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Contrast-enhanced spectral mammography (CESM) is a relatively recent imaging modality with 
increased diagnostic accuracy compared to digital mammography (DM). New deep learning (DL) 
models were developed that have accuracies equal to that of an average radiologist. However, most 
studies trained the DL models on DM images as no datasets exist for CESM images. We aim to resolve 
this limitation by releasing a Categorized Digital Database for Low energy and Subtracted Contrast 
Enhanced Spectral Mammography images (CDD-CESM) to evaluate decision support systems. The 
dataset includes 2006 images, with an average resolution of 2355 × 1315, consisting of 310 mass 
images, 48 architectural distortion images, 222 asymmetry images, 238 calcifications images, 334 
mass enhancement images, 184 non-mass enhancement images, 159 postoperative images, 8 post 
neoadjuvant chemotherapy images, and 751 normal images, with 248 images having more than one 
finding. This is the first dataset to incorporate data selection, segmentation annotation, medical 
reports, and pathological diagnosis for all cases. Moreover, we propose and evaluate a DL-based 
technique to automatically segment abnormal findings in images.

Background & Summary
Digital mammography (DM) is the gold standard imaging modality for early detection of breast cancer. 
However, limitations exist in patients with dense breasts as its overall sensitivity decreases1. Contrast-enhanced 
spectral mammography (CESM) is a contrast-based digital mammogram that has been approved by the Food 
and Drug Administration (FDA) in 2011 to be used as an adjunct to DM and ultrasound examinations for 
localization and characterization of occult or inconclusive lesions. Dual-energy image acquisition is performed 
where low and high-energy images are obtained. Several studies proved that low-energy images obtained appear 
like the standard DM images and are non-inferior to them2. High-energy images are non-interpretable; to over-
come this, low and high-energy images are recombined and subtracted through appropriate image processing 
to suppress the background breast parenchyma after the acquisition. Figure 1 shows the resulting subtracted 
images obtained for interpretation, revealing contrast enhancement areas in a suppressed breast tissue back-
ground. Findings could be identified according to their density, morphologic, and enhancement characteristics3. 
However, estimating whether a lesion is benign or malignant without being seen by a radiologist is challenging 
due to the significant variation in the lesions’ visual characteristics4.

Computer-aided detection (CAD) systems were introduced in the early 2000’s to help radiologists interpret 
mammography images. However, this proved to be challenging in clinical practice due to the increased rate of 
false positives marked by the CAD systems, which can distract the radiologists5. Currently, the use of artificial 
intelligence (AI) in radiology is still in its early stages. Nonetheless, algorithms that analyze pixel data distinguish 
patterns from images that might not have been previously identified even by expert radiologists6. Deep learning 
(DL) has a promising potential in performing many tasks such as automatically detecting lesions and helping 
radiologists provide a more accurate diagnosis. Moreover, new multimodal DL models like the perceiver7 make 
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it feasible to train on large datasets and extract good unsupervised image representations that can be used on 
a wide range of tasks. However, fully annotated and large-sized datasets are required and will be crucial for 
training new DL networks or fine-tuning existing pre-trained DL networks and evaluating them. This is why it is 
important for radiologists to understand the impact of these machine-learning (ML) based analytical tools and 
recognize how they might influence and change the radiological practice soon8.

In the past couple of years, a small number of public mammography datasets were released, including the 
Digital Database for Screening Mammography (DDSM)9, the Image Retrieval in Medical Applications (IRMA) 
project10, the Mammographic Imaging Analysis Society (MIAS) database11, and the Curated Breast Imaging 
Subset of DDSM (CBIS-DDSM)012. These datasets contain DM images only, and none include CESM images.

In this paper, we present a CESM categorized dataset that provides easily-accessible low energy images with 
corresponding subtracted CESM images, abnormality segmentation annotation, verified medical reports, and 
pathological diagnosis for all cases. It will add to the ongoing advancements in future mammography DL-based 
systems. We also propose a new DL-based technique to automatically segment the abnormal findings in the 
images without intervention from radiologists, as segmentation annotation is a time-consuming task.

Methods
We collected and reformatted the data into an easily-accessible format. Figure 2 displays the flow diagram of 
the process to prepare our dataset: image preprocessing, manual annotations, and the automatic segmentation.

Technique of contrast enhanced mammography examination. CESM is done using the standard 
DM equipment but with additional software that performs dual-energy image acquisition. Two minutes after 
intravenously injecting the patient with non-ionic low-osmolar iodinated contrast material (dose: 1.5 mL/kg), 
craniocaudal (CC) and mediolateral oblique (MLO) views are obtained. Each view comprises two exposures, one 
with low energy (peak kilo-voltage values ranging from 26 to 31kVp) and one with high energy (45 to 49 kVp). A 
complete examination is carried out in about 5–6 minutes.

