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Comprehensive RNa dataset of 
tissue and plasma from patients 
with esophageal cancer or 
precursor lesions
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Steve Lefever  2,3, Jasper anckaert  2,3, Danny De Looze6, Jo Vandesompele  2,3,9, 
Piet Pattyn4,7,9 & Katleen De Preter1,3,9 ✉

In the past decades, the incidence of esophageal adenocarcinoma has increased dramatically in 
Western populations. Better understanding of disease etiology along with the identification of novel 
prognostic and predictive biomarkers are urgently needed to improve the dismal survival probabilities. 
Here, we performed comprehensive RNA (coding and non-coding) profiling in various samples from 17 
patients diagnosed with esophageal adenocarcinoma, high-grade dysplastic or non-dysplastic Barrett’s 
esophagus. Per patient, a blood plasma sample, and a healthy and disease esophageal tissue sample 
were included. In total, this comprehensive dataset consists of 102 sequenced libraries from 51 samples. 
Based on this data, 119 expression profiles are available for three biotypes, including miRNA (51), 
mRNA (51) and circRNA (17). This unique resource allows for discovery of novel biomarkers and disease 
mechanisms, comparison of tissue and liquid biopsy profiles, integration of coding and non-coding RNA 
patterns, and can serve as a validation dataset in other RNA landscaping studies. Moreover, structural 
RNA differences can be identified in this dataset, including protein coding mutations, fusion genes, and 
circular RNas.

Background & Summary
Esophageal cancer is the sixth most common cause of cancer-related death worldwide1. The incidence of esoph-
ageal adenocarcinoma (EAC), a histological subtype of esophageal cancer, has rapidly increased in the Western 
world in the last decades2. Despite improved treatment strategies, the five-year survival rate remains unac-
ceptably low (10–25%)3,4. The main risk factors to develop EAC are gastro-esophageal reflux disease (GERD), 
Barrett’s esophagus, smoking and age above 50 years5. Barrett’s esophagus is a known precursor lesion for EAC 
where the normal squamous mucosa of the esophagus is replaced by columnar intestinal epithelium triggered 
by chronical acid stress due to GERD. Specifically, GERD can cause progression from non-dysplastic Barrett’s 
esophagus (NDB) through the stages of low-grade dysplasia (LGD) to high-grade dysplasia (HGD), and even-
tually to invasive EAC6.

Upper endoscopy is not the ideal screening method due to its invasiveness, relatively high cost and above all 
large incidence of aforementioned risk factors in the general population. Despite high resolution endoscopy and 
virtual imaging techniques, detecting dysplasia in a long segment of Barrett’s esophagus remains challenging. 
Additionally, there is a low inter-observer agreement among pathologists in grading both low- and high-grade 
dysplasia, leading to over- and under-diagnosis7,8.
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Mechanisms that drive EAC development remain poorly understood. The analysis of the transcriptomic 
landscape of EAC, HGD and NDB can provide further insights into molecular mechanisms involved in the 
development and progression of EAC. The study of RNA abundance profiles has proven its value to aid in the 
identification of new biomarkers to improve disease detection, therapeutic decision making, therapy response 
monitoring, and early relapse detection9.

Over the last decade, numerous studies have explored various types of RNA species in tissue biopsies from 
esophageal cancer patients. For instance, microRNAs (miRNAs) have been identified in tissue biopsies as poten-
tial biomarkers for EAC, HGD and NDB10. These miRNAs seem to have great potential as a diagnostic marker 
for Barrett’s esophagus in a population at risk (patients with GERD), but further research is required to identify 
miRNAs for risk stratification. To a lesser extent, messenger RNA (mRNA) expression has been studied in EAC, 
HGD and NDB as well11,12.

EAC is characterized by high mutation rates (including TP53 as a driver mutation that is most often found 
in tumor tissue13). Moreover, EAC as well as Barrett’s esophagus tissues are characterized by a large heteroge-
neity14,15. By gaining a deeper understanding in the different molecular subtypes, a more targeted treatment 
approach can be explored.

Besides gene dysregulation, chromosomal rearrangements can result in fusion proteins. Fusion genes have 
been reported to be involved in cancer16, including EAC17–19. Identification of fusion genes provides valuable 
insights in the development of EAC and can potentially be used as biomarkers for detection or therapeutic 
targeting.

Classically, these molecular profiling studies require the availability of (tumor) tissue that is not always read-
ily available. The past decade, profiling of nucleic acids isolated from liquid biopsies (e.g. blood) for cancer bio-
markers has gained increased interest, because this procedure is minimally invasive compared to tissue biopsies. 
For EAC, a number of studies have identified several miRNAs as putative biomarkers in serum or plasma20,21, 
but further clinical validation studies are needed prior to assessment of clinical utility. Circular RNA (circRNA) 
is an emerging new type of RNA that has gained interest in the field of cancer biomarker research. Due to their 
circular covalent structure, circRNAs are more resistant to degradation by exonucleases in the blood. Although 
the potential as cancer biomarker has been shown in several studies22,23, this has not yet been reported in either 
plasma or tissue from EAC patients.

Quantification of circulating mRNAs as a biomarker are much more challenging, due to their low concen-
tration and fragmentation status in the blood. However, with the refinement of RNA sequencing methods, the 
detection of circulating mRNA is improving as well. In EAC these circulating mRNAs have not been identified 
yet, but have shown great potential in other cancer studies24.

