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In the last decade, a revolution in liquid chromatography-mass spectrometry (LC-MS) based proteomics 
was unfolded with the introduction of dozens of novel instruments that incorporate additional data 
dimensions through innovative acquisition methodologies, in turn inspiring specialized data analysis 
pipelines. Simultaneously, a growing number of proteomics datasets have been made publicly available 
through data repositories such as ProteomeXchange, Zenodo and Skyline Panorama. However, 
developing algorithms to mine this data and assessing the performance on different platforms is 
currently hampered by the lack of a single benchmark experimental design. therefore, we acquired a 
hybrid proteome mixture on different instrument platforms and in all currently available families of data 
acquisition. Here, we present a comprehensive Data-Dependent and Data-Independent acquisition 
(DDa/DIa) dataset acquired using several of the most commonly used current day instrumental 
platforms. The dataset consists of over 700 LC-MS runs, including adequate replicates allowing robust 
statistics and covering over nearly 10 different data formats, including scanning quadrupole and ion 
mobility enabled acquisitions. Datasets are available via ProteomeXchange (PXD028735).

Background & Summary
Hypothesis-driven biochemical assays have been the foundation of molecular biology for well over a cen-
tury, with great success. However, the lack of a more holistic view on the biomolecular complexity requires 
trial-and-error experimentation. Therefore, the past few decades were characterized by a shift towards an exper-
imental design wherein a broader biomolecular perspective of the system is first generated in order to contex-
tualize the hypothesis and the targeted biochemical assays beforehand. These “omics” approaches were enabled 
by two technical revolutions, i.e. the sequencing of nucleotides and the accurate mass measurement of biomol-
ecules by mass spectrometry (MS).

In its barest form, the output from an MS instrument is merely a list of m/z’s with intensities measured at very 
precise moments in time. However, MS is quickly evolving towards capturing the full complexity of a biologi-
cal sample. To this end, not only the accuracy of instruments has improved greatly, they now also incorporate 
analytical techniques that select or separate analytes based on other physico-chemical properties. In proteom-
ics nowadays, a mass spectrometer thus rarely only measures the m/z coordinate and intensity of (fragment) 
ions. The ion coordinates are mostly supplemented with precursor m/z, retention time (tR) and/or ion mobility 
coordinates, depending on acquisition strategy. This creates a multidimensional data matrix that captures the 
complexity of the sample to an unprecedented depth1.
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The field of mass spectrometry has diversified greatly, driven by a fast sequence of innovations from many 
vendors. Modern MS instruments allow the manipulation of ions in countless of different ways, including dif-
ferent ionization methodologies, fragmentation techniques, multipoles, time-of-flight tubes, ion mobility sepa-
ration devices and trap designs, including the now very dominant orbitrap. The way in which these different ion 
manipulations are combined has ballooned the number of different acquisition strategies available to the end 
user today but all these instrumental and strategic innovations are futile if no data analysis pipeline is available to 
translate the data back into biology. For bottom-up proteomics this implies reconstructing the peptide backbone 
sequences from their fragment ions because the latter encompasses the specificity for identifying the hundreds 
of millions of different protein sequences that make up the biotic world.

Conventionally, MS instruments have been operated using data dependent acquisition (DDA) wherein the 
data from a precursor scan at low energy is used to pinpoint potentially interesting analytes which are then 
sequentially selected for fragmentation at high energy. These fragmentation spectra can then be identified by 
a plethora of different algorithms2,3. Data-independent acquisition (DIA) however, is the more intuitive way of 
analyzing a sample, because it captures all (fragment) ions without any instrumental bias. However, interpreting 
such complex data matrices has proven difficult and an additional separation dimension, such as ion mobil-
ity, was added to increase the discriminating power4–8. Alternatively, configuring a quadrupole to sequentially 
scan the entire mass range - while still operating “data independent” - alleviates the complexity of the resulting 
fragmentation spectra even more9,10. This has opened up the way for the many different spectrum-centric and 
peptide-centric data analysis strategies available today11–16. The latest reduction in complexity or “chimericy” 
of DIA spectra encompasses continuously scanning the quadrupole as is done with SONAR17 and Scanning 
SWATH18 and combining quadrupole selection and ion mobility separation, as is done with diaPASEF19. 
Unsurprisingly, machine learning is taking center stage in mining the various resulting data architectures20–27.

Here, we created a comprehensive dataset on a single benchmark experimental design adapted from Navarro 
et al.28. It contains a ground truth that serves as a quality control for bioinformatics algorithm development and 
evaluation. This sample was acquired with adequate replicates on many of the current day instrumental plat-
forms – partially in nano flow LC and partially in capillary flow LC - by most of the available acquisition strategy 
families, covering all commonly measured ion coordinates (Fig. 1). Far from being complete, it still is the most 
comprehensive repository of its kind for algorithmic development and validation, both at the level of identifica-
tion and quantification. Instead of being yet another way of attaining the highest number of identified peptides, 
we hope it becomes a resource for compatibility assessment and data analysis quality control. Above all, it is a 
snapshot of current day completeness of our digital image of the protein world.

Methods
Sample preparation. Mass spectrometry-compatible Human K562 (P/N: V6951) and Yeast (P/N: V7461) 
protein digest extracts were purchased from Promega (Madison, Wisconsin, United States). Lyophilised 
MassPrep Escherichia.coli digest standard (P/N:186003196) was purchased from Waters Corporation (Milford, 
Massachusetts, United States). The extracts were reduced with dithiothreitol (DTT), alkylated with iodoaceta-
mide (IAA) and digested with sequencing grade Trypsin(-Lys C) by the respective manufacturers. The digested 
protein extracts were reconstituted in a mixture of 0.1% Formic acid (FA) in water (Biosolve B.V, Valkenswaard, 
The Netherlands) and spiked with iRT peptides (Biognosys, Schlieren, Switzerland) at a ratio of 1:20 v/v. Two 
master samples A and B were created similar to Navarro et al., each in triplicate, as shown in Fig. 1. Sample A was 
prepared by mixing Human, Yeast and E.coli at 65%, 30% and 5% weight for weight (w/w), respectively. Sample B 
was prepared by mixing Human, Yeast and E.coli protein digests at 65%, 15%, 20% w/w, respectively. The resulting 
samples have logarithmic fold changes (log2FCs) of 0, −1 and 2 for respectively Human, Yeast and E.coli. One 
sixth of each of the triplicate master batches of A and B were mixed to create a QC sample, containing 65% w/w 
Human, 22.5% w/w Yeast and 12.5% w/w E.coli.

LC-MS/MS. In this section, a detailed description of the different LC-MS/MS parameters is given for each 
LC-MS/MS instrumental setup applied to generate this comprehensive dataset. All instruments were operated 
according to the lab’s best practice, i.e. not necessarily the best attainable, but rather most realistic data quality. 
Sample load was chosen based on LC setup (nano flow = 1 µg on column vs capillary flow = 5 µg on column) and 
instrument sensitivity. Thus, differences in absolute number of identified peptides and proteins can be attributed 
to sample load, LC flow rate, MS instrumentation, operator’s choices and search algorithmic compatibility; direct 
conclusions on MS instrument performance can therefore not be drawn from this dataset.

