and time is of great importance to evaluate 
human-induced changes and promote sustainable development.

In this study, we developed annual records of the global Human Footprint dataset from 2000 to 2018, using 
eight variables (i.e., built environment, population density, nighttime lights, cropland, pasture, roads, railways, 
and navigable waterways). First, we adopted a standard mapping framework to characterize the level of Human 
Footprint with consistent definitions across space and time. Then, we evaluated our results using validation sam-
ples collected from the visual interpretation and compared our derived maps with other studies across different 
years. Finally, we investigated the dynamics of wilderness and highly modified areas across different terrestrial 
biomes27.

Methods
We generated the annual records of the global Human Footprint from 2000 to 2018 using eight variables that 
characterize the human pressures (Fig. 1). The proposed framework includes three components. First, we col-
lected and processed eight variables that reflect human pressures from different aspects, such as land transfor-
mation, population density, human access, and infrastructures (Fig. 1a). Then, we generated the time series data 
of the annual global Human Footprint using consistent definitions and mapping framework (Fig. 1b). Finally, 
we evaluated the derived results through comparison with the validation samples and previous studies to explore 
the dynamics of Human Footprint across different global terrestrial biomes27 (Fig. 1c).

Human pressure variables. We employed eight pressure variables that reflect different aspects in our study, 
including built environments, population density, nighttime light, croplands, pasture lands, roadways, railways, 
and navigable waterways. Unlike previous studies that only use limited epochs of pressure variables18,23, we 
improved the temporal consistency of some crucial pressure variables, such as the annual maps of global artificial 
impervious area (GAIA)5 and the global harmonized nighttime light dataset28. These pressure variables were 
preprocessed to 1 km resolution with global coverage. We followed the classic method developed by Sanderson 
and Venter12,13,17 to generate Human Footprint datasets. Details of each pressure variable can be found in the 
following sections.

Built environments. The expansion of built environments is threatening the biodiversity in species-rich 
regions29. As the dominant change in the built environment, the process of urban sprawl can be quantitatively 
characterized by remotely sensed observations5,30,31. The expansion of impervious surface areas, commonly com-
posited by artificial materials (e.g., roofs, paved surfaces, hardened grounds, and major road surfaces) in the built 
environment32–35, would fragment the natural habitats and disturb the richness of species36,37. Satellite images 
can detect the dynamics of impervious surface area and further support the mapping of the Human Footprint.

Fig. 1 The proposed framework in this study by collecting eight human pressure variables from multiple 
sources (a), generating annual global Human Footprint datasets (b), and the evaluation and application of 
derived results (c).
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We adopted the GAIA data in this study to represent the built environment. Given that the spatial resolution 
of GAIA is 30 m, we calculated the urban fraction within the 1 km grid and regarded those pixels with percent-
ages above 20% as urban38. Compared to previous studies that generate the built environment through nighttime 
light (NTL)13,18, the GAIA data are advanced regarding the temporal consistency across different years and the 
improved performance in delineating the urban extent. For example, there are some limitations using the NTL 
data as the variable for Human Footprint mapping, such as the overflow and saturation effects of NTL data in/
around the city and the absence of inter-calibration of NTL time series data among the sensors and satellites39–42.

Population density. With the increase of population, human-induced environmental changes are likely to 
threaten biodiversity and degrade the environment of habitats43,44. Hence, in this study, we used the population 
density data collected from the WorldPop program45,46, which provides temporally consistent maps of the popu-
lation with a medium resolution of 100 m. We aggregated the population density data to 1 km as well.

Nighttime lights. Nighttime light provides a unique aspect to detect human activities from satellites, show-
ing great potential in measuring the human pressures on natural ecosystems47,48. Previous studies of mapping 
Human Footprint using NTL data are limited due to the temporal inconsistency of NTL observations from the 
raw Defense Meteorological Satellite Program (DMSP) data (1992–2013), as well as the difference of NTL data 
between the DMSP and the Visible Infrared Imaging Radiometer Suite (VIIRS) (2012-now)18,28,40. These limi-
tations have been significantly improved with the advent of newly developed NTL datasets28. In this study, we 
employed the harmonized NTL dataset at the global scale, which integrated the inter-calibrated NTL observa-
tions from the DMSP and the simulated DMSP-like NTL observations from the VIIRS data with a high degree 
of temporally consistency40.