In this study, we generated a comprehensive dataset that allows exploration of the complex transcriptome 
landscape of EAC and precursor lesions (HGD, NDB) in 17 patients. It includes polyA+ RNA (tissue samples), 
mRNA capture-based (plasma) and miRNA expression profiling (tissue and plasma). Exploratory data analysis 
was done to study protein coding gene mutations, fusion genes, and circRNAs.

Methods
Patient sample collection. Matching tissue and blood samples were obtained from four patients with eso-
phageal adenocarcinoma (EAC), five patients with high-grade dysplasia (HGD) and eight patients with non-dys-
plastic Barrett’s esophagus (NDB) (Table 1). All samples were collected before treatment with informed consent 
(EC/2016–0495 and EC/2016–0496, Ghent University Hospital Ethics Committee). Tissue samples were obtained 
during endoscopy (NDB and HGD) or after surgical resection of the tumor (EAC). At least one of the tissue sam-
ples that was collected from the diseased tissue zone was sent for pathological investigation. The other disease 
tissue samples and healthy esopgahus tissue samples (collected from each patient) were preserved in RNAlater 
(Qiagen) at 4 °C and transferred to −80 °C the following day for long-term storage. Blood samples were collected 
in a 6 ml EDTA waste tube followed by a 9 ml sodium citrate (3.2%) VACUETTE blood tube (Greiner Bio-One). 
Plasma was prepared by centrifugation at 1,800 g for 10 min (full break and acceleration). The clear toplayer (leav-
ing 0.5 cm above the buffy coat) was transferred to cryovials and stored at −80 °C. Time between blood collection 
and plasma preparation was less than 4 h, except for sample ID2 (6 h) and ID20 (7 h). Hemolysis was deter-
mined spectrophotometrically (absorbance at 414 nm) for all plasma samples using Nanodrop (ND1000, Thermo 
Scientific) (see Supplementary Table 1). RNA extraction, library preparation and sequencing of all samples was 
performed by Biogazelle (Zwijnaarde, Belgium) as discussed in the next sections. An experimental overview is 
shown in Fig. 1.

RNa isolation from tissue and plasma samples. For all tissue samples, total RNA was isolated 
using the miRNeasy mini kit (Qiagen) with on-column DNase digestion, according to the manufacturer’s 
protocol. RNA concentration was measured with the Qubit 2.0 fluorometer (Thermo Fisher Scientific). The 
concentration ranged from 16.3 to 2,210 ng/µl, with sample ID43_EAC (disease tissue) having the lowest con-
centration (Supplementary Table 2). RNA integrity was determined using the Fragment Analyzer (Advanced 
Analytical Technologies). Most samples (70.6%) had quality scores above 7, the lowest score was 3.4 (disease 
tissue of sample ID43_EAC) (Supplementary Table 2). RNA was used for polyA+ RNA sequencing and 
small RNA sequencing.

For all plasma samples, RNA was isolated from 200 µl plasma using the miRNeasy Serum/Plasma Kit 
(Qiagen) according to the manufacturer’s instructions. For RNA used for mRNA capture sequencing, RNA isola-
tion was followed by gDNA removal using the Heat&Run gDNA removal kit (ArcticZymes). Since extra-cellular 
RNA from plasma is highly fragmented and typically below the detection limit, the RNA concentration or integ-
rity was not estimated. Instead, a volume based RNA input was used for library preparation.
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PolyA+ RNA sequencing for tissue samples. Libraries were prepared with the TruSeq Stranded mRNA 
Library Prep kit (Illumina), using 100 ng of RNA as input material. The quality and the size distribution of the 
libraries was validated on the Fragment Analyzer (Advanced Analytical Technologies) and quantification was 
done using the Qubit fluorometer (Life Technologies). Libraries were normalized and samples were pooled 
accordingly. Samples were paired-end sequenced with a read length of 2 × 75 base pairs (bp) on a NextSeq 500 
(Illumina) instrument according to the manufacturer’s instructions.

mRNA capture sequencing for plasma samples. Libraries were prepared with an optimized protocol 
of the TruSeq RNA Access Library Prep Kit (Illumina), using 8.5 µl of the RNA eluate. The Fragment Analyzer 

clinical 
diagnosis sample ID age gender TNMa Barrett’s segmentb location follow-up time

EAC ID20 74 M pT2N1M0 C0M2 distal esophagus 44

EAC ID29 77 M pT1bN1M0 yes, CM not reported GEJ 34

EAC ID30 73 M ypT1bN0M0 — GEJ 36

EAC ID43 63 M pT1aN0M0 C4M5 NA (no resection) 10D

HGD ID2 45 M — C10M12 — 29 (EAC)

HGD ID5 78 M — C5M7 — 49

HGD ID25 73 M — C10M10 — 23 (EAC)

HGD ID26 54 M — C5M7 — 36

HGD ID39 83 F — C0M3 — 37

NDB ID1 59 M — C0M7 — 40D

NDB ID18 59 F — C10M12 — 39 (LGD)

NDB ID19 71 M — C11M12 — 43 (C11M11)

NDB ID22 73 M — C6M6 — 20

NDB ID33 51 M — C10M12 — 37 (C11M12)

NDB ID35 78 F — C9M9 — 16 (C7M8)

NDB ID37 45 M — C5M5 — 23 (C3M6)

NDB ID40 76 M — C8M8 — 6

Table 1. Metadata of 17 patients included in this dataset. aClassification that describes the size of the primary 
tumor and invasion in surrounding tissue (T), lymph node involvement (N) and metastasis (M). The prefix p 
indicates histopathological staging of the resected tumor and y indicates that the patient received neoadjuvant 
therapy. bThe Prague C and M classification is used for reporting the Barrett’s segment: C = circumferential 
Barrett’s segment; M = maximal length of the Barrett’s tongue-like extent62. EAC = esophageal adenocarcinoma, 
HGD = high-grade dysplasia, NDB = non-dysplastic Barrett’s esophagus, M = male, F = female, LGD = low-
grade dysplasia, GEJ = gastro-esophageal junction. Follow-up time indicates time in months with the last 
known disease progression in brackets. D indicates the patient has died.