As a rule of thumb, data-dependent acquisition (DDA) methods use high energy fragmentation spectra 
(MS2) of narrow mass selections for identification and use the area under the curve of the precursor (MS1) for 
quantification. Therefore, a cycle time needs to be attained wherein enough datapoints across the precursor 
elution peak are sampled for accurate quantification. In most data-independent acquisition (DIA) strategies, 
a broader precursor selection window is used and both identification and quantification can be done at the 
fragment level, taken that the cycle time for both MS1 and MS2 is adapted to the LC gradient. Finally, Precursor 
Acquisition Independent From Ion Count (PAcIFIC) is a method that is acquired solely to extend the size of the 
peptide library for detecting peptides in DIA data and is therefore not strictly dependent on the cycle time. Of 
note, by scanning the quadrupole instead of acquiring different mass windows separately, acquisition strategies 
like SONAR and Scanning SWATH create an additional dimension in the data matrix, akin to how ion mobility 
separation is perceived. Since these are similar to PAcIFIC acquisition, we also acquired gas phase (GP) fractions 
in SONAR and Scanning SWATH for library building, i.e. with no emphasis on cycle time.
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Fig. 1 Schematic overview of the different acquisition strategies/instruments applied in the study. A 
comprehensive LC-MS/MS dataset was generated using samples composed of commercial Human K562, Yeast 
and Escherichia coli (E.coli) full proteome digests. Two hybrid proteome samples A and B containing known 
quantities of Human, Yeast and E.coli tryptic peptides, as described by Navarro et al. were prepared in three 
consecutive times to include handling variability. Additionally, a QC sample was created by mixing one sixth 
of each of the six master batches (65% w/w Human, 22.5% w/w Yeast and 12.5% w/w E.coli). These commercial 
lysates were measured individually and as triple hybrid proteome mixtures each in triplicate using DDA and DIA 
acquisition methodologies available on six LC-MS/MS platforms, i.e. SCIEX TripleTOF 5600 and TripleTOF 
6600+, Thermo Orbitrap QE HF-X, Waters Synapt G2-Si and Synapt XS and Bruker timsTOF Pro. The complete 
dataset was made publicly available to the proteomics community through ProteomeXchange with dataset 
identifier: PXD028735. In addition, a system suitability workflow (AutoQC) was incorporated on each instrument 
using commercial E.coli lysate digest which were acquired at multiple timepoints throughout each sample batch. 
The AutoQC data was automatically imported in Skyline and uploaded to the Panorama AutoQC server using 
AutoQC loader, enabling system suitability assessment of each LC-MS/MS system used in the dataset.

https://doi.org/10.1038/s41597-022-01216-6


4Scientific Data |           (2022) 9:126  | https://doi.org/10.1038/s41597-022-01216-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

SCIEX TripleTOF 5600 (Capilary flow LC). A TripleTOF 5600 mass spectrometer (Sciex, Concord, Ontario, 
Canada) fitted with a Duospray ion source operating in positive ion mode, was coupled to an Eksigent NanoLC 
400 HPLC system (Eksigent, Dublin, CA). 5 µL of each sample was loaded at 5 µL/min with 0.1% Trifluoroacetic 
acid (TFA) in water and trapped on a YMC TriArt C18 guard column (id 500 µm, length 5 mm, particle size 
3 µm) for 5 minutes. Peptides were separated on a microLC YMC TriArt C18 column (id 300 µm, length 15 cm, 
particle size 3 µm) maintained at 55 °C at a flow rate of 5 µL/min by means of trap-elute injection. Mobile phase 
A consisted of UPLC-grade water with 0.1% (v/v) FA and 3% (v/v) DMSO, and mobile phase B consisted of 
UPLC-grade ACN with 0.1% (v/v) FA. Peptide elution was performed at 5 µL/min using the following gradient: 
i) 2% to 30% mobile phase B in 120 min, ii) ramp to 90% mobile phase B in 1 min. The washing step at 90% 
mobile phase B lasted 4 min and was followed by an equilibration step at 2% mobile phase B (starting condi-
tions) for 10 min. Ion source parameters were set to 5.5 kV for the ion spray voltage, 30 psi for the curtain gas, 
13 psi for the nebulizer gas and 80 °C as source temperature.

Data-dependent acquisition. For DDA (a cycle time of 3.5 s), MS1 spectra were collected between 399–
1200 m/z for 500 ms. The 20 most intense precursors ions with charge states 2–5 that exceeded 250 counts per 
second were selected for fragmentation, and the corresponding fragmentation MS2 spectra were collected 
between 50–2000 m/z for 151 ms. After the fragmentation event, the precursor ions were dynamically excluded 
from reselection for 20 s.

SWATH 64 variable windows. For SWATH (a cycle time of 3.4 s), a 64 variable window acquisition scheme 
as described by Navarro et al. was used for all samples (Supplementary Table 1)28. Briefly, SWATH MS2 spectra 
were collected in high-sensitivity mode from 50–2000 m/z, for 50 ms. Before each SWATH MS cycle an addi-
tional MS1 survey scan in high sensitivity mode from 400–1200 m/z was recorded for 150 ms.

PAcIFIC. For PAcIFIC (a cycle time of 4 s), the TripleTOF5600 was configured to acquire eight gas phase 
fractionated acquisitions with isolation windows of 4 m/z using an overlapping window pattern from narrow 
mass ranges, as described by Searle et al. (i.e., 396.43–502.48; 496.48–602.52;596.52–702.57;696.57–802.61; 
796.61–902.66; 896.6–1002.70; 996.70–1102.75; 1096.75–1202.80)29. See Supplementary Table 2 for the actual 
windowing scheme. MS2 spectra were collected in high-sensitivity mode from 360–1460 m/z, for 75 ms. An MS1 
survey scan was recorded per cycle from 360–1460 m/z for 50 ms.

SCIEX TripleTOF 6600+ (Capilary flow LC). A TripleTOF 6600+ mass spectrometer (Sciex, Concord, 
Ontario, Canada) fitted with an Optiflow ion source operating in positive ion mode, was coupled to an Eksigent 
NanoLC 425 HPLC system (Eksigent, Dublin, CA). 5 µL of each sample was loaded at 5 µL/min with 0.1% FA in 
water by means of direct injection. Peptides were separated on a Phenomenex Luna Omega Polar C18 column 
(150 × 0.3 mm, particle size 3 µm) at a column temperature of 30 °C. Mobile phase A consisted of UPLC-grade 
water with 0.1% (v/v) FA, and mobile phase B consisted of UPLC-grade ACN with 0.1% (v/v) FA. Peptide 
elution was performed at 5 µL/min using the following gradient: i) 2% to 30% mobile phase B in 120 min, ii) 
ramp to 90% mobile phase B in 1 min. The washing step at 90% mobile phase B lasted 4 min and was followed 
by an equilibration step at 2% mobile phase B (starting conditions) for 10 min. Ion source parameters were set 
to 4.5 kV for the ion spray voltage, 25 psi for the curtain gas, 10 psi for nebulizer gas (ion source gas 1), 20 psi for 
heater gas (ion source gas 2) and 100 °C as source temperature.

Data-dependent acquisition. For DDA acquisition (a cycle time of 3.3 s), MS1 spectra were collected between 
400–1200 m/z for 250 ms. The 30 most intense precursor ions with charge states 2–4 that exceeded 300 counts 
per second were selected for fragmentation, and the corresponding fragmentation MS2 spectra were collected 
between 100–1500 m/z for 100 ms. After the fragmentation event, the precursor ions were dynamically excluded 
from reselection for 10 s.

