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thinking out loud, an open-access 
EEG-based BCI dataset for inner 
speech recognition
Nicolás Nieto  1,2 ✉, Victoria Peterson2, Hugo Leonardo Rufiner  1,3, 
Juan Esteban Kamienkowski4 & Ruben Spies2

Surface electroencephalography is a standard and noninvasive way to measure electrical brain activity. 
Recent advances in artificial intelligence led to significant improvements in the automatic detection of 
brain patterns, allowing increasingly faster, more reliable and accessible Brain-Computer Interfaces. 
Different paradigms have been used to enable the human-machine interaction and the last few 
years have broad a mark increase in the interest for interpreting and characterizing the “inner voice” 
phenomenon. this paradigm, called inner speech, raises the possibility of executing an order just by 
thinking about it, allowing a “natural” way of controlling external devices. Unfortunately, the lack 
of publicly available electroencephalography datasets, restricts the development of new techniques 
for inner speech recognition. a ten-participant dataset acquired under this and two others related 
paradigms, recorded with an acquisition system of 136 channels, is presented. The main purpose of this 
work is to provide the scientific community with an open-access multiclass electroencephalography 
database of inner speech commands that could be used for better understanding of the related brain 
mechanisms.

Background & Summary
Brain-Computer Interfaces (BCIs) are a promising technology for improving the quality of life of people who 
have lost the capability to either communicate or interact with their environment1. A BCI provides an alternative 
way of interaction to such individuals, by decoding the neural activity and transforming it into control com-
mands for triggering wheelchairs, prosthesis, spellers or any other virtual interface device2,3. In BCI applications, 
neural activity is typically measured by electroencephalography (EEG), since it is a non-invasive technique, the 
measuring devices can be easily portable and the EEG signals have high time resolution1,2.

Different paradigms have been used in order to establish communication between a user and a device. Some 
of the most widely adopted paradigms are P3004, steady-state visual evoked potentials (SSVP)5 and motor 
imagery6. Although the use of these paradigms have resulted in great advances in EEG-based BCI systems, for 
some applications, they are still unable to lead to efficient ways for controlling devices. This is so mainly because 
they turned out to be too slow or they required a large effort from the users, restricting the applicability of BCIs 
in real-life and long-term applications.

In this context, BCIs based on speech-related paradigms, silent, imagined or inner speech, seek to find a 
solution to the aforementioned limitations, as they provide a more natural way for controlling external devices. 
Speech production is one of the most complex brain processes performed by human beings since it requires the 
interaction of several cortical, basal and subcortical brain regions7,8. Most language models and theories agree 
on the fact that speech involves auditory processing, semantic and syntactic processing as well as motor planning 
and articulation processes8–11. Although major and clear theoretical differences exist between the three para-
digms mentioned above, they are quite often inconsistently and misleadingly referred to in the literature. In this 
article, we present a description of the main characteristics of each one of those three paradigms.
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•	 Silent speech refers to the articulation produced during normal speech, but with no sound emitted. It is 
usually measured using motion-capturing devices, imaging techniques or by measuring the activity of mus-
cles, and not only from brain signals12–14. In addition, Cooney et al.15 proposed a similar paradigm called 
“Intended speech”, where participants not having the capability to emit sound, are asked to perform speech.

•	 Imagined speech is similar to silent speech but it is produced without any articulatory movements, just like in 
motor imagery of speaking. Here, the participant must feel as if he/she is producing speech13, mainly focusing 
on the different articulatory gestures. This paradigm was widely explored using EEG16–21, electrocorticog-
raphy (ECoG) signals22–24 and magnetoencephalography25. In DaSalla et al.16, the vowels /a/ and /u/ were 
carefully selected, as they have the most different articulation processes. The requested actions were: “imagine 
mouth opening and imagine vocalization” for the vowel /a/ and “imagine lip rounding and imagine vocaliza-
tion” for the vowel /u/. In Pressel et al.17 the requested action was: “imagine the pronunciation or pronounce 
the word given as cue.”. Finally, the classes (prompts) used in Zhao et al.18 were selected to have different artic-
ulations, as the authors mention: “These prompts were chosen to maintain a relatively even number of nasals, 
plosives, and vowels, as well as voiced and unvoiced phonemes”.

•	 Inner speech is defined as the internalized process in which the person thinks in pure meanings, generally 
associated with an auditory imagery of own inner “voice”. It is also referred to as verbal thinking, inner speak-
ing, covert self-talk, internal monologue, internal speech and internal dialogue. Unlike imagined and silent 
speech, no phonological properties and turn-taking qualities of an external dialogue are retained13,26. Com-
pared to brain signals in the motor system, language processing appears to be more complex and involves 
neural networks of distinct cortical areas engaged in phonological or semantic analysis, speech production 
and other processes23,27. Different studies investigates inner speech, as they benefit some aspects of the par-
adigm, using EEG28–30, ECoG23, functional Magnetic Resonance Imaging (fMRI) and positron emission 
tomography scan31–34. In D’Zmura et al.28, participants were instructed to “think the imagined speech with-
out any vocal or subvocal activity”. Furthermore, as the cues were giving with auditory stimulus, auditory 
processes of inner speech may be benefit: “During this initial period, subjects heard through Stax electrostatic 
earphones either a spoken ‘ba’ or a spoken ‘ku’ followed by a train of clicks”. In Deng et al.29 participants were 
instructed to “imagine speaking the cued syllable”, and the cues were also presented with auditory stimulus. 
Furthermore, no motor activity analysis was carried out in those papers. Finally, in Suppes et al.30, partici-
pants performed both auditory comprehension: were participants were instructed to “passively but carefully 
listen to the spoken words and try to comprehend them” and inner speech (called “Internal speech” in the 
paper), were participants were asked to “to silently ‘say’ the word immediately after seeing it”.