17 patients 
(4 EAC, 5 HGD, 8 NDB)

51 samples
(healthy/disease tissue, plasma)

polyA+ small RNA mRNA capture small RNApolyA+ small RNA

RNA isolation

RNA sequencing 102 libraries

data
mRNA

fusion genes
variants

miRNA

healthy tissue disease tissue plasma

mRNA

fusion genes
variants

miRNA mRNA

fusion genes
variants

miRNA

circRNAs

Fig. 1 Experimental set-up and overview of the data. This comprehensive dataset includes 17 patients with 
EAC, HGD or NDB. From each patient disease tissue, healthy esophageal tissue and blood plasma was collected. 
From all 51 samples, RNA was isolated that was used for mRNA (polyA+ and capture-based) and small RNA 
sequencing. Data reported in this study includes data for mRNA and miRNA expression, variant analysis, 
fusion gene detection and circRNAs (the latter only in plasma samples).
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(Advanced Analytical Technologies) was used to validate size distribution and quality of the libraries and 
quantification was done using Qubit fluorometer (Life Technologies). Libraries were normalized and samples 
were pooled accordingly. Samples were paired-end sequenced with a read length of 2 × 75 bp on a NextSeq 500 
(Illumina) instrument according to the manufacturer’s instructions. Sequencing was done in two runs for all sam-
ples to obtain sufficient sequencing depth. For sample ID37_NDB, reads from only one run have been included, 
since the first run contained an insufficient number of reads (less than 2,000) for this sample.

Small RNA sequencing for tissue and plasma samples. Libraries were prepared using the NEBNext 
small RNA library prep kit (New England Biolabs) for both tissue and plasma samples. For tissue and for plasma, 
100 ng and 6 µl of total RNA was used as input, respectively. Library size selection was done with the Pippin Prep 
system (Sage Science) to select the ~147–157 nt fragments containing mature miRNAs. Libraries were normal-
ized based on qPCR quantification and pooled accordingly. Pools were concentrated with ethanol precipitation 
and quantification with the Qubit 2.0 fluorometer (Thermo Fisher Scientific). Tissue and plasma samples were 
single-end sequenced with a 75 bp read length on a NextSeq 500 (Illumina) instrument according to the manu-
facturer’s instructions.

Data processing of mRNA sequencing data. Pre-processing of mRNA sequencing data of plasma and 
tissue samples included 3′-end trimming, adapter removal and filtering (discard reads smaller than 20 nt) using 
Cutadapt (v1.18). Low quality read pairs were removed using Biopython (v1.72) by keeping pairs with mini-
mal 80% of their length having a Phred score greater or equal than 19. Clumpify (BBMap v38.26) was used for 
read duplicate removal for plasma samples only, due to the low RNA input. STAR (v2.6.0) was used for map-
ping (GRCh38 v91) and quantification was done with HTSeq (v0.11.0). Individual QC reports were generated 
with FastQC (v0.11.8) and multiQC (v1.8) was used to combine these reports for tissue and plasma samples. 
Annotation was based on GRCh38, UCSC Genome Browser (reference genome) and GENCODE v20, Ensembl 
84 (reference transcriptome). The number of mapped reads remaining after the different pre-processing steps in 
tissue and plasma samples is shown in Table 2. The R packages edgeR (v3.28.1) and limma (v3.42.2) were used for 
normalization (Trimmed Mean of M-values) differential gene expression (tissue)/ abundance (plasma) analysis, 
respectively. Prior to these analyses, genes were filtered based on more than four counts in at least half of the sam-
ples per group (EAC, HGD, NDB). The Gene Set Enrichment Analysis (GSEA) tool (v4.1.0) was used to identify 
sets of genes that are significantly different between two groups25. As input for the analysis, a ranked list based on 
log2 fold change of all genes was used. For the purpose of this study, two collections of the Molecular Signatures 
Database (MSigDB) were used: the hallmark26 and the C2 chemical and genetic perturbations gene sets.

Data processing of small RNA sequencing data. Adapter trimming was applied to all small RNA 
sequencing reads of tissue and plasma samples, followed by mapping to the GRCh38 reference genome with 
Bowtie (v1.2.2). No mismatches were allowed for mapping reads smaller than 25 nucleotides, while for the longer 
reads a maximum of two mismatches were allowed. Annotation was based on Ensembl (v84), UCSC (hg38) and 
miRBase (v21). Mapped reads were annotated to mature miRNAs as well as other small RNAs, including tRNA, 
rRNA, sn(o)RNAs and piRNAs. Here, we only present the miRNA results. The number of mapped reads remain-
ing after the different pre-processing steps in tissue and plasma samples is shown in Table 2. The R packages 
edgeR (v3.28.1) and limma (v3.42.2) were used for normalization (Trimmed Mean of M-values) and differential 
miRNA expression (tissue)/abundance (plasma) analysis, respectively. Prior to these analyses, genes were filtered 
based on more than four counts in at least half of the samples per group (EAC, HGD, NDB).