Crop and pasture lands. In addition to urban lands, the expansion of cropland and pasture lands is another 
source of human activities that may cause habitat loss and the degradation of biodiversity49,50. We used the 
annual crop maps derived from the European Space Agency (ESA) Climate Change Initiative (CCI) Landcover 
dataset (http://maps.elie.ucl.ac.be/CCI/viewer/)51. Also, we employed the widely used pasture map developed 
by Ramankutty et al.52, which combined agriculture census data and satellite-derived land cover and has been 
extensively used in Human Footprint mapping52,53. It is worth noting that the pasture map is consistent across 
years without annual change information.

Roads and railways. Roads are links between natural and human environments and are highly related to 
human activities54,55. Here, we obtained the global roads by combining records in the Open Street Maps (OSM) 
(https://planet.osm.org) and the Global Roads Open Access Dataset (gROADS)56. The gROADS contains the 
most available road data in each country, whereas the OSM is a volunteer-driven, open-source global mapping 
project that contains freely accessible detailed geographic information around the world. In this study, all trails 
and minor roads were excluded. Besides, the railways were collected from the National Geospatial-Intelligence 
Agency (NGA; https://gis-lab.info/qa/vmap0-eng.html).

Navigable waterways. Navigable waterways are other corridors that link the aquatic environment and human 
activities by ships and pollution57,58. We quantified the pressure indicated by navigable waterways following the 
approach of Human Footprint in Venter et al.13. The navigable waterways were determined by (1) the river depth 
is greater than 2 m, and (2) the distance to lit pixel is within 4 km. In this study, we mapped global navigable 
waterways by integrating the coasts and rivers from NGA and the HydroSHEDS (Hydrological data and maps 
based on SHuttle Elevation Derivatives at multiple Scales)59. We determined the annual navigable waterways by 
comparing the river networks with the annual NTL data from 2000 to 2018.

Pressure Score Details

Built environment 0,4,10 The pressure score for pixels with urban fractions above 20% was assigned as 10; 
otherwise, it was assigned as 4.

Population density 0–10 population P
P P

10, ( ) 1000
3 333 log( 1) , 0 1000






≥
. × + < <

Night-time lights 0–10 Assigned from 0 to 10 according to intervals determined by ten equal quantiles

Croplands 0,4,7 The pressure score for pixels with crop fraction above 20% was assigned as 7; 
otherwise, it was assigned as 4.

Pasture 0–4 Fraction of pasture in each grid multiplied by 4

Roads 0–8 distance D
D D

8, ( ) 0 5
3 75 exp( 1 ( 1)) 0 25, 0 5 15






≤ .
. × − × − + . . < <

Railways 0,8 distance D
D
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Navigable waterways 0–4 distance D
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0, ( ) 15
4 exp( 1 ) , 15
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Table 1. The framework of mapping annual Human Footprint at the global scale as illustrated in Williams et al.18.
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Mapping of annual Human Footprint data. We mapped the annual dynamics of Human Footprint at 
the global scale using the standard framework developed by Venter and Williams et al.13,18. In the beginning, all 
these eight human pressure variables were preprocessed to 1 km. Then, different scores were assigned according 
to their contributions (Table 1). Given that variables used to characterize the built environments and cropland 
were derived from the high-resolution datasets, we assigned their scores according to their fractions within the 
pixel. For example, when the fraction of urban is greater than 20%, the built environment was assigned a score 
of 10. The population density was assigned with a pressure score of 10 for pixels with more than 1000 people in 
each 1 km grid, while for those pixels with densities less than 1000, their pressure scores were measured using 
the equation in Table 1. Besides, we measured the direct and indirect influence of traffic networks according to 
the distance of each pixel to nearby roads and railways. For pixels close to the roads and railways, we assigned the 
score of 8 as suggested in Venter et al.13; otherwise, we assigned their scores according to the distance decaying 
relationship in Table 1.