Another paradigm related to the inner speech is the so-called “auditory comprehension”30,35,36. In this par-
adigm, instead of actively producing the speech imagination, the individual passively listens to someone else’s 
speech. It has already been explored using EEG30,37, ECoG38,39 and fMRI40,41. Although this paradigm is not par-
ticularly useful for real BCI applications, it has contributed to the understanding of neural processes associated 
with speech-related paradigms.

While publicly available datasets for imagined speech17,18 and for motor imagery42–46 do exist, to the best of 
our knowledge there is not a single publicly available EEG dataset for the inner speech paradigm. In addition, 
the dataset presented by Zhao et al.18 was recorded with a 64 channels acquisition system and all participants 
were native or advanced English speakers. On the other hand, in the dataset presented in Pressel et al.17, where 
all participants were native Spanish speakers, the acquisition system had only six channels, highly restricting 
spatial analysis. As mentioned before, both datasets were focused on the imagined speech paradigm rather than 
on inner speech. In order to improve the understanding of inner speech and its applications in real BCIs systems, 
we have built a multi speech-related BCI dataset consisting of EEG recordings from ten naive BCI users, per-
forming four mental tasks in three different conditions: inner speech, pronounced speech and visualized condi-
tion. All paradigms and the requested actions are explained in detail in the BCI Interaction Conditions Section. 
This dataset will allow future users to explore whether inner speech activates similar mechanisms as pronounced 
speech or whether it is closer to visualizing a spatial location or movement. Each participant performed between 
475 and 570 trials in a single day recording, obtaining a dataset with more than 9 hours of continuous EEG data 
recording, with over 5600 trials.

Methods
Participants. The experimental protocol was approved by the “Comité Asesor de Ética y Seguridad en el 
Trabajo Experimental” (CEySTE, CCT-CONICET, Santa Fe, Argentina, https://santafe.conicet.gov.ar/ceyste/). 
Ten healthy right-handed participants, four females and six males with mean age = 34 (std = 10 years), with no 
hearing loss, no speech loss, and with no neurological, movement, or psychiatric disorders, joined the experiment 
and gave their written informed consent. All participants were native Spanish speakers. None of the individuals 
had any previous BCI experience, and participated in approximately two hours of recording. In this work, the 
participants are identified by aliases “sub-01” through “sub-10”. Detailed information about the participants can 
be found in Table 1.

Experimental procedures. The study was conducted in an electrically shielded room. The participants 
were seated in a comfortable chair in front of a computer screen where the visual cues were presented. In order 
to familiarize the participant with the experimental procedure and the room environment, all steps of the exper-
iment were explained, while the EEG headcap and the external electrodes were placed. The setup process took 
approximately 45 minutes. Figure 1 shows the main experiment setup.

The stimulation protocol was designed using Psychtoolbox-347 running in MatLab48 and was executed on a 
computer, referred to as PC1 in Fig. 1. The protocol displayed the visual cues to the participants in the Graphic 
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User Interface (GUI). The screen’s background was light-grey coloured in order to prevent dazzling and eye 
fatigue.

Each individual participated in one single recording day comprising three consecutive sessions, as shown in 
Fig. 2. A self-selected break period between sessions, to prevent boredom and fatigue, was given (inter-session 
break). At the beginning of each session, a fifteen seconds baseline was recorded where the participant was 
instructed to relax and stay as still as possible. Within each session, five stimulation runs were presented. Those 

Participant Self-declared gender Age Dominance Native language

sub-01 Female 56 Right Spanish

sub-02 Male 50 Right Spanish

sub-03 Male 34 Right Spanish

sub-04 Female 24 Right Spanish

sub-05 Female 30 Right Spanish

sub-06 Male 29 Right Spanish

sub-07 Male 26 Right Spanish

sub-08 Female 28 Right Spanish

sub-09 Male 35 Right Spanish

sub-10 Male 31 Right Spanish

Table 1. Participants information.

Fig. 1 Experiment setup. Both computers, PC1 and PC2, were located outside the acquisition room. PC1 runs 
the stimulation protocol while communicating to PC2 every cue displayed. PC2 received the sampled EEG data 
from the acquisition system and tagged the events with the information received from PC1. At the end of the 
recording, a.bdf file was created and saved.

Block 01 Baseline

Visualized condition
run

Session 02

Visualized condition
run

Block 01 BaselineSession 01

Inter-session
break

Pronunced speech
run N trials

Inner speech 
run
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Inner speech 
run
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Fig. 2 Organization of the recording day for each participant.
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runs correspond to the different proposed conditions: pronounced speech, inner speech and visualized condi-
tion (see Section BCI Interaction Conditions). At the beginning of each run, the condition was announced in 
the computer screen for a period of 3 seconds. In all cases, the order of the runs was: one pronounced speech, 
two inner speech and two visualized conditions. A one minute break between runs was given (inter-run break).

The classes were specifically selected considering a natural BCI control application with the Spanish words: 
“arriba”, “abajo”, “derecha”, “izquierda” (i.e.“up”, “down”, “right”, “left”, respectively). The trial’s class (word) was 
randomly presented. Each participant had 200 trials in both the first and the second sessions. Nevertheless, 
depending on the willingness and tiredness, not all participants performed the same number of trials in the 
third session.