Description of dataset. The dataset is a collection of low-energy images with their corresponding sub-
tracted CESM images gathered from the Radiology Department of the National Cancer Institute, Cairo 
University, Egypt over the period from January 2019 to February 2021. The images are all high resolution with 
an average of 2355 × 1315 pixels. Institutional review board approval and patient informed consent to carry out 
and publish data were obtained from 326 female patients aged from 18 to 90 years. The dataset contains 2006 
images with CC and MLO views (1003 low energy images and 1003 subtracted CESM images), samples of low 
energy and subtracted CESM images are shown in Fig. 3. Usually, each patient has a total of 8 images, 4 images 
for each breast side consisting of low energy and subtracted CESM images for each CC and MLO view. However, 
there are 46 patients with only 4 images as they had mastectomy on a breast side, and 87 patients with missing 
images as some were not available or removed due to quality concerns. Two different machines were used for 
image acquisition; GE Healthcare Senographe DS and Hologic Selenia Dimensions Mammography Systems. The 
two machines provide similar quality, and all other steps in the data acquisition and post-processing phases were 
kept the same. The images are manually-annotated by expert radiologists according to the American College of 
Radiology Breast Imaging Reporting and Data System (ACR BIRADS) 2013 lexicon for standardized descrip-
tors13. The annotations, shown in Table 1, include breast composition, mass shape, mass margin, mass density, 
architectural distortion, asymmetries, calcification type, calcification distribution, mass enhancement pattern, 

Fig. 1 (a) Low-energy, (b) High-energy, and (c) Subtracted image.
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non-mass enhancement pattern, non-mass enhancement distribution, and overall BIRADS assessment (1 to 
6). Both follow-up and pathological results are also included in the annotations, as pathological results are the 
gold-standard reference for radiologically-suspicious or malignant-looking lesions, and follow-up is the gold 
standard for benign-looking lesions. Moreover, full medical reports, written by an ensemble of radiologists, are 
provided for each case along with manual segmentation annotation for the abnormal findings in each image.

Annotations. Data are gathered and stored in a DICOM format. Some irrelevant annotations that are 
not used for lesion identification and classification were removed, including the patient’s name, ID, date 
of the study, and the image series. Each image with its corresponding annotation was compiled into one 
comma-separated-value (CSV) file.

Medical reports. Separate corresponding reports for the CESM images and the DM images are also included 
in the dataset. Each report consists of the findings, depicted for each breast side separately, written following the 
ACR BIRADS 2013 lexicon for standardized descriptors and reporting associated with the BIRADS category 
annotated for the case. All patients’ identification data were removed. We believe that releasing the full-text med-
ical reports is important, as research studies concerned with radiology report-writing often struggle with the lack 
of full reports not being present in large datasets14.

image processing. DICOM images were exported losslessly to a joint photographic experts group (JPEG) 
format using RadiAnt DICOM viewer application(https://www.radiantviewer.com/). After automatically remov-
ing all irrelevant data from each image, around 30% of the images were manually cropped to eliminate all unused 
and irrelevant boundaries. Furthermore, the images are named as follows {patient number}_{breast side}_{image 
type}_{image view}; example ‘P1_L_CM_MLO’.

Segmentation visual model. In this section, we describe our method to automatically segment the abnor-
mal parts of the images. A deep learning model, EfficientNetB0, was trained to predict the overall diagnosis 
(Normal, Benign, Malignant). GradCam15 was used to generate highlights for the parts of the image that contrib-
uted to the model’s prediction. A threshold of the top 25% GradCam intensities is then used on the highlights 

Fig. 2 Flow diagram of the preparation of (CDD-CESM) and the deep learning method to automatically 
generate the segmentation annotation.
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to generate the segments. Furthermore, a threshold of the top 15% white pixels is used to further finetune the 
segmentations.

Preprocessing. The images were first resized to be 224 × 224 using interpolation and anti-aliasing. Then the 
images were normalized by subtracting from the mean and dividing by the standard deviation. Random image 
augmentations were also used like cropping, zooming, and horizontal flipping. Furthermore, we experimented 
with non-traditional data augmentation methods16 which uses generative adversarial networks (GANs) to gen-
erate new images. However, the generated images did not satisfy the experts, so only traditional data augmen-
tations were used.

Model & training. An EfficientNetB017, pre-trained on ImageNet18, was used as the starting model in our 
experiments. We finetuned the model by removing the final layer and adding a layer with three output classes 
(Normal, Benign, Malignant). All the weights are left to be fine-tuned during the training. Categorical 
cross-entropy was used as the loss function with Adam optimizer19 as shown in Eq. 1, where CE(b) is the cross 
entropy loss for batch b, C the number of classes, N the number of images in the batch, y is the ground-truth, and 
y� is the prediction. A batch size of 16 was used, a decaying learning rate of 1e-3, and a dropout layer20 with a 
drop probability of 0.8 on the final visual features was used before the classifier.