SWATH 99 Variable windows. For SWATH (a cycle time of 4 s), a 99 variable window acquisition scheme was 
used (see Supplementary Table 3). Briefly, SWATH MS2 spectra were collected in high sensitivity mode from 
100–1500 m/z, for 37.5 ms. Before each SWATH MS cycle an additional MS1 survey scan in high sensitivity 
mode was recorded for 250 ms.

Scanning SWATH GP 1Da. A Scanning SWATH beta version was installed on the Analyst TF control software 
in collaboration with Sciex Research. Scanning SWATH Q1 calibration was confirmed by directly infusing a 
tuning solution (ESI Positive Calibration Solution for the SCIEX X500B System - P/N: 5049910) and by acquir-
ing a pre-built calibration batch (SSCalibration.dab). Afterwards, the calibration was verified by i) running a 
verification calibration batch and inspect the data in PeakView. Calibration of the Q1 after initial calibration was 
controlled automatically by internal recalibration of each data file at run time removing the need for subsequent 
calibration events.

The gas-phase fractionation approach usually acquired in PAcIFIC, were also acquired by Scanning SWATH 
because this uniquely allows to apply DIA annotation algorithms for library building of subsequent full mass 
range DIA acquisition. Precursor isolation window was set to 1 m/z and a mass range of 100 m/z was covered in 
6 s (average accumulation time per precursor: 59.57 ms). An MS1 scan was included and data was acquired in 
high resolution mode. Raw data was converted to standard SCIEX data files with an effective precursor isolation 
of 0.2 m/z bins and Q1 calibration was obtained by running rawSSProcessor.exe.
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Scanning SWATH Fixed 5 Da WindowThe precursor mass range of 400–900 m/z was covered in 4 s with a 5 m/z 
isolation window (average accumulation time per precursor: 37.5 ms). A TOF MS scan was included and data 
was acquired in high sensitivity mode. Raw data was converted to standard SCIEX data files with an effective 
precursor isolation of 1 m/z bins and Q1 calibration was obtained by running the rawSSProcessor.exe.

Thermo Orbitrap QE HF-X (Nano flow LC). A Thermo Orbitrap QE HF-X (Thermo Fisher Scientific, Waltham, 
Massachusetts, United States) was coupled to an UltiMate 3000 LC-system (NCS-3500RS Nano/Cap System, 
Thermo Fisher Scientific). Peptides were separated on an Acclaim PepMap C18 column (id 75 µm, length 50 cm, 
particle size 2 µm, Thermo Fisher Scientific ref 164942) at a flow rate of 350 nL/min by means of trap-elute injec-
tion (Acclaim PepMap C18, id. 300 µm × 5 mm) after 3 min desalting on a nano-trap cartridge (id.300 µm, length 
5 mm, Thermo Fisher Scientific ref 160454).

Mobile phase A consisted of UPLC-grade water with 0.1% (v/v) FA, and mobile phase B consisted of 
UPLC-grade ACN with 0.1% (v/v) FA. Peptide elution was performed at 350 nL/min using the following gradi-
ent: i) 2% to 30% mobile phase B in 120 min, ii) ramp to 90% mobile phase B in 1 min. The washing step at 90% 
mobile phase B lasted 4 min and was followed by an equilibration step at 2% mobile phase B (starting condi-
tions) for 21 min.

Data-dependent acquisition. The data-dependent acquisition runs on the Q Exactive HF-X were acquired 
with MS survey scans (350–1400 m/z) at a resolution of 60,000, and an AGC target of 3e6. The 12 most intense 
precursor ions, were selected for fragmentation by high-energy collision–induced dissociation, and the resulting 
fragments were analyzed at a resolution of 15,000 using an AGC target of 1e5 and a maximum fill time of 22 ms. 
Dynamic exclusion was used within 30 s to prevent repetitive selection of the same peptide.

Narrow window gas-phase fractionation (GP) DIA. Narrow-window GP-DIA data was acquired as described 
by Searle et al.29. Briefly, 6 GP runs (400–500, …, 900–1000 m/z) using staggered 4 m/z DIA spectra (4 m/z 
precursor isolation windows at 30,000 resolution, AGC target 1e6, maximum inject time 60 ms, NCE 27, +3H 
assumed charge state) were acquired using an overlapping window pattern, described by Pino et al.30. In each 
run, full MS scans matching each part of the fractionated mass range (i.e., either 395–505, 495–605, 595–705, 
695–805, 795–905, or 895–1005 m/z), acquired at a resolution of 60,000 using an AGC target of 1e6 and a max-
imum inject time of 60 ms, were interspersed every 25 MS/MS spectra.

All ion fragmentation (AIF). The AIF DIA data was acquired using a staggered pattern of 75 × 8 m/z isolation 
windows over the mass range 400–1000 m/z as described by Pino et al. (Supplementary Table 4)30. DIA MS/MS 
scans were acquired at 15,000 resolution, with an AGC target of 1e6, a maximum inject time 20 ms, and a NCE 
of 27. Full MS scans over the range 390–1010 m/z at 60,000 resolution, AGC target 1e6, maximum inject time 
60 ms were interspersed every 75 MS/MS spectra.

Waters Synapt G2-Si (Capillary flow LC). An M-class LC system (Waters Corporation, Milford, MA) was 
equipped with a 1.7 µm CSH 130 C18 300 µm × 100 mm column, operating at 5 µL/min with a column temper-
ature of 55 °C. Mobile phase A was UPLC-grade water containing 0.1% (v/v) FA and 3% DMSO, mobile phase 
B was ACN containing 0.1% (v/v) FA. Peptides were separated using a linear gradient of 3−30% mobile phase B 
over 120 minutes. All experiments were conducted on a Synapt G2-Si mass spectrometer (Waters Corporation, 
Wilmslow, UK). The ESI Low Flow probe capillary voltage was 3 kV, sampling cone 60 V, source offset 60 V, source 
temperature 80 °C, desolvation temperature 350 °C, cone gas 80 L/hr, desolvation gas 350 L/hr, and nebulizer 
pressure 2.5 bar. A lock mass reference signal of GluFibrinopeptide B (m/z 785.8426) was sampled every 30 s.

HD-DDA. Data was acquired according to Helm et al. with minor adaptations7. Briefly, in data-dependent 
mode, the MS automatically switches between MS survey and MS/MS scans based upon a set of switching cri-
teria, including ion intensity and charge state. Full scan MS and MS/MS spectra (m/z 50–5000) were acquired 
in sensitivity mode. MS survey spectra were acquired using a fixed acquisition time of 250 ms and the ions 
present in each scan were monitored for the following criteria: more than 3000 intensity/sec and only 2,3,4,5+ 
charge states. Once criteria were satisfied, the precursor ion isolation width of the quadrupole was set to 1.0 Th 
around each precursor sequentially. Tandem mass spectra of up to 12 precursors were generated in the trapping 
region of the ion mobility cell by using a collisional energy ramp from 6/9 V (low mass 50 Da, start/end) to up 
to 147/183 V (high mass 5000 Da, start/end), with actual values applied dependent upon the precursor m/z. 
The MS2 scan time was set to 100 ms and the “TIC stop” parameter was set to 100,000 intensity/s allowing a 
maximum accumulation time of 300 ms (i.e. up to three tandem MS spectra of the same precursor). IMS wave 
velocity was ramped from 2400 m/s to 450 m/s (start to end) and the pusher/ion mobility synchronized for singly 
charged fragment ions in MS/MS spectra, with up to 85% duty cycle efficiency.