Figure 3 describes the composition of each trial, together with the relative and cumulative times. Each trial 
began at time t = 0 s with a concentration interval of 0.5 s. The participant had been informed that a new visual 
cue would soon be presented. A white circle appeared in the middle of the screen and the participant had been 
instructed to fix his/her gaze on it and not to blink, until it disappeared at the end of the trial. At time t = 0.5 s 
the cue interval started. A white triangle pointing to either right, left, up or down was presented. The pointing 
direction of the cue corresponded to each class. After 0.5 s, i.e. at t = 1 s, the triangle disappeared from the 
screen, moment at which the action interval started. The participants were instructed to start performing the 
indicated task right after the visual cues disappeared and the screen showed only the white circle. After 2.5 s of 
action interval, i.e. at t = 3.5 s, the white circle turned blue, and the relax interval began. The participant had 
been previously instructed to stop performing the activity at this moment, but not to blink until the blue circle 
disappears. At t = 4.5 s the blue circle vanished, meaning that the trial has ended. A rest interval, with a variable 
duration of between 1.5 s and 2 s, was given between trials.

To evaluate each participant’s attention, a concentration control was randomly added to the inner speech 
and the visualized condition runs. The control task consisted of asking the participant, after some randomly 
selected trials, which was the direction of the last class shown. The participant had to select the direction using 
the keyboard arrows. No time limit was given to reply to these questions and the protocol continued after the 
participant pressed any of the four arrow keys. Visual feedback was provided indicating whether the question 
was correctly or incorrectly answered.

Data acquisition. Electroencephalography (EEG), Electrooculography (EOG) and Electromyography 
(EMG) data were acquired using a BioSemi ActiveTwo high resolution biopotential measuring system (https://
www.biosemi.com/products.htm). For data acquisition, 128 active EEG channels and 8 external active EOG/
EMG channels with a 24 bits resolution and a sampling rate of 1024 Hz were used. BioSemi also provides stand-
ard EEG head caps of different sizes with pre-fixed electrode positions. A cap of appropriate size was chosen for 
each participant by measuring the head circumference with a measuring tape. Each EEG electrode was placed in 
the corresponding marked position in the cap and the gap between the scalp and the electrodes was filled with a 
conductive SIGNAGEL® gel.

Signals in the EOG/EMG channels were recorded using a flat-type active electrode, filled with the same 
conductive gel and taped with a disposable adhesive disk. External electrodes are referred from “EXG1” to 
“EXG8”. Electrodes EXG1 and EXG2 were both used as a no-neural activity reference channels, and were placed 
in the left and right lobe of each ear, respectively. Electrodes EXG3 and EXG4 were located over the participant’s 
left and right temples, respectively, and were intended to capture horizontal eye movement. Electrodes EXG5 
and EXG6 aimed to capture vertical eye movement, mainly blinking movements. Those electrodes were placed 
above and below the right eye, respectively. Finally, electrodes EXG7 and EXG8 were placed over the superior 
and inferior right orbicularis oris, respectively. Those electrodes were aimed to capture mouth movement in the 
pronounced speech and to provide a way for controlling that no movement was made during the inner speech 
and visualization condition runs.

The software used for recording was ActiView, developed also by BioSemi. It provides a way of checking the 
electrode impedance and the general quality of the incoming data. It was carefully checked that the impedance 
of each electrode was less than 40 Ω before starting any recording session. Only a digital 208 Hz low-pass filter 
was used during acquisition time (no high-pass filter was used).

Once the recording of each session was finished, a.bdf file was created and stored in computer PC2. This 
file contains the continuous recording of the 128 EEG channels, the 8 external channels and the tagged events.

BCI interaction conditions. The design of the dataset was made having in mind as main objectives the 
decoding and understanding of the processes involved in the generation of inner speech, as well as the analysis 

Cue Interval
0.5 s 

Action Interval
2.5 s 

Relax Interval
1 s 

Rest Interval
1.5 / 2 s 

Concentration
Interval

0.5 s 

Up Down

RigthLeft

t=0 s t=0.5 s t=1s t=3.5s  t=4.5s

Fig. 3 Trial workflow. The screen presented to the participant in each time interval was plotted on the top arrow 
of the figure. Relative and global time were plotted above and below the arrow, respectively.
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of its potential use in BCI applications. As described in the “Background & Summary” Section, the generation 
of inner speech involves several complex neural networks interactions. With the objective of localizing the main 
activation sources and analyzing their connections, we asked the participants to perform the experiment under 
three different conditions: inner speech, pronounced speech and visualized condition.

Inner speech. Inner speech is the main condition in the dataset and it is aimed to detect the brain’s electrical 
activity related to a participant’s thought about a particular word. In the inner speech runs, each participant 
was indicated to imagine his/her own voice as if he/she was giving a direct order to the computer, repeating the 
corresponding word until the white circle turned blue. Each participant was explicitly asked not to focus on the 
articulation gestures. Also, each participant was instructed to stay as still as possible and not to move the mouth 
nor the tongue. For the sake of natural imagination, no rhythm cue was provided.

Pronounced speech. Although motor activity is mainly related to the imagined speech paradigm, inner speech 
may also show activity in the motor regions. The pronounced speech condition was proposed with the purpose 
of finding motor regions involved in the pronunciation matching those activated during the inner speech con-
dition. In the pronounced speech runs, each participant was indicated to repeatedly pronounce aloud the word 
corresponding to each visual cue, as if he/she was giving a direct order to the computer. Like in the inner speech 
runs, no rhythm cue was provided.