Fig. 3 Samples of low energy and subtracted CESM images from the dataset.
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Highlights. After the model achieved a good accuracy on all the images, we used GradCam15 to get heatmaps 
representing the parts of the image that had the highest impact on the model’s decision. The heatmaps are traced 
back from the ground-truth class and not the predicted class. Moreover, we removed any highlights in the 
corners of the image as they are often present at the location of normal pectoral muscles.

Segmentation. To get the actual pixel segmentation, we used the top 25% of the heatmap’s intensities to serve as 
the abnormal segment. Moreover, to finetune the segments on the exact abnormality, we used the intersection of 
the segments and the top 15% white pixel intensities of the image as shown in Fig. 4.

Data Records
The low energy and subtracted CESM images are distributed as JPEG files. They include both MLO and CC 
views of the mammograms.

Metadata for each image is incorporated as an associated CSV file consisting of:

Annotation Description Method Format

Patient’s age Age of the patient at time of 
examination.

Calculated from the date 
of birth. Numbers

Side of breast Right or left breast Manually annotated. Categorical

Breast 
Composition ACR 
category

Breast density describes the amount of 
fibroglandular tissue present in a breast 
relative to fat.

Blinded evaluation by 
two radiologists.

Categorical:

a: Almost entirely fatty breasts

b: Scattered fibroglandular tissue

c: Heterogeneously dense breasts

d: Extremely dense breasts

ACR BIRADS 
lexicon for 
standardized 
descriptors

Radiological lexicon providing the 
standard descriptors for evaluation of 
breast findings.

Blinded evaluation by 
two radiologists.

Mass shape, margin, and density.

Architectural distortion.

Asymmetries.

Calcification type, and distribution.

Mass enhancement pattern.

Non-mass enhancement pattern, and distribution

Overall BIRADS
Radiological lexicon providing the final 
assessment categories for evaluation of 
breast findings.

Blinded evaluation by 
two radiologists.

BIRADS 1: Normal examination

BIRADS 2: Benign findings

BIRADS 3: Probably benign findings <2% 
malignancy

BIRADS 4: Suspicious >2 but <95% malignancy

BIRADS 5: Highly suspicious of malignancy 
>95%

BIRADS 6: Known biopsy-proven malignancy

Type of image view

Usually two standard views are acquired 
for each breast:

Manually annotated.

Categorical:

• MLO: most important because it 
allows depiction of most of the breast’s 
tissues

• MLO

• CC: reveals medial part and external 
lateral portion of the breast • CC

Tags

Labels assigned as follows:

Manually assigned and 
annotated by radiologist. Categorical set of 140 unique tags.

• Standardized descriptors of ACR 
BIRADS 2013 lexicon

• Probable diagnosis

• Classification

Machine label Two different mammography machines 
were used. Manually annotated. Machine number 1 or 2.

Pathology results / 
follow-up

Three classes: normal, benign, and 
malignant. Manually annotated.

Categorical:

• Normal

• Benign

• Malignant

Table 1. Descriptions of the annotations available for the dataset.
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•	 Path to image files
•	 Patient number
•	 Breast side: Left or Right
•	 Type of Examination: DM (low energy image) or CESM (subtracted image)
•	 View: CC or MLO
•	 Density category (if low energy image)
•	 Number of findings (if multiple)
•	 Mass shape, density, and margin (if present)
•	 Mass enhancement pattern (if present)
•	 Architectural distortion (if present)
•	 Asymmetry (if present)
•	 Calcification type and distribution (if present)
•	 Non-mass enhancement pattern and distribution (if present)

Fig. 4 (a) Example of the DL Gradcam highlights, (b) Segmentation calculated after applying a threshold on the 
highlights, (c) Final output after applying the white pixel intensity threshold, and (d) Hand-drawn segmentation 
annotation.

CDD-CESM

Stats

Years 2019–2021

Sources NCI, Cairo University

No. females 326

No. total images 2006

No. normal images 757 (37.4%)

No. benign images 587 (29.3%)

No. malignant images 662 (33.3%)

Age (counted per patient)

<40 58 (17.8%)

40–49 100 (30.7%)

50–59 95 (29.1%)

60–69 59 (18.1%)

≥70 14 (4.3%)

Cancer Type

Invasive ductal carcinoma 445 (67.5%)

Invasive lobular carcinoma 42 (6.3%)

Mixed invasive ductal carcinoma and invasive lobular 
carcinoma 28 (4.2%)

Ductal carcinoma insitu purely 17 (2.5%)

Inflammatory breast cancer 40 (6%)

Other 90 (13.5%)

Table 2. Characteristics of the CDD-CESM dataset. The 757 normal images consist of 751 normal images and 
6 post-neoadjuvant images considered normal (no residual disease proved by postoperative pathology). The age 
statistics are provided per number of patients.
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•	 BI-RADS assessment
•	 Pathology: Benign or Malignant

Figure 5 shows histograms of BIRADS category and the corresponding final pathology/follow up result. 
Table 2 displays the characteristics of the CDD-CESM dataset.