Fig. 2 The derived Human Footprint map in 2009 (a) with evaluations using interpreted samples and other 
published products (b). We normalized our results for comparison because the ranges of visually interpreted 
samples and Kennedy’s result24 are 0-1, and visually interpreted samples from Venter et al.13.
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evaluation and application of the derived datasets. We evaluated the derived Human Footprint maps 
through comparison with previous studies13,18,24, and analyzed the temporal trends of the derived dataset in differ-
ent terrestrial biomes27. We assessed our results using visually interpreted samples (in total: 3,460) from Venter13. 
The degree of Human Footprint in these samples was interpreted according to the shape, size, texture, and color of 
human-related features (e.g., built environment, cropland, and road) in high resolution satellite images. We also 
compared our mapped results with previously developed products in literature, such as maps in Venter et al.13, 
Williams et al.18, and Kennedy et al.24 at multiple phases. In addition, we also explored the dynamics of Human 
Footprint at the globe across different terrestrial biomes, including specific types such as wilderness (Human 
Footprint of < 1), intact areas (Human Footprint of < 4), and highly modified areas (Human Footprint of ≥ 4).

Fig. 3 Difference of Human Footprint datasets between our result and the original map developed by Venter et al.13  
in 2009 (a). Enlarged views in representative regions are presented in (b), with a spatial extent of 2000 km  
× 2000 km.
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Data records
The annual records of the global Human Footprint from 2000 to 2018 can be accessed freely at the figshare 
repository (https://doi.org/10.6084/m9.figshare.16571064)60. All Human Footprint were mapped using the 
Mollweide equal-area projection at 1 km resolution. The data collection contains one .zip file for each year, 
labelled hfpXXXX.zip. Each .zip file contains one GEOTIFF.

technical Validation
The comparison between our Human Footprint datasets and other studies suggests a high degree of consistency. 
Globally, only about one-third of the global land (38.6 million km2) is wilderness (less than 1) in 2009, the year 
of the referred Human Footprint data in Venter et al.13, whereas areas of intact (less than 4) and highly modified 
areas (greater than 4) are 60.9 million km2 and 73.2 million km2, respectively (Fig. 2a). This result suggests our 
planet has been notably impacted by humans worldwide, showing similar results as the target of protecting half 
of the natural lands61. The validation using visually interpreted samples reveals an improved correlation with R2 
of 0.62, higher than that in previously developed Human Footprint map (R2 is 0.50)13 (Fig. 2b). The improved 
correlation with interpreted samples is attributable to the improved human pressure variables adopted in this 
study. Meanwhile, our derived results show a high agreement with other studies regarding indicators of the 
slope and R2, in particular with results from William’s18 in different years (i.e., 2000, 2005, 2010, and 2013) and 
from Kennedy’s24 in 2016 (Fig. 2b). It is worth noting that the temporal span in our results is expanded with a 
high degree of temporal consistency compared with other studies. Thus, the derived results can support change 
analysis studies at a global scale.

Compared to the original Human Footprint map, our results significantly improved those underestimated 
regions due to the improved quality of human pressure data from built environment, population density, and 
cropland (Fig. 3). The difference between the original and our Human Footprint for 2009 is mainly less than two 
(see green areas in Fig. 3a). We selected four representative regions for illustration in North America, Europe, 
Africa, and China (Fig. 3b). Compared to the 1 km NTL data used in Venter et al.13, our built environment 
pressure extracted from 30 m Landsat images can identify small human settlements clearly, especially in Europe 
and China. Besides, there is a distinct difference in the spatial pattern of cropland in North America and Africa, 