Visualized condition. Since the selected words have a high visual and spatial component, and with the objective 
of finding any activity related to that being produced during inner speech, the visualized condition was pro-
posed. It is timely to mention that the main neural centers related to spatial thinking are located in the occipital 
and parietal regions49. Also, it has been demonstrated that the spatial attention have a significant impact on the 
SSVP amplitude50. In the visualized condition runs, the participants were indicated to focus on mentally moving 
the circle appearing at the center of the screen in the direction indicated by the visual cue.

Data processing. In order to restructure the continuous raw data into a more compact dataset and to facil-
itate their use, a transformation procedure was proposed. Such processing was implemented in Python, mainly 
using the MNE library51, and the code along with the raw data are available, so any interested reader can easily 
change the processing setup as desired (see Code Availability Section).

Raw data loading. A function that rapidly allows loading of the raw data corresponding to a particular partic-
ipant and session, was developed. The raw data stored in the.bdf file contains records of the complete EEG and 
external electrodes signals as well as the tagged events.

Events checking and correction. The first step of the signal processing procedure was checking for correct tag-
ging of events in the signals. Missing tags were detected and a correction method was proposed. The method 
detects and completes the sequences of events. After the correction, no tags were missing and all the events 
matched those sent from PC1.

Re-reference. As BioSemi is a “reference free” acquisition system, the Common-Mode (CM) voltage is recorded 
in all channels, thus a re-reference step is needed. This procedure was made by means of the specific MNE 
re-reference function, using channels EXG1 and EXG2. The aforementioned function creates a virtual chan-
nel, averaging both EXG1 and EXG2, and then subtracting the virtual channel from each one of the rest of the 
acquired channels. This step eliminates the CM voltage, and helps to reduce both line noise (50 Hz) and body 
potential drifts.

Digital filtering. The data were filtered with a zero-phase bandpass finite impulse response filter using the 
corresponding MNE function. The lower and upper bounds were set to 0.5 and 100 Hz, respectively. This broad 
band filter aims to keep the data as raw as possible, allowing future users the possibility of filtering the data in 
their desired bands. A Notch filter in 50 Hz was also applied.

Epoching and decimation. The data were decimated four times, obtaining a final sampling rate of 254 Hz. 
Then, the continuous recorded data were epoched, keeping only the 4.5 s length signals corresponding to the 
time window between the beginning of the concentration interval and the end of the relaxation interval. The 
matrices of dimension [channels × samples] corresponding to each trial, were stacked in a final tensor of size 
[trials × channels × samples].

Independent components analysis. Independent Components Analysis (ICA) is a standard and widely used 
blind source separation method for removing artifacts from EEG signals52–54. For our dataset, ICA processing 
was performed only on the EEG channels, using the MNE implementation of the infomax ICA55. No Principal 
Component Analysis (PCA) was applied and 128 sources were captured. Correlation with the EXG channels was 
used to determine the sources related to blink, gaze and mouth movement, which were neglected in the process 
of reconstructing the EEG signals, for obtaining the final dataset.

Electromyography control. The EMG control aims to determine whether a participant moved his/her mouth 
during the inner speech or visualized condition runs. The simplest approach to find EMG activity is the single 
threshold method56. The baseline period was used as a basal activity. The signals coming from the EXG7 and 
EXG8 channels were rectified and bandpass filtered between 1 and 20 Hz57–59. The power in a sliding window of 
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0.5 s length with a time step of 0.05 s was calculated as implemented in Peterson et al.60. The power values were 
obtained by the following equation,

∑=
− + =

Pwr
S s

x n1
1

[ ] ,
(1)n s

S
2

where x[·] denotes the signal being considered, and s, S are the initial and final samples of the window, respec-
tively. For every window, a scalar value was obtained after computing the power. Those scalar values were then 
stacked in a vector called Vpb. Finally the mean and standard deviations of those values were calculated and used 
to construct a decision threshold defined as follows:

th mean V std V( ) ( ) (2)pb pbγ= + .

In Eq. 2, γ is an appropriately chosen parameter. According to Micera et al.61 γ = 3 is a reasonable choice. The 
same procedure was repeated for both channels and the mean power in the action interval of every trial was 
calculated. Then, if one of those values, for either the EXG7 or EXG8 channels was above the threshold, the 
corresponding trial was tagged as “contaminated”.

A total of 115 trials were tagged as contaminated, which represents a 2.5% of the inspected trials. The number 
of tagged trials is shown in Table 2. The tagged trials and their mean power corresponding to EXG7 and EXG8 
were also stored in a report file. In order to reproduce the decision threshold, the mean and standard deviation 
power for the baseline for the corresponding session were also stored in the same report file.

The developed script performing the described control is publicly available and interested readers can use it 
to conduct different analyses.

Ad-hoc tags correction. After session 1, participant sub-03 claimed that, due to a missinterpretation, he per-
formed only one inner speech run and three visualized condition runs. The condition tag was appropriately cor-
rected. In addition, in session 3, the same participant performed three inner speech runs and only one visualized 
condition, aiming to balance the uneven number of trials by condition.

Data Records
All data files, including the raw recordings, can be accessed at the OpenNeuro repository62. All files are con-
tained in a main folder called “Inner Speech Dataset”, structured as depicted in Fig. 4, organized and named 
using the EEG data extension of BIDS recommendations63,64. The final dataset folder is composed of ten sub-
folders containing the session raw data, each one corresponding to a different participant. There is an additional 
folder, containing five files obtained after the proposed processing: EEG data, Baseline data, External electrodes 
data, Events data and a Report file. We now proceed to describe the contents of each one of these five files along 
with the raw data.