Analysis of circRNAs in mRNA capture sequencing data. For plasma samples, raw mRNA capture 
sequencing reads were used to identify circRNAs based on back-splice junctions using CIRCexplorer2 (v2.3.3). 
Reads were trimmed with Cutadapt (v.1.18), low quality reads were removed with a custom script, retaining 
only reads where 80% of the read has a Phred quality score of at least 20 and duplicates were removed with 
Clumpify BBMap (v38.26). Mapping was done in 2 steps with TopHat2/TopHat-Fusion (v2.1.0) using indices of 

mRNA (incl. circRNA for plasma) miRNA

samples range mean ± s.d. range mean ± s.d.

raw reads (million)
tissue healthy 25.7–30.5 27.7 ± 1.5 14.7–28.8 21.7 ± 3.7

tissue disease 24.2–31.2 27.1 ± 1.8 19.1–26.2 22.5 ± 2.0

reads after trimming (million)
tissue healthy 20.8–25.6 23.1 ± 1.5 — —

tissue disease 16.7–25.7 21.9 ± 2.1 — —

mapped reads (million)
tissue healthy 20.5–25.4 22.9 ± 1.5 2.0–11.7 6.0 ± 2.7

tissue disease 14.5–25.4 21.5 ± 2.4 3.5–10.5 7.0 ± 1.9

raw reads (million) plasma 22.9–34.1 29.1 ± 3.2 15.2–20.6 18.0 ± 1.3

reads after trimming (million) plasma 13.3–29.7 23.5 ± 4.5 — —

reads after deduplication (million) plasma 1.0–6.0 3.3 ± 1.4 — —

mapped reads (million) plasma 0.9–5.8 3.2 ± 1.4 0.4–1.5 0.8 ± 0.3

Table 2. Range and mean (±standard deviation) of the number of reads per sample during the different pre-
processing steps for all mRNA (tissue and plasma) and miRNA (tissue and samples) samples.
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both Bowtie2 (v2.3.4.1) and Bowtie (v1.1.2) respectively. First, reads are aligned onto the genome and transcrip-
tome using TopHat2 in order to reduce false positive reads aligned in the TopHat-Fusion alignment. BEDTools 
(v2.26.0) was used to convert BAM files to fastq files. The “parse”, “annotate”, “assemble” and “denovo” modules in 
CIRCexplorer2 were used according to the user’s manual27.

Variant analysis of mRNA capture sequencing data. RNA sequencing data can be used for variant 
analysis, as previously demonstrated28. Using the RNA sequencing data from tissue and plasma samples, variants 
were identified using the following pipeline (based on Piskol et al.29): the first ten bases of all paired-end reads 
of each sample were trimmed due to possible false positives that can occur here as a result of random priming. 
The remaining sequence was aligned against the human reference genome build GRCh38 using STAR (v2.6.0c, 
two-step mode). Next, Mutect2 was used to call variants using default settings following the GATK (v3.8.0) best 
practices workflow, which included base-recalibration and duplicate removal with Picard (v.2.21.6)30. Variants 
located within four nucleotides of splice-junctions, in homopolymeric regions or regions overlapping other repeat 
types were removed. For each of the remaining variants, a BLAT (v3.5) analysis was performed to assess the 
quality of the reads contributing to the variant call31. This helped identify and filter out variants introduced by 
misaligned reads. Afterwards, variants were filtered differently depending on the tissue of origin. For healthy and 
tumor tissue samples, variants supported by at least 20 reads in total (DP > 20) and four reads for the alternative 
allele (AD > 4) were retained. In addition, variants found in more than one gnomAD32 (v3.1) sample or having 
allele frequencies below 20 or above 80 percent were removed in the tissue data. Next, variants identified in the 
healthy tissue were subtracted from the tumor variant list to obtain a list of tumor-specific variants. In a last phase, 
the disease-specific variant list was intersected with a list of variants in plasma. These results were filtered to only 
keep variants that have a coverage of at least two reads.

Fusion gene analysis in polyA+ and mRNA capture sequencing data. Fusion gene analysis was 
done on all tissue (polyA+ sequencing data) and plasma samples (mRNA capture sequencing data). Adapter clip-
ping and quality trimming from all sequencing reads was done using Trimmomatic (v0.35). After 3′ quality trim-
ming, fusion genes were detected using a pipeline based on the FusionCatcher methodology (v0.99.7c). Mapping 
to the reference genome (Ensembl release 84) was performed with STAR (v2.5.1b) using the 2-pass mode and 
duplicates were removed with Picard tools (v2.7). This analysis results in a list of candidate fusion genes with the 
presumed breakpoint (“fusion junction”).

Data Records
This dataset includes mRNA and small RNA sequencing data from four patients with EAC, five patients with 
HGD and eight patients with NDB. For each patient, RNA from matching tissue (healthy esophagus and disease) 
and plasma was sequenced, resulting in 102 sequenced libraries from 51 samples. Clinical information of the 17 
patients is available in Table 1, including age at diagnosis, tumor stage and/or Barrett’s segment and follow-up 
information (if known). An overview of all available data and access information is provided in Table 3. For this 
publication, raw data was pre-processed using in-house optimized pipelines (Biogazelle and Ghent University), 
resulting in 119 expression profiles: 34 mRNA and 34 miRNA expression profiles from healthy and disease tissue 
samples, 17 mRNA and 17 miRNA expression profiles from plasma, and 17 circRNA expression profiles (based 
on mRNA sequencing data) from plasma. Count tables have been deposited in the ArrayExpress33 database at 
EMBL-EBI. In addition, results from variant- and fusion gene analysis are available as supplementary tables 
(Supplementary Tables 4, 5).