UDMSE. Data was acquired according to Distler et al. with minor adaptations31. Briefly, two data functions 
were acquired over a mass range of m/z 50 to 2000 in alternating mode, differing only in the collision energy 
applied to the gas cell. In low-energy MS1 mode, data was collected at a constant gas cell collision energy of 4 eV. 
In elevated energy MS2 mode, the gas cell collision energy was ramped from 10 to 60 eV according to a collision 
energy look up table in function of drift time. The spectral acquisition time in each mode was 0.6 s with a 0.015 s 
interscan delay.
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Waters Synapt XS (Capilary flow LC). An M-class LC system (Waters Corporation, Milford, MA) equipped 
with a 1.7 µm CSH 130 C18 300 µm × 100 mm column, operating at 7 µL/min with a column temperature of 
55 °C was coupled to a Synapt XS quadrupole oa-ToF mass spectrometer (Waters Corporation, Wilmslow, UK) 
operating at a mass resolution of 30000, FWHM. The ESI Low Flow probe capillary voltage was 1.8 kV, sampling 
cone 30 V, source offset 4 V, source temperature 100 °C, desolvation temperature 300 °C, cone gas disabled, desol-
vation gas 600 L/hr, and nebulizer pressure 3.5 bar was used. The time-of-flight (TOF) mass analyzer of the mass 
spectrometer was externally calibrated with a NaCsI mixture from m/z 50 to 1990. A lock mass reference signal 
of GluFibrinopeptide B (m/z 785.8426) was sampled every two minutes. Mobile phase A was water containing 
0.1% (v/v) FA, while mobile phase B was ACN containing 0.1% (v/v) FA. The peptides were eluted and separated 
with a gradient of 5−40% mobile phase B over 120 minutes.

HD-DDA. In data-dependent mode, the MS instrument automatically switches between MS survey and MS/
MS scans based upon a set of switching criteria, including ion intensity and charge state. Full scan MS and MS/
MS spectra (m/z 50–5000) were acquired in resolution mode. MS survey spectra were acquired using a fixed 
acquisition time of 200 ms and the ions present in each scan were monitored for criteria intensity more than 
5000 intensity/sec and 2,3,4+ charge states. Once criteria were satisfied, the precursor ion isolation width of the 
quadrupole was set to 1.0 Th around each precursor sequentially. Tandem mass spectra of up to 15 precursors 
were generated in the trapping region of the ion mobility cell by using a collisional energy ramp from 6/9 V (low 
mass 50 Da, start/end) to up to 147/183 V (high mass 5000 Da, start/end), with actual values applied dependent 
upon the precursor m/z. The MS2 scan time was set to 70 ms and the “TIC stop” parameter was set to 100,000 
intensity/s allowing a maximum accumulation time of 100 ms (i.e. up to two tandem MS spectra of the same 
precursor). IMS wave velocity was ramped from 2450 m/s to 550 m/s (start to end) and the pusher/ion mobility 
synchronized for singly charged fragment ions in MS/MS spectra, with up to 85% duty cycle efficiency.

SONAR GP. As for Scanning SWATH, the GP fractionation approach which is usually acquired in PAcIFIC 
was also analysed by SONAR purely to extend the peptide library. Therefore, the mass scale from m/z 400 to 
1200 was divided into 100 Da sections, thus requiring 8 injections for each sample. The quadrupole was contin-
uously scanned from the start mass to end mass of each section and a transmission window of 4 Da was used. In 
low-energy MS1 mode, data were collected at constant gas cell collision energy of 6 eV. In elevated energy MS2 
mode, the gas cell collision energy was ramped with values calculated from the start and end mass of the 100 Da 
mass range being scanned by the quadrupole, and are shown in Supplementary Table 5. The spectral acquisition 
time in each mode was 0.5 s with a 0.02 s interscan delay.

SONAR. The quadrupole was continuously scanned between m/z 400 to 900, with a quadrupole transmission 
width of ∼20 Da. Two data functions are acquired in an alternating mode, differing only in the collision energy 
applied to the gas cell. In low-energy MS1 mode, data were collected at constant gas cell collision energy of 6 eV. 
In elevated energy MS2 mode, the gas cell collision energy was ramped from 16 to 36 eV (per unit charge). The 
spectral acquisition time in each mode was 0.5 s with a 0.02 s interscan delay.

Bruker timsTOF pro (Nano flow LC). An Acquity UPLC M-Class System (Waters Corporation) was fitted with 
a nanoEaseTM M/Z Symmetry C18 trap column (100 Å, 5 µm, 180 µm × 20 mm) and a nanoEaseTM M/Z HSS C18 
T3 Column (100 Å, 1.8 µm, 75 µm × 250 mm, both from Waters Corporation). The sample was loaded onto the 
trap column in 2 min at 5 µl/min in 94% mobile phase A and 6% mobile phase B. Mobile phase A is UPLC-grade 
water with 0.1% FA, while mobile phase B is 80% ACN with 0.1% FA. The Acquity UPLC M-Class system was 
coupled online to a TimsTOF Pro via a CaptiveSpray nano-electrospray ion source (Bruker Daltonics, Bremen, 
Germany), with an ion transfer capillary temperature at 180 °C. Liquid chromatography was performed at 40 °C 
and with a constant flow of 400 nL/min. Peptides were separated using a linear gradient of 2−30% mobile phase 
B over 120 minutes. The timsTOF Pro elution voltages were calibrated linearly to obtain reduced ion mobility 
coefficients (1/K0) using three selected ions of the Agilent ESI-L Tuning Mix (m/z, 1/K0: 622.0289 Th, 0.9848 Vs 
cm−2; 922.0097 Th, 1.1895 Vs cm−2; 1222.9906 Th, 1.3820 Vs cm−2).

PASEF. Parallel Accumulation–Serial Fragmentation DDA (PASEF) was used to select precursor ions for 
fragmentation with 1 TIMS-MS scan and 10 PASEF MS/MS scans, as described by Meier et al. in 201832. The 
TIMS-MS survey scan was acquired between 0.70–1.45 V.s/cm2 and 100–1700 m/z with a ramp time of 100 ms. 
The 10 PASEF scans contained on average 12 MS/MS scans per PASEF scan with a collision energy of 10 eV. 
Precursors with 1–5 charges were selected with the target value set to 20 000 a.u and intensity threshold to 2500 
a.u. Precursors were dynamically excluded for 0.4 min.

diaPASEF. The diaPASEF method was implemented as described by Meier et al. in 201919. The DIA parameters 
that define the windows can be found in Supplementary Table 6. The DIA range was set to 400–1200 m/z with 16 dia-
PASEF scans of 25 m/z isolation windows, including an overlap of 1 Da. Each diaPASEF scan consisted of two steps 
(measuring two 25 Da intervals), with each step spanning an IMS range of 0.3 V.s/cm². The lower IMS value increased 
linear from 0.6 to 0.834375 for the diaPASEF scans. The TIMS-MS scan was identical to the PASEF method.