Raw data. The raw data file contains the continuous recording of the entire session for all 136 channels. The 
mean duration of the recordings is 1554 seconds. The.bdf file contains all the EEG/EXG data and the tagged 
events with further information about the recording sampling rate, the names of the channels and the recording 
filters, among other information. The raw events are obtained from the raw data file and contain the tags sent by 
PC1, synchronized with the recorded signals. Each event code, its ID and description are depicted in Table 3. A 
spurious event, of unknown origin, with ID 65536 appeared at the beginning of the recording and also it ran-
domly appeared within some sessions. This event has no correlation with any sent tag and it was removed in the 
“Events Check” step of the processing. The raw events are stored in a three column matrix, where the first column 
contains the time stamp information, the second has the trigger information, and the third column contains the 
event ID.

Electroencephalography data. Each EEG data file, stored in.fif format, contains the acquired data for 
each participant and session, after processing as described above. Each one of these files contains an MNE 
Epoched object, with the EEG data information of all trials in the corresponding session. The dimension of the 

Participant Session 1 Session 2 Session 3 Total

1 6 6 1 13

2 38 0 4 42

3 0 1 0 1

4 0 0 1 1

5 0 0 1 1

6 11 0 11 22

7 0 0 0 0

8 0 0 0 0

9 8 4 15 27

10 7 0 1 8

Table 2. Number of tagged trials by participant and session.
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sub-01_ses-01_report.pkl
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sub-01/

ses-02/

ses-03/
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ses-02/
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sub-10/

derivatives/

sub-10/

Fig. 4 Final dataset structure, files, and naming.

Event ID Description

1 Start of protocol

12 End of protocol

13 Start of baseline

14 End of baseline

15 Start of run

16 End of run

17 Cognitive control - question posing

21 Start of pronounced speech run

22 Start of inner speech run

23 Start of Visualized condition run

31 “Arriba/Up” trial - start of cue interval

32 “Abajo/Down” trial - start of cue interval

33 “Derecha/Right” trial - start of cue interval

34 “Izquierda/Left” trial - start of cue interval

42 Start of concentration interval

44 Start of action interval

45 Start of relax interval

46 Start of rest interval

51 Start of inter runs rest interval

61 Answer to cognitive control: “Arriba/Up”

62 Answer to cognitive control: “Abajo/Down”

63 Answer to cognitive control: “Derecha/Right”

64 Answer to cognitive control: “Izquierda/Left”

Table 3. Raw data event tags number and meanings.
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corresponding tensor data is [Trials × 128 × 1154]. The number of trials changed among participants in each ses-
sion, as explained in the “Data Aquisition” Section. The number of channels used for recording was 128 while the 
number of samples was 1154, each one of them corresponding to 4.5 s of signal acquisition with a final sampling 
rate of 256 Hz. A total of 1128 pronounced speech trials, 2236 inner speech trials and 2276 visualization condition 
trials, were acquired, distributed as shown in Table 4. Also, the detailed number of trials acquired in each block, 
divided by runs and participants, is included in Tables SI-1, SI-2 and SI-3 of the Supplementary Information 
Section.

External electrodes data. Each one of the EXG data files contains the data acquired by the external elec-
trodes after the described processing was applied, with the exception of the ICA processing. They were saved in.fif 
format. The corresponding data tensor has dimension [Trials × 8 × 1154]. Here, the number of EXG trials equals 
the number of EEG data trials, 8 corresponds to the number of external electrodes used, while 1154 corresponds 
to the number samples of 4.5 s of signal recording at a final sampling rate of 256 Hz.

Events data. Each event data file (in.dat format) contains a four column matrix where each row corresponds 
to one trial. The first two columns were obtained from the raw events, by deleting the trigger column (second 
column of the raw events) and renumbering the classes 31, 32, 33, 34 as 0, 1, 2, 3, respectively. Finally, the last 
two columns correspond to condition and session number, respectively. Thus, the resulting final structure of the 
events data file is as depicted in Table 5.

Baseline data. Each baseline data file (in.fif format) contains a data tensor of dimension [1 × 136 × 3841]. 
Here, 1 corresponds to the only recorded baseline in each session, 136 corresponds to the total number of 
EEG + EXG channels (128 + 8), while 3841 corresponds to the numbers of seconds of signal recording (15) times 
the final sampling rate (256 Hz). Through a visual inspection it was observed that the recorded baselines of par-
ticipant sub-03 in session 3 and participant sub-08 in session 2, were highly contaminated.

Report. The report file (in.pkl format) contains general information about the participant and the particular 
results of the session processing. Its structure is depicted in Table 6.

technical Validation
attentional monitoring. The evaluation of the participant’s attention was performed on the inner speech 
and the visualized condition runs. It was aimed to monitor their concentration on the requested activity. The 
results of the evaluation showed that participants correctly followed the task, as they performed very few mis-
takes (Table 7; mean = 0.5, std 0.62). Participants sub-01 and sub-10 claimed that they had accidentally pressed 
the keyboard while answering the first two questions in session 1. Also, after the first session, participant sub-01 
indicated that he/she felt that the questions were too many, reason for which, for the subsequent participants, the 
number of questions was reduced, in order to prevent participants from getting tired.