All pre-processed mRNA, miRNA and circRNA expression data for tissue and plasma samples was also 
uploaded to the R2 Genomics Analysis and Visualization Platform (http://r2.amc.nl), an online genomics data 
visualization tool. The user-friendly web application allows rapid and easy visualization of the data, including 
gene expression analysis, gene correlation analysis and visualization of one or multiple genes.

All raw sequencing data (polyA+, mRNA capture, small RNA) is available through the European 
genome-phenome archive (EGA) under accession number EGAS0000100493934. Data requests can be made by 
contacting the Data Access Committee, as stated on the EGA information page of the study (https://ega-archive.
org/studies/EGAS00001004939). A Data Transfer Agreement (DTA) and Data Access Agreement (DAA) will 
have to be signed in order for the data to be transferred (a template can be found in Supplementary File 1). The 
raw sequencing data available at EGA were not part of the peer-reviewed content of this manuscript.

technical Validation
Assessment of RNA sequencing quality. mRNA sequencing quality. The mean sequencing quality per 
base (raw data) for mRNA tissue and plasma is higher than 28 for all samples (Fig. 2a), reflecting the very good 
quality of the data. The average number of reads for mRNA tissue and plasma samples throughout the pre-pro-
cessing steps is shown in Table 2. For all tissue samples, 19–25 million reads per sample remain after trimming 
and filtering, except for sample ID40_NDB (disease tissue) that has a slightly lower number of reads (14.5 mil-
lion). For the plasma samples, on average 3.2 million reads remain after filtering, trimming and deduplication.

For further downstream analyses, sample ID40_NDB was excluded due to the lower library yield (measured 
as described above) of the disease tissue sample (data not shown) and the lower percentage (68%) of reads with a 
quality score higher than 30, compared to all other tissue samples (85% on average). Sample ID43_EAC was also 
excluded for downstream analyses, due to the lower library quality of the disease tissue sample. This was likely 
due to the low concentration (16.3 ng/µl) and low RNA quality score (3.4) (Supplementary Table 2).

https://doi.org/10.1038/s41597-022-01176-x
http://r2.amc.nl
https://ega-archive.org/studies/EGAS00001004939
https://ega-archive.org/studies/EGAS00001004939


6Scientific Data |            (2022) 9:86  | https://doi.org/10.1038/s41597-022-01176-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

small RNA sequencing quality. The mean sequencing quality per base (raw data) of the small RNA sequencing 
data (tissue and plasma) is higher than 28 for the first 60 bp in all samples (Fig. 2a), reflecting the very good qual-
ity of the data. The sequencing quality for samples ID26_HGD (healthy tissue) and ID19_NDB (disease tissue) 
decreases slightly towards the end of the reads (>60 bp). However, as most small RNAs are typically around 
20–30 nucleotides in length, a good quality measure for the first 30 nucleotides of the 5′-end of the read is more 
relevant in the context of small RNA expression analysis. The number of remaining miRNA reads per sample 
after pre-processing is 5–10 million reads for tissue samples and 1–3 million for plasma samples (Table 2).

Successful detection of thousands of RNa genes in tissue and plasma. Expressed mRNAs, miR-
NAs and circRNAs have been identified in all tissue and/or plasma samples (Table 4). As expected, fewer unique 
mRNAs and miRNAs were found in plasma compared to tissue samples. In EAC samples, fewer unique circRNAs 
were found (353-1,165) compared to HGD (858-3,624) and NDB (1,237-3,683).

Validation of mRNa abundance data. mRNA in tissue. Several studies have reported lists of differen-
tially expressed genes in EAC, HGD and NDB compared to healthy tissue samples11,12,35. However, the overlap 
among these reported genes is limited. Tables 5 and 6 show the overlap of differentially expressed genes (adjusted 
p-value < 0.05) between EAC and healthy tissue from three large studies11,12,35 and our own dataset. A significant 
overlap (Fisher’s exact test; Benjamini-Hochberg adjusted p-value < 0.05) was observed between the differentially 
expressed genes reported in this study and the three published gene sets.

GSEA in tissue revealed several interesting gene sets that are enriched in disease tissue (EAC or NDB) com-
pared to healthy tissue, and EAC compared to NDB tissue (Supplementary Table 3). For example, comparing 
EAC tissue with healthy tissue the following relevant gene sets were significantly (FDR < 1%) positively enriched 
in EAC: HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION, HALLMARK_KRAS_SIGNALING_
UP and WANG_ESOPHAGUS_CANCER_VS_NORMAL_UP35. Comparing EAC with NDB tissue samples, the 
WANG_BARRETTS_ESOPHAGUS_UP35 gene set was significantly negatively enriched in EAC (FDR < 1%). 
These GSEA results (FDR < 25%) are available in Supplementary Table 3.

mRNA in plasma. There are currently no studies reporting on mRNAs in plasma of patients with EAC, HGD 
or NDB. Using the sample clustering option in R2 for the plasma mRNA expression level data, a clear cluster-
ing of the samples according to sample identity, i.e. EAC samples versus HGD and NDB samples (Fig. 2b) is 
observed. If we look into more detail we observe that some of the differentially expressed mRNAs in tissue of 
patients with EAC compared to NDB are also differentially abundant in the plasma samples (in the same direc-
tion). More specifically, there is an overlap of 11 up- and 24 downregulated genes, as shown in the heatmap in 
Fig. 2c.