Data Records
Data record 1.  The mass spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository33 with the dataset iden-
tifier, PXD02873534. For every instrument, a separate Sample and Data Relationship File (SDRF) and an Investigation 
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Description File (IDF) have been uploaded to ProteomeXchange. Both the SDRF and IDF file formats are relatively 
new in Proteomics and were developed in a collaboration between EuBIC-MS and the Proteomics Standards Initiative 
(PSI)35,36. These files are used to annotate the sample metadata and link the metadata to the corresponding data file(s) 
and thus will improve the reproducibility and reanalysis of this comprehensive benchmark dataset.

Data record 2.  The AutoQC data analysed in Skyline is available from Panorama Public with the link https://
panoramaweb.org/LFQBenchmark.url37.

technical Validation
We continuously performed system suitability procedures to monitor LC-MS/MS performance in a longi-
tudinal fashion. Therefore, we ran an AutoQC complex lysate, i.e. a commercial E.coli protein digest extract 
(Supplementary Table 7), every 3 to 4 samples over all acquired runs on all instruments. All the AutoQC sam-
ples were acquired in DDA on each LC-MS/MS instrument, except for the Synapt XS, Orbitrap QE-HF and the 
timsTOF Pro, where incidentally DDA and DIA acquisitions were alternated. The same mobile phase A and B 
composition as for the benchmark samples was used as for the benchmark samples, but the gradient applied 
was modified to reduce the time required to acquire the complete sample batch: linear 3–40% B in 60 minutes, 
up to 85% B in 2 minutes, isocratic at 85% B for 7 minutes, down to 3% B in 1 minute and isocratic at 3% B for 
10 minutes. Note that the timsTOF Pro AutoQC samples were acquired using the 120 min gradient similar to 
the actual hybrid proteome samples.

System suitability assessment was performed by monitoring peptide-identification free metrics (i.e. retention 
time, peak area, mass accuracy, etc.) extracted with the vendor neutral Panorama AutoQC framework38,39. To 
isolate a set of peptides that can be used for this, triplicate AutoQC samples acquired on each instrument were 
peak picked using MSConvert (version 3.0.20070) and the corresponding.MGF files were searched against an 
E.coli FASTA database using Mascot Daemon (v2.7). The searches were performed with following settings: (i) 
20 ppm peptide mass tolerance, (ii) 50 ppm fragment mass tolerance and (iii) two allowed missed cleavages. The 
peptide and protein identification results were exported as Mascot .DAT file and imported into Skyline Daily 
(version 21.1.1.160). The five highest ranked proteins were retained in the target list and after importing one of 
the AutoQC .raw files, we manually verified and removed each precursor with co-eluting peptides and low MS1 
signal intensity before a Skyline file was saved as template file. Finally, a configuration file for each setup was 
created with the AutoQC Loader software (version 21.1.0.158) which leads to the automatic import of every 
sample, with the pattern “AutoQC” in the .raw file or folder structure, in the Skyline template.The data and 
skyline reports were published to the PanoramaWeb folder “U of Ghent Pharma Biotech Lab - LFQBenchmark 
across Instrument Platforms” containing six subfolders for each instrumental platform.

For each instrument, peak area, retention time and mass accuracy were manually checked by plotting these 
metrics in Levey-Jennings plots. For almost every instrument a few outliers were detected, as can be expected 
on a dataset of over 600 LC-MS runs. Fortunately, most of these can be explained by inspecting the raw data and 
by personal communication with the technicians acquiring the respective datasets. Figure 2 illustrates one such 

Fig. 2 Levey-Jennings plot of the standard deviation in peak area for 50 selected precursors acquired in DDA 
with the TripleTOF 6600+. The upper chart shows two distinct outliers, acquired respectively on the 2nd and 
12th of December (red boxes). Manual inspection of the data shows these were caused by (a) a wrong vial in the 
sample tray and (b) an empty vial. When these two samples are excluded from the Levey-Jennings plot (lower 
chart), a significant drop in standard deviation over the time period of data acquisition is seen.
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case. More specifically, two AutoQC samples display a near-complete loss in peak area in the TripleTOF 6600+ 
DDA dataset. Indeed, these were caused by (a) a wrong vial in the sample tray and (b) an empty vial. When 
these two samples are removed from the QC plot, a more coherent perspective on the variation in standard 
deviation is seen in the Levey-Jennings plot. Other instances that we have already found include (i) a significant 
shift in standard deviation in peak area reported for the Orbitrap QE HF-X, timsTOF Pro and Synapt XS dataset 
because AutoQC samples were incidentally acquired in two different acquisition methodologies, i.e. in DDA and 
DIA; (ii) For the timsTOF Pro, a drift in retention time was seen, indicating LC related technical variation which 
could have been caused by e.g. too short column equilibration times; (iii) In the Orbitrap QE HF-X AutoQC 
data one peptide (EEAIIK) was undetectable in all the AutoQC samples acquired in AIF. Manual inspection of 
the acquisition in Skyline (easily accessible through the Panorama QC pipeline) surfaced that it fell out of the 
precursor m/z range (351.7053 m/z) that was acquired.

As expected in such a massive MS proteomics experiments, it seems that for every instrument some outliers 
were recorded, most of which have explanations common to the field. Above all, this demonstrates the necessity 
of a performant system suitability workflow to increase the reproducibility and quality of LC-MS/MS proteomics 
datasets40.

Usage Notes
A comprehensive dataset such as the one presented here is inspired by the bioinformatics need to cope with 
the recent expansion of novel acquisition strategies and data dimensions. Apart from being a repository for 
validating both performance and compatibility of (new) bioinformatic pipelines, it can serve as a reference for 
general proteomics courses (e.g. Skyline tutorials, SWATH/DIA course) and be applied for training and validat-
ing machine/deep learning algorithms. As such, it is intended to facilitate our understanding of the impact of 
instrumentation on the perspective that is generated on protein biology and to a larger extent to help unify the 
field of proteomics.

To demonstrate the applicability of this data repository, we assessed the impact of instrumentation on the 
most conventional data format acquired by all instruments i.e. DDA. Therefore, for every instrumental plat-
form, triplicate Human, Yeast and E.coli DDA runs were peak picked with MSConvert (version 3.0.21285) and 
exported as a Mascot .MGF file (Fig. 3a). MS Convert software was chosen as it is vendor-independent and 
contains each vendor’s implementation for peak picking, with the exception of UNIFI i.e. Waters. Therefore, 
Progenesis QI for Proteomics (version 4.2.7207) was used for the Waters DDA data. By doing so, the MS1 
precursor space was aligned in the retention time dimension before peak picking. Subsequently, all MS/MS 
spectra were exported as .MGF file for peptide identification. A standard search with carbamidomethylation of 
cysteine as fixed modification was performed using a database containing the Human, Yeast and E.coli protein 
sequences (downloaded from Uniprot on 19/01/2021) and with following parameters: i) mass error tolerances 
for the precursor ions and the fragment ions were set at 20 ppm and 50 ppm, respectively; ii) enzyme specificity 
was set to trypsin, allowing up to one missed cleavage. Next, the results were exported as .DAT file and imported 
into Skyline to create a non-redundant spectral library with BiblioSpec. Afterwards, the .BLIB file was converted 
to a .dlib and .msp file format respectively using EncyclopeDIA29. The resulting .msp file was converted using 
a Python conversion tool (speclib_to_mgf.py) built-in MS²PIP, to create a peptide record file (.PEPREC) and 
.MGF file. Next the proportion (amount) of peptide identifications overlapping between the different instru-
ments was assessed using a custom Python script (Fig. 3b).

