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Proteomic profiling dataset of 
chemical perturbations in multiple 
biological backgrounds
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While gene expression profiling has traditionally been the method of choice for large-scale 
perturbational profiling studies, proteomics has emerged as an effective tool in this context for directly 
monitoring cellular responses to perturbations. We previously reported a pilot library containing 3400 
profiles of multiple perturbations across diverse cellular backgrounds in the reduced-representation 
phosphoproteome (P100) and chromatin space (Global Chromatin Profiling, GCP). Here, we expand 
our original dataset to include profiles from a new set of cardiotoxic compounds and from astrocytes, 
an additional neural cell model, totaling 5300 proteomic signatures. We describe filtering criteria and 
quality control metrics used to assess and validate the technical quality and reproducibility of our data. 
To demonstrate the power of the library, we present two case studies where data is queried using 
the concept of “connectivity” to obtain biological insight. All data presented in this study have been 
deposited to the ProteomeXchange Consortium with identifiers PXD017458 (P100) and PXD017459 
(GCP) and can be queried at https://clue.io/proteomics.

Background & Summary
Dysregulation of post-translational modifications (PTMs), particularly those involved in kinase signaling path-
ways and epigenetics, is an increasingly common molecular etiology in cancer and neuropsychiatric disorders1–5. 
Protein kinase activity is reflected through phosphorylation, a PTM that can alter protein conformation, subcel-
lular localization, and function, and is implicated in diverse cellular processes including proliferation, differentia-
tion, and death6. In chromatin, transcriptional regulation is modulated by PTMs, such as acetylation, methylation, 
and phosphorylation, on histone proteins that control access of transcriptional machinery to DNA7. Highly spe-
cific kinase inhibitors and epigenetically-active compounds have demonstrated great therapeutic promise in these 
areas; for example, tyrosine kinase inhibitors targeting epidermal growth factor receptors (EGFRs) as well as 
several histone deacetylase inhibitors8 have been approved for different cancer therapies6. However, these drugs 
often have off-target effects that can interfere with other normal phosphosignaling and epigenetic activities and 
are not yet fully understood6,7,9,10. Monitoring cellular phosphosignaling cascades and epigenetic modifications in 
response to drug administration in disease models can therefore illuminate these compounds’ underlying mech-
anisms of action and predict their efficacies to inform further therapeutic development.

Gene expression profiling has traditionally been used to capture cellular responses to perturbation11–16, and 
while advances in technology have reduced cost and accelerated data generation, a measure of transcription 
alone cannot fully capture a given cell’s state. Modest correlation between mRNA and protein or phosphoryla-
tion levels17–19 necessitates complementary readouts. Integrating transcriptomics with proteomics data can fill 
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in the gaps by measuring nucleic acids and proteins in distinct time scales. We previously reported the creation 
and validation of a pilot library of mass spectrometry (MS)-based proteomic signatures that measure changes 
in the reduced-representation phosphoproteome (P100)20 and changes in epigenetic marks on histones (Global 
Chromatin Profiling, GCP)21 following systematic drug perturbations22. In P100, 96 phosphorylated peptides 
representative of distinct signaling pathways’ activities are measured and provide a reduced-representation of 
the phosphoproteome in a given cell. In GCP, 79 well-studied combinatorial PTMs (e.g. methylation, acetylation, 
phosphorylation) of core nucleosomal histones, whose dysregulation is associated with a wide range of diseases, 
are measured21,23–28. This initial pilot library contained signatures of 90 small molecules including kinase inhib-
itors, epigenetically-active compounds, and neuroactive drugs in 6 cell models–five cancer cell lines (prostate, 
lung, breast, melanoma, and pancreatic cancer) and one neurodevelopmental cell line (neural progenitor cells 
(NPC)). This large-scale dataset of more than 3400 signatures facilitated the application of the Connectivity Map 
concept11,29 to our proteomic dataset and allowed for comparisons within and across cell types, drug mechanisms, 
and assay types22. These signatures were contributed to the NIH Library of Integrated Network-Based Cellular 
Signatures (LINCS), whose mission is to catalog drug-induced cell responses to gain a more detailed understand-
ing of mechanisms underlying disease30. Data generated from different assays and across multiple cell types in 
response to a broad range of perturbations are made publicly available so as to advance basic research and facili-
tate the identification of therapeutic targets.

In the current study, we expand our initial pilot library to include P100 and GCP profiles generated upon 
perturbation of the above described cell models with a new set of cardiotoxic compounds, many of which are 
approved cancer treatments. We further profile all compounds in our library in an additional neural cell model: 
astrocytes, which play an active role in brain development and are implicated in neurodegenerative disease31,32. 
In total, we have generated more than 5300 profiles corresponding to 118 small-molecule perturbations in 7 
different cell lines. We discuss a description of the expanded library, quality control metrics, and case studies 
demonstrating how this resource can reveal new biological insights and inform new hypotheses.