When comparing EAC with NDB plasma, several relevant gene sets showed positive enrichment in EAC, 
including HALLMARK_MYC_TARGETS V1 and V2 (FDR < 1%). Deregulation of MYC is known to play a key 
role in the development of EAC36,37, indicating that tumor signal may be present in plasma. These GSEA results 
(FDR < 25%) are available in Supplementary Table 3.

Markers for epithelial mesenchymal transition (EMT) are of clinical relevance for a more targeted treat-
ment38. The process of EMT enables cancer cells to enter the blood stream and form local and distant metasta-
sis39. Several EMT markers have been identified in EAC as well as in precursor lesions (NDB)40,41, suggesting that 
this process could be an early event for progression to EAC. Importantly, ZEB1 is a gene involved in EMT42,43 

data data type samples source accession number or name

pre-processed data (count tables) mRNA tissue (healthy and disease, 34 samples) ArrayExpress E-MTAB-1000563

pre-processed data (count tables) mRNA plasma (17 samples) ArrayExpress E-MTAB-1000264

pre-processed data (count tables) small RNA tissue (healthy and disease, 34 samples) ArrayExpress E-MTAB-1000365

pre-processed data (count tables) small RNA plasma (17 samples) ArrayExpress E-MTAB-1000466

pre-processed data (count tables) circRNA plasma (17 samples) ArrayExpress E-MTAB-1000264

pre-processed data (count tables) mRNA tissue (healthy and disease, 34 samples) R2 Mixed Barretts Tissue de Preter - 34 - 
deseq. 2_rlog - hsens91

pre-processed data (count tables) mRNA plasma (17 samples) R2 Mixed Barretts Plasma de Preter - 17 
- deseq. 2_rlog - hsens91

pre-processed data (count tables) small RNA tissue (healthy and disease, 34 samples) R2 Mixed Barretts Tissue de Preter - 34 - 
deseq. 2_rlog - kdpmir001

pre-processed data (count tables) small RNA plasma (17 samples) R2 Mixed Barretts Plasma de Preter - 17 
- deseq. 2_rlog - kdpmir001

pre-processed data (count tables) circRNA plasma (17 samples) R2 Mixed Barretts Plasma (circRNA) de 
Preter - 17 - deseq. 2_rlog - circpret1

results variant analysis based on mRNA data plasma Supplementary Table 4 —

results fusion gene analysis based on mRNA data tissue Supplementary Table 5 —

results fusion gene analysis based on mRNA data plasma Supplementary Table 5 —

Table 3. Overview of available data and sources.
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and in this data it was found to be significantly higher in EAC compared to NDB in both tissue and plasma 
(Benjamini-Hochberg adjusted p-values are 2.62 × 10−2 and 3.01 × 10−2, respectively).

circRNA in plasma. Like mRNA, circRNAs have also not yet been reported in plasma from patients with EAC, 
HGD or NDB. In our analyses, no significantly differentially expressed circRNAs were identified (Table 7). 
While the adjusted p-values (Benjamini-Hochberg) are not significant in this dataset, a heatmap of the top 
ten most abundant circRNAs (p-values are below 2.36 × 10−3) comparing EAC with NDB samples shows that 
plasma circRNAs may have biomarker potential, but needs further validation (Fig. 2d).

c

d

a

e

b

position (bp)

miRNA tissue

miRNA plasma

mRNA tissue

Ph
re

d 
sc

or
e

position (bp)

Ph
re

d 
sc

or
e

mRNA plasma

position (bp)

Ph
re

d 
sc

or
e

Ph
re

d 
sc

or
e

position (bp)

chr1:172555868−172557794

chr10:95922015−95927332

chr19:10162666−10166685

chr2:147972738−147982081

chr2:32114637−32128479

chr20:10556230−10560820

chr22:25663629−25674528

chr5:55274613−55281515

chr6:149378017−149379518

chr9:125337017−125337591
−2

−1

0

1

2

EAC
HGD
NDB

plasma 

CLEC2B
CYP2E1
HMOX1
VAMP5
FKBP5
PDGFRB
GIMAP4
ZBTB46
ZEB1
LILRA1
RASAL3
MICU1
RHOBTB1
C2orf88
PGRMC1
ITFG1
YWHAH
SLC30A5
CALM3
XPNPEP1
PACSIN2
TPM1
  ARHGAP18
CMPK1
TMEM219
SUMO3
RAB4A
MAN2A1
PRKCD
DNM3
APP
SYTL4
RMDN2
GRB14
CERS2
   

tissue 

−2

−1

0

1

2

EAC
HGD
NDB

1

-1

0

EAC
HGD
NDB

 