Fig. 4 The temporal trend of global wilderness and highly modified areas from 2000 to 2018 (a), with detailed 
dynamics of Human Footprint maps in China with enlarged views (b) and the change of our and Williams’s18 
Human Footprint from 2000 to 2013 (c). Note: the red and blue boxes in (c) indicate the Eastern US and Eastern 
China (extent in (b)), respectively.
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which is likely attributable to their inputs. For example, the cropland quality in ESA CCI is notably higher than 
Global Land Cover Map for 2009 (GlobCover 2009)62 used in Venter et al.13 regarding their spatial patterns and 
the temporal dynamics. In addition, the raw resolution of population density in Venter et al.13 is 4 km with two 
phases (i.e., 1990 and 2010), making it challenging to reflect the pressure from humans.

Our results can reveal a continuous change of Human Footprint records (Fig. 4). From 2000 to 2018, the 
human pressure on 39.4% of the wilderness (i.e., without human intervention) continues to increase, of which 
2.1 million km2 have been transformed into intact or human-modified areas (Fig. 4a). Specifically, there has 
been an increasing temporal trend in human-modified areas worldwide over the past decades, such as in China 
(Fig. 4b). Due to the global urbanization and population mitigation from rural to urban, the human pressure in 
rapidly developing regions is notably increased over the past decades. In addition, changes in Human Footprint 
(i.e., increase and decrease) from 2000 to 2013 in our derived results are consistent with Williams’s result18. Due 
to different sources of characterizing the built environment, there are some differences in detailed spatial maps 
from these two results (see enlarged snapshots in Fig. 4c). In general, regions with increasing human pressure 
are mainly distributed in Southeast Asia, Africa, and South America (Fig. 4c).

Global wilderness is declining in most terrestrial biomes27, especially in biomes dominated by mangroves 
in the coastal area of Asia (Fig. 5). This phenomenon is closely related to human activities. From 2000 to 2018, 
the wilderness of Mangroves (biome 14) reduced by 5.22%. Besides, other primary biomes with a noticeable 
decrease of wilderness are Tropical & subtropical moist broadleaf forests (biome 1), Desert & xeric shrub-
lands (biome 13), and Tundra (biome 11), with declined proportions as 3.63%, 2.43%, and 1.98%, respectively 
(Fig. 5b). Globally, terrestrial biomes that suffer severe risks are Temperate grasslands, savannas, & shrublands 
(biome 8), and Tropical & subtropical dry broadleaf forests (biome 2), and their proportions of wilderness loss 
are less than 2% in 2018 (Fig. 5c). The rapid decline of wilderness challenges the realization of global environ-
mental protection targets such as the 20 Aichi targets63,64.

Usage Notes
The annual and continuous Human Footprint data are essential to monitor human pressure for studies relevant 
to species extinction risk3, conservation science12,22, and human development potential65. The updated human 
pressure variables, such as the GAIA, WorldPop, land cover, and global harmonized NTL datasets, enable the 
mapping of temporally consistent Human Footprint. Using these new variables to characterize human pressures, 
we developed the global annual terrestrial Human Footprint datasets from 2000 to 2018. The accuracy assess-
ment revealed a good agreement between our Human Footprint and previous datasets at different years (i.e., 
2000, 2005, 2009, 2010, 2013, and 2016). The definition used in our products is consistent with existing studies, 
enabling its wide applications with time series analyses in relevant studies, such as biodiversity conservation64, 

Fig. 5 The spatial distribution of global terrestrial biomes (a), the changes of the wilderness of typical biomes 
(b), and the proportions of different categories (i.e., wilderness, intact, and modified) in terrestrial biomes in 
2018 (c).

https://doi.org/10.1038/s41597-022-01284-8


8Scientific Data |           (2022) 9:176  | https://doi.org/10.1038/s41597-022-01284-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

landscape planning14, and resources recycling66. Besides, the annual maps used in the scoring system can pro-
vide the temporal trend information of human pressures over the long term in the future.

code availability
The programs used to generate all the results were Python (3.11) and ArcGIS (10.4). Analysis scripts are available 
on GitHub (https://github.com/HaoweiGis/humanFootprintMapping/).
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