Since each instrument analysed the same commercial protein digests, a large overlap in peptide identifica-
tions would be expected. However, while the timsTOF Pro, TripleTOF 6600+ and Orbitrap QE HF-X roughly 
identify a similar number of peptide sequences (approximately 40,000 over nine LC-MS runs), the overlap in 
identified sequences is in the order of 50%, with that between the Orbitrap QE HF-X and the TripleTOF 5600 
and 6600+ being overall 10% higher than the overlap with the timsTOF Pro. While at the protein level a lot 
more coherency is found, it is still striking how the Orbitrap QE HF-X and especially the timsTOF Pro have 
significantly more proteins from a similar number of annotated peptides (Fig. 3c).

A benchmark like the one presented here however, allows to investigate potential assertions attributed to 
different stages of the workflow.

acquisition. Even with DDA, the acquisition parameters can be modified substantially. A first, crucial dif-
ference is the used flow rate of the LC system: the TripleTOF 6600+ was coupled to a 5 µl/min flow, while the 
Orbitrap QE HF-X and timsTOF Pro used nanoflow (350 and 400 nL/min, respectively). While nano flow is more 
sensitive, it is also more fragile, which is reflected in some of the quality control samples uploaded to Panorama 
QC. A second important parameter is dynamic exclusion, i.e. how long a certain precursor is excluded from 
fragmentation to avoid redundancy. As found in the methods section, this was set to 10 s, 24 s and 30 s for the 
TripleTOF 6600+, the timsTOF Pro and the Orbitrap QE HF-X, respectively. This parameter usually is a function 
of LC gradient length and of consistent MSMS spectral quality, which can be facilitated through e.g. automatic 
gain control (AUC) in orbitrap instruments, but not in QTOF designs. As a result, the orbitrap sampled the pep-
tides most efficiently, with 20% of the peptides only sampled once in a run, i.e. three times over triplicate runs of 
the same proteome (Fig. 3d). A third aspect of acquisition is the addition of ion mobility separation (IMS) capa-
bilities in Waters and Bruker instruments. Importantly, they both use IMS in a very different way, forcing a deeper 
understanding of instrumental architecture and how ion mobility is applied by both vendors in DDA relative to 
the quadrupole (Q) selection and the collision-induced dissociation (CID). Briefly, the order of ion manipulation 
is Q-CID-IMS for the so-called High Definition DDA (HD-DDA) in the Waters series and it is IMS-Q-CID in 
the Bruker instruments. Therefore, Waters separates the fragment ions in IMS and leverages the efficient charge 
state separation to synchronize the pusher of the TOF tube with singly charged fragment ions in order to only and 
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Fig. 3 Comparing the DDA data of six different instruments. Experimental design (a) Triplicate measurements of 
three individual proteomes. (b) The overlap in uniquely identified peptide sequences and (c) proteins between the six 
instruments. (d) Number of PSMs per peptide identification throughout nine DDA runs on three different proteomes 
for three instruments. (e) Pearson Correlation Coefficient (PCC) of the fragment intensities were calculated 
between the shared identified peptides from the DDA replicates between each instrument. The numbers in each box 
correspond to the median spectrum PCC between the instrument on the x-axis and the instrument on the y-axis. 
Dark blue color indicates a higher degree of overlap or higher median PCC. (f) Boxplots of the Pearson correlation 
coefficients (PCC) between the MS²PIP predicted (HCD and TTOF5600 model) and experimental fragment 
ion intensities across the six different LC-MS instruments. (g) The benchmark design of mixed proteomes for three 
instruments as annotated and quantified using AlphaPept. Here, triplicate runs of Condition A and Condition B 
were used, resulting in the six bars depicted in the middle, respectively representing the number of MS1 features, the 
number of identified peptides and the number of identified proteins for each instrument. The log-fold plots to the left 
depict the distribution of the peptide ratios in the x-axis as a function of their intensity in the y-axis; protein log fold 
changes are depicted to the right.
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nearly one hundred percent efficiently sample the single charged fragments7. This can be expected to impact the 
fragment intensities, especially when detector saturation in MSMS occurs. In the timsTOF Pro on the other hand, 
the IMS is in fact resolving the precursor ion space before fragmentation, leading to a different selection of the 
peptide precursor space compared to other devices that do not use IMS (in this way).

Raw data. Next, the differences in the fragmentation process between the instruments (all of which are 
beam-type CID) can be assessed by mutually mapping the MS2 intensities. Figure 3e shows their median Pearson 
correlation coefficients (PCC). By definition, this only plots commonly found peptides. The largest differences in 
fragment intensities are found between timsTOF Pro and Orbitrap QE HF-X, potentially underlying part of the 
differences seen in peptide and protein identification. Importantly, the recent introduction of machine learning 
algorithms has illustrated the potential of fragment intensity prediction for proteomics24,25,41–43. Therefore, to 
attain an even deeper understanding of these fragmentation differences, we calculated the PCC of both b- and 
y-ions compared to two prediction models (i.e. HCD and TTOF 5600) from MS²PIP44 (Fig. 3f). This confirms 
that the Orbitrap and TripleTOF designs have a very similar fragmentation pattern. Note that the normalized 
collision energy was not taken into account as input feature25,45,46. Additionally, the Synapt and timsTOF instru-
ments are sampling the ion beam more efficiently, through ion mobility (Waters) or trapping and pusher design 
(Bruker), potentially causing more frequent detector saturation in the fragment space, leading to skewed intensity 
patterns compared to the predicted spectra. Indeed, augmented gain controlled in Orbitrap devices can efficiently 
avoid this.

Sample complexity. We also acquired the proteomes as mixtures in known ratios, and selected a triplicate 
series of Condition A and B for a subsequent analysis (Fig. 3g). This higher sample complexity is considerably 
more challenging for DDA acquisition, because the instrument needs to do a faster sampling of the precursor ion 
space. To create a more comprehensive picture of the resulting data, we turned to AlphaPept, an alternative anno-
tation algorithm that also quantifies the number of features in MS1, i.e. potential peptide species in the sample47. 
Strikingly, while the TripleTOF 6600+ generated the most features (330k compared to 260k and 220k for the 
Orbitrap QE HF-X and the timsTOF Pro), it annotated considerably less peptides as well as proteins compared 
to the two other instruments (Fig. 3g). Still, the peptide/protein bias persists for the Orbitrap QE HF-X and tim-
sTOF Pro comparison. Importantly, AlphaPept support for SCIEX was only preliminarily implemented through 
mzML preprocessing, potentially underlying the lower annotation rate and making it a perfect example of how 
the benchmark can support the development of compatibility in the future.

Data analysis: Quantification.  Next, we used the benchmark design to verify to what extent the annotated 
peptides and proteins were found in their respective ratios (Fig. 1). Apart from being a benchmark target for 
quantification algorithms, this ground truth can also be considered a very rough empirical estimation of the false 
discovery rate (FDR)1. At the peptide level the spread of especially Human peptides into other ratios is increas-
ingly visible in the order TripleTOF 6600+ < Orbitrap QE HF-X < timsTOF Pro, which alludes to increasing 
misannotation (Fig. 3g). While ratio estimation is known to become compromised with decreasing intensities of 
the MS1 features selected, the relative position of these peptides on the y-axis argues against this intensity expla-
nation. Unfortunately, the exported ion counts of the timsTOF Pro differ at least 1–2 orders of magnitude com-
pared to both the Orbitrap and the TripleTOF 6600+ and more advanced (conversion) algorithms are needed 
to compare these. However, at the protein level there was no overall skewing in the AlphaPept results that would 
point towards a significant increase in FDR in any of the instruments.