hs
a-

m
iR

-1
92

-5
p

hs
a-

m
iR

-1
94

-5
p

hs
a-

m
iR

-2
03

a-
3p

hs
a-

m
iR

-2
05

a-
5p

2l
og

 o
f

EA
C_

di
se

as
e

EA
C_

he
al

th
y

H
G

D
_d

is
ea

se
H

G
D

_h
ea

lth
y

N
D

B_
di

se
as

e
N

D
B_

he
al

th
y

2l
og

 o
f

2l
og

 o
f

2l
og

 o
f

EA
C_

di
se

as
e

EA
C_

he
al

th
y

H
G

D
_d

is
ea

se
H

G
D

_h
ea

lth
y

N
D

B_
di

se
as

e
N

D
B_

he
al

th
y

Fig. 2 Technical validation of the data. (a) quality plots of the RNA raw reads sequencing data: per base mean 
quality of mRNA tissue and plasma data (top row), and miRNA tissue and plasma data (bottom row); (b) 
hierarchical clustering of the mRNA plasma samples based on Pearson’s correlation coefficient, generated in 
R2 (Euclidian distances, average linkage), where the R-value ranging from −1 to 1 represents the negative 
(−1), positive (1) or no (0) relationship. It shows a clustering of EAC samples versus HGD and NDB samples; 
(c) heatmap showing the relative expression of 35 overlapping differentially expressed genes (up and down) 
for tissue (left) and plasma (right) samples (Benjamini-Hochberg adjusted p-value < 0.05); (d) the relative 
expression of top ten abundant circRNAs in plasma (EAC vs NDB) shown in a heatmap (p-value < 2.36 × 10−3); 
(e) boxplot representation of the relative expression of four of the most frequently reported up- and down 
regulated miRNAs (more than four times in literature) in EAC, HGD and/or NDB tissue samples compared 
to matched healthy esophageal tissue. Samples included in the boxplots are healthy and disease tissues from 3 
patients with EAC, 5 with HGD and 7 with NDB.
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Validation of miRNa abundance data. miRNA in tissue. Many miRNAs have been reported to be up- 
or downregulated in EAC, HGD and NDB tissue compared to healthy tissue samples44. Two of the most reported 
miRNAs to be upregulated in EAC, HGD, and/or NDB compared to healthy tissue are hsa-miR-192-5p45–50 and 
hsa-miR-194-5p45–47,49–51. Similarly, two of the most reported downregulated miRNAs in EAC, HGD, and/or 
NDB are hsa-miR-203a-3p46–51 and hsa-miR-205-5p45–47,50–52. The latter miRNA (hsa-miR-205-5p) is known for 
targeting ZEB138. In our dataset, we confirm the differential expression patterns of these miRNAs in disease tissue 
compared to healthy tissue (Fig. 2e).

miRNA in plasma. While several differential miRNA abundance patterns in EAC or NDB plasma have been 
reported21,53–58, there is only one overlapping miRNA (miR-194-5p) among these studies54,56. Moreover, different 

RNA type disease sample type range mean ± s.d.

mRNA

EAC

healthy tissue 17,297–18,844 18,122 ± 552

disease tissue 15,374–19,291 17,990 ± 1,534

plasma 8,195–10,237 8,968 ± 763

HGD

healthy tissue 17,578–18,119 17,834 ± 220

disease tissue 18,055–19,817 18,893 ± 688

plasma 8,974–11,468 10,707 ± 886

NDB

healthy tissue 16,848–17,937 17,503 ± 338

disease tissue 16,294–19,685 18,282 ± 909

plasma 9,514–11,443 10,455 ± 633

miRNA

EAC

healthy tissue 483–639 529 ± 64

disease tissue 629–682 657 ± 20

plasma 375–438 417 ± 25

HGD

healthy tissue 494–726 598 ± 81

disease tissue 577–704 659 ± 44

plasma 347–427 386 ± 28

NDB

healthy tissue 531–682 626 ± 54

disease tissue 621–714 663 ± 32

plasma 332–432 391 ± 30

circRNA

EAC plasma 353–1,165 745 ± 301

HGD plasma 858–3,624 2,286 ± 895

NDB plasma 1,237–3,683 2,000 ± 824

Table 4. Range and mean (±standard deviation) of unique protein coding genes (mRNAs), miRNAs and 
circRNAs found in tissue or plasma samples. Counts were filtered by only keeping RNAs with more than four 
counts.

Maag et al.11 Lv et al.12 Wang et al.35
tissue data from this study 
(including all 34 samples)

Maag et al.11 19

Lv et al.12 0 (1) 63

Wang et al.35 0 (1) 10 (9.54 × 10−12) 119

tissue data from this manuscript 
(including all 34 samples) 19 (1.32 × 10−15) 12 (2.48 × 10−08) 20 (9.29 × 10−12) 446

Table 5. Number of overlapping upregulated genes in EAC tissue compared to healthy tissue. On the diagonal 
line are the number of reported genes in each gene set. The number of overlapping genes between a given pair of 
datasets are shown, with Fisher’s exact test adjusted p-values (Benjamini-Hochberg).

Lv et al.12 Wang et al.35
tissue data from this manuscript 
(including all 34 samples)

Lv et al.12 57

Wang et al.35 5 (3.27 × 10−05) 100

tissue data from this manuscript 
(including all 34 samples) 2 (0.01) 3 (4.70 × 10−03) 57

Table 6. Number of overlapping downregulated genes in EAC tissue compared to healthy tissue. On the 
diagonal line are the number of reported genes in each gene set. The number of overlapping genes between a 
given pair of datasets are shown, with Fisher’s exact test adjusted p-values (Benjamini-Hochberg).
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blood fractions, including serum21,55–59, plasma54 and extracellular vesicles53 were studied. With our analysis pipeline, 
no differentially abundant miRNAs between the plasma samples of the different groups were identified (Table 7).