Participant

Pronounced Speech Inner Speech Visualized Condition

Up Down Right Left Up Down Right Left Up Down Right Left

sub-01 25 25 25 25 50 50 50 50 50 50 50 50

sub-02 30 30 30 30 60 60 60 60 60 60 60 60

sub-03 25 25 25 25 45 45 45 45 55 55 55 55

sub-04 30 30 30 30 60 60 60 60 60 60 60 60

sub-05 30 30 30 30 60 60 60 60 60 60 60 60

sub-06 27 27 27 27 54 54 54 54 54 54 54 54

sub-07 30 30 30 30 60 60 60 60 60 60 60 60

sub-08 25 25 25 25 50 50 50 50 50 50 50 50

sub-09 30 30 30 30 60 60 60 60 60 60 60 60

sub-10 30 30 30 30 60 60 60 60 60 60 60 60

Sub Total 282 282 282 282 559 559 559 559 569 569 569 569

Total 1128 2236 2276

Table 4. Final number of trials divided by participant, class and condition.

Sample Trial’s class Trials’ condition Trials’ session

Sample at which the event occurred 
(Numbered starting at n = 0, corresponding 
to the beginning of the recording)

0 = “Arriba” (up) 0 = Pronounced speech 1 = session 1

1 = “Abajo” (down) 1 = Inner speech 2 = session 2

2 = “Derecha” (right) 2 = Visualized condition 3 = session 3

3 = “Izquierda” (left)

Table 5. Events data format and tag meaning.
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Event related potentials. It is well known that Event Related Potentials (ERPs) are manifestations of typ-
ical brain activity produced in response to certain stimuli. As different visual cues were presented during our 
stimulation protocol, we expected to find brain activity modulated by those cues. Moreover, we expected this 
activity to have no correlation with the condition nor with the class and to be found across all participants. In 
order to show the existence of ERPs, an average over all participants, for each one of the channels at each instant 
of time, was computed using all the available trials (Nave = 5640), for each one of the 128 channels. The complete 
time window average, with marks for each described event is shown in Fig. 5. Between t = 0.1 s and t = 0.2 s a 
positive-negative-positive wave appears, as it is clearly shown in Fig. 5a. A similar behavior is observed between 
t = 0.6 s and t = 0.7 s, but now with a more pronounced potential deflection, reflecting the fact that the white 
triangle (visual cue) appeared at t = 0.5 s (see Fig. 5b). At time t = 1 s, the triangle disappeared and only the white 
fixation circle remained. As shown in Fig. 5c, a pronounced negative potential started just a few miliseconds 
before the triangle vanished. It is reasonable to believe that this ERP is related to the motor and cognitive prepara-
tion of the participants for executing the requested action. The signal appears to be mostly stable for the rest of the 
action interval. As seen in Fig. 5d, a positive peak appears between t = 3.8 s and t = 3.9 s, in response to the white 
circle turning blue, instant at which the relax interval begins.

For a more detailed analysis, instead of taking the time average of all trials (all together) we calculated the 
time average for all the trials belonging to each one of the three conditions, separately. All of the previously 
described ERPs remained present in the individual plots of Fig. 6. The pronounced speech signals seem to have 
more noise in the action interval than both the inner speech and the visualized condition signals. Also, pro-
nounce speech signals present two moments of more intense activity, approximately at 1.8 and 2.6 s. This is most 
likely due to the fact that, despite the signal pre-processing, some EMG noise remains.

time-frequency representation. With the objective of finding and analyzing further differences and 
similarities between the three conditions, a Time-Frequency Representation (TFR) was obtained by means of 
a wavelet transform65. This representation is performed via a Morlet Wavelet transformation which returns a 
complex number. The MNE implementation returns the signal power and the inter trial coherence as the real and 
imaginary part of the TFR, respectively. This kind of analysis allows to detect changes in the signal characteristics 
across frequency and time. The corresponding implementation is available in the file “TFR_representations.py”, 
at our GitHub repository (see Code Availability Section).

Inter trial coherence. By means of the TFR, the Inter Trial Coherence (ITC) was calculated for all 5640 trials 
(all together). A stronger coherence was found within the concentration, cue and relax intervals, mainly at lower 
frequencies (see Fig. 7). Also, the beginning of the action interval presents a strong coherence. This could be a 
result of the modulated activity generated by the disappearance of the cue.

Now, as in the “Event Related Potentials” Section, instead of taking the ITC of all trials (all together) we 
calculated the ITC for all the trials belonging to each one of the three conditions, separately. Of the three con-
ditions, pronounced speech appears to have a slightly more intense global coherence at around 1.8 s and 2.6 s, 
mainly at lower frequencies (0.5 to 3 Hz). A careful observation of the time average results of the Pronounced 
speech condition presented in Fig. 6, allows us to conjecture that such an increase in activity is the result of a 
quite natural pace in the articulation of generated sounds, and the aforementioned moments represent the times 
at which the participants, on average, match their pronunciation. Inner speech and visualized condition show 
consistently lower coherence during the action interval (see Fig. 7a and Fig. 7b).

Averaged power spectral density. Using all available trials for each condition, the Averaged Power Spectral 
Density (APSD) between 0.5 and 100 Hz was computed. This APSD is defined as the average between all PSDs 
of the 128 channels. Figure 8 shows all APSD plots, in which shaded areas correspond to ±1 std of all channels. 
As shown in the Inter Trial Coherence Section, all trials have a strong coherence up to t = 1.5 s. Therefore, com-
parisons were made only in the action interval between 1.5 and 3.5 s. As it can be seen, the plots in Fig. 8 show a 

Listed field Content

Age Participant’s age.

Self-declared gender Participant’s Self-declared gender: ‘F’ for female, ‘M’ for male.

Recording_time Length of the complete session recording in seconds.

Ans_R Number of times the participant correctly answered the cognitive control questions.

Ans_W Number of times the participant incorrectly answered the cognitive control questions.

EMG_trials Position of the contaminated trials.