In conclusion, considerable bioinformatics challenges remain to be tackled before the intricacies of the data 
from contempory instrumentation and their acquisition parameters can truly be defined.

In conclusion, it is clear from this preliminary data usage case on the simple and most commonly applied 
DDA strategies that a lot of insights on data structure and bias were still hidden. Especially in light of the more 
recent DIA strategies, of which only a few were analysed in this Scientific Data report (Supplementary Fig. 1), a 
lot of work needs to be done before the field truly understands how data acquisition and data analysis effectively 
perform. Importantly, each step in the data processing can greatly impact the final outcome and we especially 
anticipate a renewed interest in (multidimensional) peak picking algorithms as a currently underappreciated 
preprocessing step of the complex DIA data1. Additionally, recent annotation tools have doubled the number 
of peptides that can be extracted from the same DIA data, an asset not expected for novel DDA annotation 
algorithms21,28. We would therefore like to invite the developers of all current bioinformatics tools to make use 
of this comprehensive dataset to benchmark their performance for each instrument individually and adapt 
their algorithms to increase the performance on all. This dataset was compiled from different labs and therefore 
also captures differences in instrument usage peculiar to the field, yet it all can be assessed in the Panorama QC 
metrics that are also publically available. Especially a better understanding of the detectable and annotatable ion 
space will move the field forward and help researchers make informed decisions on the best acquisition strate-
gies for their application or biological question under investigation.

Code availability
MS2PIP is open source, licensed under the Apache-2.0 License, and hosted on https://github.com/compomics/
ms2pip_c. The Jupyter notebooks used to generate Fig. 3(b,c,e,f) are available through Zenodo, under https://doi.
org/10.5281/zenodo.571438048.

Received: 23 December 2021; Accepted: 23 February 2022;
Published: xx xx xxxx

https://doi.org/10.1038/s41597-022-01216-6
https://github.com/compomics/ms2pip_c
https://github.com/compomics/ms2pip_c
https://doi.org/10.5281/zenodo.5714380
https://doi.org/10.5281/zenodo.5714380


1 1Scientific Data |           (2022) 9:126  | https://doi.org/10.1038/s41597-022-01216-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

References
 1. Willems, S. et al. Ion-networks: A sparse data format capturing full data integrity of data independent acquisition mass spectrometry. 

bioRxiv (2019).
 2. Vaudel, M. et al. PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nature Biotechnology 33, 22–24 (2015).
 3. Verheggen, K., Martens, L., Berven, F. S., Barsnes, H. & Vaudel, M. Database Search Engines: Paradigms, Challenges and Solutions. 

in Advances in Experimental Medicine and Biology 147–156 (2016).
 4. Geromanos, S. J., Hughes, C., Ciavarini, S., Vissers, J. P. C. & Langridge, J. I. Using ion purity scores for enhancing quantitative 

accuracy and precision in complex proteomics samples. Analytical and bioanalytical chemistry 404, 1127–1139 (2012).
 5. Richardson, K. et al. A Probabilistic Framework for Peptide and Protein Quantification from Data-Dependent and Data-

Independent LC-MS Proteomics Experiments. OMICS: A Journal of Integrative Biology 16, 468–482 (2012).
 6. Li, G.-Z. et al. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent 

analysis of simple and complex peptide mixtures. PROTEOMICS 9, 1696–1719 (2009).
 7. Helm, D. et al. Ion Mobility Tandem Mass Spectrometry Enhances Performance of Bottom-up Proteomics. Molecular & Cellular 

Proteomics 13, 3709–3715 (2014).
 8. Shliaha, P. V., Bond, N. J., Gatto, L. & Lilley, K. S. Effects of Traveling Wave Ion Mobility Separation on Data Independent Acquisition 

in Proteomics Studies. Journal of Proteome Research 12, 2323–2339 (2013).
 9. Gillet, L. C. et al. Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for 

Consistent and Accurate Proteome Analysis. Molecular & Cellular Proteomics 11, O111.016717 (2012).
 10. Ludwig, C. et al. Data‐independent acquisition‐based SWATH‐MS for quantitative proteomics: a tutorial. Molecular Systems Biology 

14 (2018).
 11. Ting, Y. S. et al. Peptide-Centric Proteome Analysis: An Alternative Strategy for the Analysis of Tandem Mass Spectrometry Data. 

Molecular & cellular proteomics: MCP 14, 2301–7 (2015).
 12. Li, Y. et al. Group-DIA: analyzing multiple data-independent acquisition mass spectrometry data files. Nature Methods 12, 

1105–1106 (2015).
 13. Kuharev, J., Navarro, P., Distler, U., Jahn, O. & Tenzer, S. In-depth evaluation of software tools for data-independent acquisition 

based label-free quantification. PROTEOMICS 15, 3140–3151 (2015).
 14. Teleman, J. et al. DIANA–algorithmic improvements for analysis of data-independent acquisition MS data. Bioinformatics (Oxford, 

England) 31, 555–562 (2015).
 15. Peckner, R. et al. Specter: linear deconvolution for targeted analysis of data-independent acquisition mass spectrometry proteomics. 

Nature methods 15, 371–378 (2018).
 16. Wang, J. et al. MSPLIT-DIA: sensitive peptide identification for data-independent acquisition. Nature methods 12, 1106–1108 

(2015).
 17. Moseley, M. A. et al. Scanning Quadrupole Data-Independent Acquisition, Part A: Qualitative and Quantitative Characterization. 

Journal of Proteome Research 17, 770–779 (2018).
 18. Messner, C. B. et al. Ultra-fast proteomics with Scanning SWATH. Nature Biotechnology 39, 846–854 (2021).
 19. Meier, F. et al. diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nature Methods 

17, 1229–1236 (2020).
 20. Van Puyvelde, B. et al. Removing the Hidden Data Dependency of DIA with Predicted Spectral Libraries. PROTEOMICS 20, 

1900306 (2020).
 21. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable 

deep proteome coverage in high throughput. Nature Methods 17, 41–44 (2019).
 22. Bouwmeester, R., Gabriels, R., Van Den Bossche, T., Martens, L. & Degroeve, S. The Age of Data‐Driven Proteomics: How Machine 

Learning Enables Novel Workflows. Proteomics 20, 1900351 (2020).
 23. Silva, A. S. C., Bouwmeester, R., Martens, L. & Degroeve, S. Accurate peptide fragmentation predictions allow data driven 

approaches to replace and improve upon proteomics search engine scoring functions. Bioinformatics 35, 5243–5248 (2019).
 24. Zhou, X.-X. et al. pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning. Analytical Chemistry 89, 12690–12697 (2017).
 25. Gessulat, S. et al. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nature Methods 16, 509–518 

(2019).
 26. Bouwmeester, R., Gabriels, R., Hulstaert, N., Martens, L. & Degroeve, S. DeepLC can predict retention times for peptides that carry 

as-yet unseen modifications. Nature Methods 18, 1363–1369 (2021).
 27. Mann, M., Kumar, C., Zeng, W.-F. & Strauss, M. T. Artificial intelligence for proteomics and biomarker discovery. Cell Systems 12, 

759–770 (2021).
 28. Navarro, P. et al. A multicenter study benchmarks software tools for label-free proteome quantification. Nature Biotechnology 34, 

1130–1136 (2016).
 29. Searle, B. C. et al. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass 

spectrometry. Nature Communications 9, 5128 (2018).
 30. Pino, L. K., Just, S. C., MacCoss, M. J. & Searle, B. C. Acquiring and Analyzing Data Independent Acquisition Proteomics 

Experiments without Spectrum Libraries. Molecular & Cellular Proteomics 19, 1088–1103 (2020).
 31. Distler, U. et al. Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nature 

Methods 11, 167–170 (2014).
 32. Meier, F. et al. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. 