Usage Notes
Gene expression and abundance analysis. Differential gene expression and abundance analyses were 
performed for mRNAs, miRNAs and circRNAs in tissue and plasma. The number of differentially expressed genes 
are depicted in Table 7. The pre-processed data is also uploaded in R2, allowing further exploration and visuali-
zation of the dataset. In this study, we have identified several circRNAs in plasma of patients with EAC, HGD and 
NDB. This type of RNA has great potential as circulating biomarker because they are more resistant to RNA deg-
radation by exonucleases due to their circular structure. While we focused on miRNA expression and abundance 
analyses using the small RNA sequencing data, other small RNAs such as tRNA (fragments), and piRNAs could 
be analyzed using our data as well.

Expression of related miRNAs and mRNAs. One of the unique features of our dataset is the inclu-
sion of both miRNA and mRNA data of matching disease and healthy tissue samples. The relationship between 
miRNA and mRNA expression can thus be studied in our data. As an example, the hedgehog (HH) signaling 
pathway is known to play an important role in EAC and NDB60. In NDB, increased expression of hsa-miR-194 
results in a loss of SUFU, which leads to an upregulation of the Sonic Hegdgehog (SHH) gene. The upregulation 
of hsa-miR-194 and SHH, and downregulation of SUFU compared to healthy tissue is also observed in our NDB 
tissue data as well as in the EAC and HGD tissue samples (Figs. 2e and 3). These unique matched disease and 
healthy fractions dataset allows further exploration of potentially relevant pathways, i.e. by using both miRNA 
and mRNA data, as demonstrated by this example.

contrasts

1. disease vs healthy tissue 2. disease tissue vs disease tissue 3. disease-healthy vs disease-healthy 4. plasma

EAC HGD NDB EAC vs NDB EAC vs HGD
HGD vs 
NDB EAC vs NDB

EAC vs 
HGD

HGD vs 
NDB

EAC vs 
NDB

EAC vs 
HGD

HGD vs 
NDB

mRNA (up/down) 99/5 4,440/4,218 4,799/4,324 3,653/2,615 2,798/1,956 2/8 1,979/1,172 1,665/734 0/0 54/167 0/0 0/0

miRNA (up/down) 42/42 203/154 219/186 56/38 15/5 0/0 46/62 27/21 0/0 0/0 0/0 0/0

circRNA (up/down) — — — — — — — — — 0/0 0/0 0/0

Table 7. Results of expression and abundance analyses of tissue samples (19,734 genes and 676 miRNAs 
included) and plasma samples (11,255 genes, 457 miRNAs and 2,275 circRNAs included). Prior to the 
analyses, count tables were filtered to include RNAs with more than four counts in at least half of the samples 
per group. Results shown in the table are filtered based on adjusted p-value < 0.05 (Benjamini-Hochberg) 
and LFC > log2(1.5). Different contrasts were analyzed: comparing disease with healthy tissue (contrast 1), 
comparing disease tissue between groups (contrast 2), comparing disease versus healthy tissue samples of one 
group with the disease versus healthy tissue samples of another group (contrast 3), and comparing the three 
groups for the plasma samples (contrast 4).
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Fig. 3 Usage notes. Boxplot per sample group of the hsa-miR-194, SHH and SUFU expression levels in the 
tissue samples (generated in R2). Samples included in the boxplots are healthy and disease tissues from 3 
patients with EAC, 5 with HGD and 7 with NDB.
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Mutation analysis. Based on the polyA+ sequencing data (tissue) and mRNA capture sequencing data 
(plasma), mutation analysis was performed. For each patient, disease specific variants were identified using 
strict filtering as described in the methods section. Subsequently, these variants were intersected with variants in 
plasma. In total, 24 variants were identified in the plasma of two EAC patients, five HGD patients and four NDB 
patients (Supplementary Table 4). Per patient, 1-7 variants were found, but no overlap was observed within a 
disease group or between groups. Three variants are known tumor mutations according to the COSMIC database 
in prostate cancer (COSM5564582), cervix or biliary tract cancer (COSM5493837), or large intestine cancer 
(COSM5756079). These results are a proof-of-concept to demonstrate the ability to identify likely somatic muta-
tions or disease-specific RNA-editing events in plasma RNA sequencing data.

Fusion gene analysis. Fusion gene analysis in EAC tissue has been reported in only a few studies17–19. Here, 
we demonstrate the potential of detecting fusion genes for EAC, HGD and NDB tissue and plasma samples. 
Results obtained from these analyses are provided in Supplementary Table 5. Results in this table are unfiltered, 
but in red are the fusion genes that have a high probability of being a false positive. In tissue samples, potential 
fusion genes were identified in all samples. By excluding (on a per sample basis) fusion genes also found in the 
healthy tissue, disease-specific fusion genes were identified. As a result, for all samples 2-14 fusion genes remain 
(excluding the potential false positives). For the plasma samples, potential fusion genes are identified in one HGD 
patient sample and in two NDB patient samples, with two overlapping fusion genes (ID5_HGD and ID19_NDB). 
No overlapping fusion gene between disease tissue and plasma samples was observed. Further validation of these 
potentially relevant fusion genes is required.

Code availability
All code used for pre-processing mRNA and miRNA sequencing data is publicly available on GitHub (https://
github.com/OncoRNALab/exRNAQC/blob/main/Preprocessing)61. For circRNA detection, the CircExplorer2 
manual was followed as described in the Methods section. Further downstream analyses (differential expression, 
GSEA, fusion gene detection, and variant analysis) was done following the guidelines of the different R packages 
and software tools as described (with the used versions) in the Methods section.
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