The CDD-CESM dataset is available21 on The Cancer Imaging Archive repository22. The dataset includes all 
images, annotations, and full medical reports.

Technical Validation
For the segmentation evaluation of our DL model, experienced radiologist provided hand-drawn segmenta-
tions for each abnormal finding in the CDD-CESM dataset. We calculated the intersection over union (IOU) 
and the dice coefficients (F1) between the computed and hand-drawn segmentations, after applying the same 
white-intensity threshold on the hand-drawn segmentations. Furthermore, we added another metric which we 
called overlap50, which is the percentage of images where the automatic segmentation overlaps with at least 
50% of hand-drawn segmentation. The average IOU was 64.2% overall, overlap50 was 83.3%, and the average 
F1 was 71% overall. We also calculated these metrics separately for different groups of images according to the 
following criteria:

Different findings represented in the dataset. Mass enhancement had the highest overlap50 = 91%. 
Furthermore, postoperative cases had the lowest overlap50 = 77%. This might be attributed to post operative 
edematous changes and skin thickening that are not accurately or completely observed by our DL model.

Fig. 5 Histograms for the CDD-CESM dataset showing distribution of (a) BIRADS category for each 
abnormality, (b) Benign and malignant lesions.

Images Overlap50 IOU F1

Findings

Mass 310 0.85 0.65 0.72

Distortion 48 0.87 0.70 0.79

Asymmetry 222 0.87 0.70 0.78

Calcifications 238 0.81 0.62 0.70

Postoperative 159 0.77 0.61 0.68

Mass enhancement 334 0.91 0.66 0.73

Non mass enhancement 184 0.89 0.72 0.79

Image Type
DM 665 0.81 0.64 0.71

CM 590 0.86 0.65 0.71

Pathology
Benign 587 0.75 0.59 0.64

Malignant 662 0.90 0.69 0.77

Image View
MLO 634 0.83 0.64 0.71

CC 621 0.83 0.64 0.71

Machine
GE 1175 0.84 0.64 0.71

Hologic 80 0.70 0.60 0.67

Age

<40 240 0.78 0.65 0.72

40–69 958 0.83 0.64 0.70

≥70 57 0.94 0.71 0.78

Table 3. Detailed results of our DL segmentaion model.
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Age of patient. Patients aged seventy years and higher had the highest overlap50 = 94%. Forty years and 
lower had the lowest overlap50 = 78%. As expected, the accuracy of visualization decreases as the breast density 
increases.

Fig. 6 Examples of different cases and their corresponding automatic segmentations.
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Low energy or subtracted image. Low energy image overlap50 = 81%, compared to 86% in subtracted 
images. This might be due to the dense adenotic tissue in low-energy images obscuring abnormalities found 
behind it, which are suppressed in subtracted images. Thus, we recommend that radiologists use both low energy 
and subtracted images for each patient in each view, to increase reliability of using our DL technique in drawing 
their final conclusions.

Mediolateral or Craniocaudal view. We found the results to be comparable without much difference in 
terms of automatic segmentation output.

Benign or malignant finding. Benign findings had the lower overlap50 = 75% compared to 90% for malig-
nant findings. Most of the benign lesions were non-enhancing in subtracted images. Furthermore, in low-energy 
images, benign lesions were either hidden behind the dense breast tissues, had equal density or parallel orienta-
tion to the surrounding breast parenchyma. However, highly cellular benign findings were accurately depicted by 
our DL model. Decreased accuracy was found with multiplicity and retroareolar locations.

Generally, decreased accuracy of detection by our DL model was also present in some subtracted images 
with halo (breast-within-breast) or ripple artifacts. These calculations are shown in Table 3, and example outputs 
from our DL model are showed in Fig. 6.

Usage Notes
The dataset can be used to train machine learning models to classify mammogram images into normal, benign, and 
malignant, or classify the tags associated with each image. Moreover, it can be used to train segmentation models to  
segment the lesions. Furthermore, the full-text medical reports can be used to train report generation models.

Code availability
A Github repository is publicly available (https://github.com/omar-mohamed/CDD-CESM-Dataset) which 
contains helper scripts to make training a DL model on the dataset easier like reading the annotations, pre-
processing the images by resizing and normalizing, training different existing models, augmenting the images while 
training, and evaluating the different models and plotting the segmentation results. The scripts were written using 
Python 3.6 with Tensorflow 2.3 for the training process, and OpenCV 4.1 and Pillow 6.1 for the image processing.
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