Molecular & Cellular Proteomics 17, 2534–2545 (2018).
 33. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. 

Nucleic Acids Research 47, D442–D450 (2019).
 34. Dhaenens, M. & Perez-Riverol, Y. A comprehensive LFQ benchmark dataset to validate data analysis pipelines on modern day 

acquisition strategies in proteomics. PRIDE Archive https://identifiers.org/pride.project:PXD028735 (2021).
 35. Dai, C. et al. A proteomics sample metadata representation for multiomics integration and big data analysis. Nature Communications 

12, 5854 (2021).
 36. Bittremieux, W. et al. The European Bioinformatics Community for Mass Spectrometry (EuBIC‐MS): an open community for 

bioinformatics training and research. Rapid Communications in Mass Spectrometry e9087 (2021).
 37. Van Puyvelde, B. A comprehensive LFQ benchmark dataset to validate data analysis pipelines on modern day acquisition strategies 

in proteomics. Panorama Public https://doi.org/10.6069/ffcw-g217 (2021).
 38. Bereman, M. S. et al. An Automated Pipeline to Monitor System Performance in Liquid Chromatography–Tandem Mass 

Spectrometry Proteomic Experiments. Journal of Proteome Research 15, 4763–4769 (2016).
 39. Sharma, V. et al. Panorama: A Targeted Proteomics Knowledge Base. Journal of Proteome Research 13, 4205–4210 (2014).
 40. Bereman, M. S. Tools for monitoring system suitability in LC MS/MS centric proteomic experiments. Proteomics 15, 891–902 

(2015).
 41. Degroeve, S. & Martens, L. MS2PIP: a tool for MS/MS peak intensity prediction. Bioinformatics (Oxford, England) 29, 3199–3203 

(2013).
 42. Tiwary, S. et al. High-quality MS/MS spectrum prediction for data-dependent and data-independent acquisition data analysis. 

Nature Methods 16, 519–525 (2019).

https://doi.org/10.1038/s41597-022-01216-6
https://identifiers.org/pride.project:PXD028735
https://doi.org/10.6069/ffcw-g217


1 2Scientific Data |           (2022) 9:126  | https://doi.org/10.1038/s41597-022-01216-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

 43. Yang, Y. et al. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Nature Communications 
11, 1–11 (2020).

 44. Gabriels, R., Martens, L. & Degroeve, S. Updated MS2PIP web server delivers fast and accurate MS2 peak intensity prediction for 
multiple fragmentation methods, instruments and labeling techniques. Nucleic Acids Research 47, 295–299 (2019).

 45. Diedrich, J. K., Pinto, A. F. M. & Yates, J. R. Energy Dependence of HCD on Peptide Fragmentation: Stepped Collisional Energy 
Finds the Sweet Spot. Journal of the American Society for Mass Spectrometry 24, 1690–1699 (2013).

 46. Tarn, C. & Zeng, W.-F. pDeep3: Toward More Accurate Spectrum Prediction with Fast Few-Shot Learning. Analytical Chemistry 93, 
5815–5822 (2021).

 47. Strauss, M. T. et al. AlphaPept, a modern and open framework for MS-based proteomics. bioRxiv (2021).
 48. Gabriels, R. & Van Puyvelde, B. Code to generate Fig. 3 and 4. A comprehensive LFQ benchmark dataset to validate data analysis 

pipelines on modern day acquisition strategies in proteomics. zenodo https://doi.org/10.5281/zenodo.5714380 (2021).

acknowledgements
This research was funded by grants from the Research Foundation Flanders (FWO) awarded to BVP (grant 
number: 11B4518N), RG (1S50918N), and MD (12E9716N). Hans Vissers is acknowledged for his assistance 
with data conversion and formatting. This work was supported in part by the French Ministry of Research with 
the Investissement d’Avenir Infrastructures Nationales en Biologie et Santé program (ProFi, Proteomics French 
Infrastructure project; ANR-10-INBS-08).

author contributions
B.V.P., S.W., S.D. and M.D. conceived the study, B.V.P. performed the TripleTOF 5600 and 6600+ data acquisition, 
S.D. performed the Synapt G2-Si data acquisition, A.G.P., D.B., E.M. and K.C. performed the Orbitrap data 
acquisition, K.B. performed the timsTOF Pro data acquisition. C.H. and L.G. performed the Synapt XS data 
acquisition. B.V.P. and S.D. prepared the samples and R.G. and S.W. wrote the scripts to generate Fig. 3. Y.P.R. 
organised the ProteomeXchange submission. N.B. and S.T. helped us to set up the acquisition methodologies 
on the TripleTOF 6600+ and provided valuable insights on the differences seen for each instrument. B.V.P. and 
M.D. wrote the draft manuscript with contributions from all authors. M.D. supervised and D.D. and L.M. co-
supervised the experiment.

Competing interests
Chris Hughes and Lee Gethings are employed by Waters Corporation. Nic Bloomfield and Stephen Tate are 
employed by SCIEX.

additional information
Supplementary information The online version contains supplementary material available at https://doi.
org/10.1038/s41597-022-01216-6.
Correspondence and requests for materials should be addressed to M.D.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2022

https://doi.org/10.1038/s41597-022-01216-6
https://doi.org/10.5281/zenodo.5714380
https://doi.org/10.1038/s41597-022-01216-6
https://doi.org/10.1038/s41597-022-01216-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A comprehensive LFQ benchmark dataset on modern day acquisition strategies in proteomics
	Background & Summary
	Methods
	Sample preparation. 
	LC-MS/MS. 
	SCIEX TripleTOF 5600 (Capilary flow LC). 
	SCIEX TripleTOF 6600+ (Capilary flow LC). 
	Thermo Orbitrap QE HF-X (Nano flow LC). 
	Waters Synapt G2-Si (Capillary flow LC). 
	Waters Synapt XS (Capilary flow LC). 
	Bruker timsTOF pro (Nano flow LC). 


	Data Records
	Data record 1. 
	Data record 2. 

	Technical Validation
	Usage Notes
	Acquisition. 
	Raw data. 
	Sample complexity. 
	Data analysis: Quantification. 

	Acknowledgements
	Fig. 1 Schematic overview of the different acquisition strategies/instruments applied in the study.
	Fig. 2 Levey-Jennings plot of the standard deviation in peak area for 50 selected precursors acquired in DDA with the TripleTOF 6600+.
	Fig. 3 Comparing the DDA data of six different instruments.