Power_EXG7 Mean power for channel EXG7 of the contaminated trials. Array with the same dimension as EMG_trials.

Power_EXG8 Mean power for channel EXG8 of the contaminated trials. Array with the same dimension as EMG_trials.

Baseline_EXG7_mean Mean power for channel EXG7 in the Baseline.

Baseline_EXG8_mean Mean power for channel EXG8 in the Baseline.

Baseline_EXG7_std Standard deviation of the power for channel EXG7 in the Baseline.

Baseline_EXG8_std Standard deviation of the power for channel EXG8 in the Baseline.

Table 6. Report file fields.
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peak in the alpha band [8–12 Hz] for all conditions, as it was to be expected, with a second peak in the beta band 
[12–30 Hz]. Also, from the staked plot it is possible to see that at high frequencies (beta-gamma), pronounced 
speech shows higher power than both the inner speech and the visualized condition. That higher activity is most 
likely related to the brain motor activity and muscular artifacts. Finally, a narrow depression at 50 Hz appears, 
corresponding to the Notch filter applied during data processing.

Participant Session Questions Wrong

1

1 45 2

2 12 2

3 4 0

2

1 11 0

2 16 1

3 16 1

3

1 12 1

2 10 1

3 8 0

4

1 12 1

2 14 0

3 14 1

5

1 12 0

2 10 0

3 13 1

6

1 12 1

2 12 0

3 9 0

7

1 12 0

2 11 0

3 16 1

8

1 12 0

2 11 0

3 8 1

9

1 12 0

2 10 0

3 13 0

10

1 11 1

2 11 0

3 10 0

Table 7. Result of attention monitoring. Note that the maximum number of incorrect answers is 2. The large 
variability in the number of questions in session 3 is due to the different number of trials for each one of the 
participants.

Fig. 5 Global participant average trial and interval plots; all the channels were plotted with a color reference 
location. (a,b) Concentration interval. (b,c) Cue interval. (c,d) Action interval. (d) End Relax interval.
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Spatial distribution. In order to detect regions where neural activity between conditions is markedly different, 
the differences in the power in the main frequency bands between each pair of conditions were computed. The 
aim of the subtractions is to minimize the effects of protocol activity, which are common to every paradigm, 
boosting the activity produced exclusively by the requested mental tasks. Like in the Averaged Power Spectral 
Density section, the time window used was 1.5–3.5 s. The Power Spectral Density (PSD) was added to the analy-
sis to further explore regions of interest. Shaded areas on the PSD graphics in Fig. 9 corresponds to ±1 std of the 
different channels used. No shaded area is shown when only one channel was used to compute the PSD.

The top row of Fig. 9 shows a comparison between inner and pronounced speech. The plots show the differ-
ence between the computed activity of inner speech and pronounced speech trials. In the alpha band, a major 
activity in the inner speech trials can be clearly seen in the central occipital/parietal region. The PSD shown in 
panel “a” was calculated using channels A4, A5, A19, A20 and A32 (BioSemi nomenclature for a head cap with 
128 channels - https://www.biosemi.com/pics/cap_128_layout_medium.jpg) and shows a difference of approx-
imately 1 dB at 11 Hz. On the other hand, in the beta band, the spatial distribution of the power differences 
shows an increased temporal activity for the pronounced condition, consistent with muscular activity artifacts. 
Here, the PSD was calculated using channels B16, B22, B24 and B29 for panel “b” and channels D10, D19, D21 
and D26 for panel “c”. Pronounced speech shows higher power in the whole beta band with a more prominent 
difference in the central left area.

The middle row of Fig. 9 shows a comparison of the visualized condition and pronounced speech. Here, 
the plots show the difference between the computed activity for trials corresponding to the first paradigm 
and those corresponding to the second paradigm. In the alpha band, the visualized condition trials present a 
larger difference in the central parietal regions and a more subtle difference in the lateral occipital regions. The 

Fig. 6 Global average trial for each class. Vertical black lines correspond to interval boundaries, as in Fig. 5. Top 
row: Inner speech, Middle row: Pronounced speech. Bottom row: Visualized condition.
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Fig. 7 Inter Trials Coherence.Vertical black lines correspond to interval boundaries, as in Fig. 5. (a) Inner 
speech trials. (b) Visualized condition trials. (c) Pronounced speech trials (d) Global Average.

Fig. 8 Power spectral density for all conditions. (a) Top Left: Inner speech. (b) Top Right: Visualized condition. 
(c) Bottom left: Pronounced speech. (d) Bottom right: Staked plot.
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PSD was calculated using channels A17, A20, A21, A22 and A30, panel “d”. Here again, a difference of about 
1 dB at 11 Hz can be observed. In the beta band, an intense activity in the central laterals regions appears for 
the pronounced condition. For this band, the PSD shown in panels “e” and “f” were calculated using the same 

Fig. 9 Power difference between conditions. Left column: alpha band comparisons. Right column: beta band 
comparison.Time window used in all comparisons to compute the PSD: 1.5 to 3.5 s. Channels used to compute 
the PSD: (a) A4, A5, A19, A20 and A32. (b) B16, B22, B24 and B29. (c) D10, D19, D21 and D26. (d) A17, A20, 
A21, A22 and A30. (e) B16, B22, B24 and B29. (f) D10, D19, D21 and D26. (g) A10. (h) B7. (i) A13. (j) A26.

https://doi.org/10.1038/s41597-022-01147-2


1 4Scientific Data |            (2022) 9:52  | https://doi.org/10.1038/s41597-022-01147-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

channels as those for “b” and “c”, respectively. As seen, power for pronounced speech trials is higher than for 
the visualized condition ones in the whole beta band, mainly in the left central region. This result is consistent 
with the fact that the occipital region is related to the visual activity while the central lateral region is related 
to the motor activity.

Finally, a comparison of the inner speech with the visualized condition is shown in the bottom row of Fig. 9, 
where the difference between the computed activity of inner speech and visualized condition trials is plotted. 
Visualized condition trials exhibit a stronger activity in the laterals occipital regions in both the alpha and beta 
bands. This was to be expected since the visualized condition, containing a stronger visual component, generates 
marked occipital activity. Interesting, inner speech trials show a broad although subtle higher power in the alpha 
band in a more parietal region. For the alpha band, the PSDs showed in panel “g” and “h” were computed using 
channels A10 and B7 for the left and right plots respectively. In both plots, the peak corresponding to the inner 
speech condition is markedly higher than the one corresponding to the visualized condition. For the beta band, 
the PSD showed in panel “i” and “j” was calculated using channels A13 and A26 for the left and right PSD plots, 
respectively. As it can be observed, the power for the visualized condition trials in the whole beta band is higher 
than the inner speech power. It is timely to mention that no significant activity was presented in the central 
regions for neither of both conditions.

Limitations and final remarks. In this work we aim to provide a novel EEG dataset, acquired in three different 
speech related conditions, accounting for 5640 total trials and more than 9 hours of continuous recording. To 
the best of our knowledge, there is no other dataset recorded with native Spanish speakers and acquired with a 
high dense (128 + 8) acquisition system.

In regard to the limitations of this dataset, it is important to mention that even though the participants were 
specifically instructed to imagine their own voice and explicitly requested not to focus on the muscular activity, 
as in any other endogenous BCI paradigm, there is no guarantee at all that the mental activity executed by a 
participant was in fact the correct one. Furthermore, as all the participants were naive BCI users, it may not had 
been possible for them to clearly differentiate between different components of the speech. In the same direction 
it is worth mentioning that, even though all participants received the same instructions, their interpretation and 
posterior executed mental activity may vary across individuals. It is also important to remark that, until today, 
there is not enough evidence to support that imagined speech and inner speech generate distinguishable brain 
processes. And even if they in fact do, it is not clear that distinguishable features could be captured with current 
Electroencephalography technologies. Nonetheless, inner speech is clearly a more natural way of controlling a 
BCI, since the participant does not need to focus on the articulatory gestures.

Although the pronounced speech trials were most likely contaminated with muscular activity, providing 
the raw EEG data along with the EMG recordings will allow to develop and test EMG denoising algorithms. 
As mentioned before, no trials were discarded from the dataset in the “Electromyography control” Section nor 
in the “Attentional Monitoring” Section, so letting future users decide whether or not to include them in their 
analyses. Not providing rhythmic cues to benefit the participant’s natural pace, could also produce a variation in 
the the timing of the pronunciation and imagination across trials. This phenomenon is likely to happen, since it 
is not natural to recite or think about one word at the time. Nevertheless, this is an issue that will also appear in 
any real BCI application. Much further analysis needs to be performed in order to determine if the participants 
changed their pace over the trials, and if they did, what the impact of this phenomenon in the decoding perfor-
mance could be. It is important to remark that the references to the related papers in the field in regard to their 
executed paradigms, constitutes just a first classification attempt and further analysis needs to be done. This is so 
mainly because the description of the requested actions is not always clearly detailed and the difference between 
imagined and inner speech are not always taken into account in those articles.

Finally, we strongly believe that providing not just the raw data, but also the processed data, along with all the 
implementation codes will be of great benefit to the scientific community.

Usage Notes
The processing script was developed in Python 3.766, using the MNE-python package v0.21.051, NumPy 
v1.19.267, Scipy v.1.5.268, Pandas v1.1.269 and Pickle v4.070. The main script, “InnerSpeech_processing.py”, con-
tains all the described processing steps and it can be modified to obtain different processing results, as desired. 
In order to facilitate data loading and processing, six more scripts defining functions are also provided.

The stimulation protocols were developed using Psychtoolbox-347 in MatLab R2017b48. The auxiliary 
functions, including the parallel port communication needed to send the tags from PC1 to BioSemi Active 2, 
were also developed in MatLab. The execution of the main script, called “Stimulation_protocol.m”, shows the 
visual cue in the screen to the participant, and sends, via parallel port, the event being shown. The parallel port 
communication was implemented in the function “send_value_pp.m”. The main parameter that has to be con-
trolled in the parallel communication is the delay needed after sending each value. This delay allows the port 
to send and receive the sended value. Although we used a delay of 0.01 s, it can be changed as desired for other 
implementations.

Code availability
In line with reproducible research philosophy, all codes used in this paper are publicly available and can be 
accessed at https://github.com/N-Nieto/Inner_Speech_Dataset. The stimulation protocol and the auxiliary 
MatLab functions are also available. The code was run in PC1, and shows the stimulation protocol to the 
participants while sending the event information to PC2, via parallel port. The processing Python scripts are also 
available. The repository contains all the auxiliary functions to facilitate the load, use and processing of the data, 

https://doi.org/10.1038/s41597-022-01147-2
https://github.com/N-Nieto/Inner_Speech_Dataset


1 5Scientific Data |            (2022) 9:52  | https://doi.org/10.1038/s41597-022-01147-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

as described above. By changing a few parameters in the main processing script, a completely different process 
can be obtained, allowing any interested user to easily build his/her own processing code. Additionally, all scripts 
for generating the Time-Frequency Representations and the plots here presented, are also available.
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