Methods
Cell culture. Cancer cell lines A375, YAPC, A549, MCF7, and PC3 were cultured and treated as described in 
detail in our previous study22. Briefly, A375, A549, and YAPC cells were cultured in RPMI 1640 medium (Thermo 
Fisher Scientific), MCF7 cells were cultured in DMEM (Thermo Fisher Scientific), and PC3 cells were cultured in 
RPMI 1640 medium containing 1 mM sodium pyruvate and 10 mM HEPES (Thermo Fisher Scientific). Cancer 
cell identity was confirmed with fingerprint technology33. NPC and astrocyte lineages were differentiated from 
H9 human embryonic stem cells (WiCell WA09)34,35. NPCs were cultured for nine passages in a 1:1 mixture 
of N-2 and B-27-containing media supplemented with 1 µm dorsomorphin (Tocris Bioscience) and 10 µm SB 
431542 (Tocris Bioscience). Astrocytes were cultured in astrocyte medium (ScienCell, Cat No. 1801). The differ-
entiated state of NPCs and astrocytes was confirmed upon staining with appropriate cytological markers36.

Cell treatment and sample preparation for MS analysis. A schematic representation of sample prepa-
ration for both P100 and GCP is depicted in Fig. 1a. Cells were plated onto six-well plates for 24 hours, expanded 
to near confluence, and treated by adding the drug of interest diluted in appropriate media at the desired concen-
tration (Supplementary Table 1). Drugs were selected based on EC50/IC50 values or effective concentrations used 
in cellular studies, where known. We further consulted public drug metabolism and pharmacokinetics (DMPK) 
and absorption, distribution, metabolism, and excretion (ADME) data to select the reported bioavailable con-
centrations of the drugs in serum. In the absence of prior knowledge, we generally chose 1 μM as a default con-
centration. Cells were treated either for 3 hours (P100) or 24 hours (GCP). At the end of each treatment period, 
cells were washed with ice-cold PBS twice for P100 and once for GCP prior to harvest. All treatments occurred 
in triplicates.

For P100 cell harvest, lysis buffer (8 M Urea, 75 mM NaCl, 50 mM Tris HCl, pH 8.0, 1 mM EDTA, 2 µg/ml 
aprotinin, 10 µg/ml leupeptin, 1 mM PMSF, 10 mM NaF, Phosphatase Inhibitor Mixture 2 and Phosphatase 
Inhibitor Mixture 3) was added in each well and cells were collected via scraping. Samples were lysed for 15 min-
utes at room temperature and then vortexed, followed by an additional 15 minute incubation prior to freezing. 
Upon thawing, lysates were centrifuged at 15,000 × g, 15 °C for 15 minutes to pellet cell debris and extract protein 
slurry. Protein concentration was measured using the 660 protein assay (Pierce, 22660). All samples (~500 ug 
each) were normalized to a protein concentration of 1.25 µg/μl. For GCP cell harvest, ice-cold PBS was added in 
each well and cells were scraped and immediately frozen. Nuclei were extracted following standard protocol37. 
Histones were extracted overnight with 0.4 N H2SO4 by shaking at room temperature. Solubilized histones were 
precipitated using 20% w/v trichloroacetic acid for 30 minutes on ice. Samples were centrifuged and the superna-
tant removed. Histones were air-dried for 10 minutes at room temperature and resuspended in cold HPLC-grade 
water. Histone protein yield was measured using the Coomassie Plus Protein Assay (Thermo Fisher Scientific).

For P100, proteins were reduced, alkylated and digested overnight with sequencing-grade modified trypsin at 
an enzyme:substrate ratio of 1:50 (Promega, V511X, Madison, WI). Upon quenching, samples were desalted using 
reversed phase SPE (Waters, 186002319). Peptides were eluted with 50%ACN/0.1%TFA and lyophilized. Peptides 
were reconstituted in a quality-control mix of synthetic isotope-labeled peptide standards in 80%ACN/0.1%TFA, 
used to monitor the recovery of phosphopeptides. Phosphopeptides were enriched using Fe3+ IMAC cartridges 
(AssayMAP Bravo, Agilent, Santa Clara, CA) following standard protocol. Phosphopeptides were desalted using 
AssayMAP Reverse Phase cartridges (Agilent, G5496-60033) and lyophilized. Prior to MS analysis, a second set 
of synthetic isotope-labeled peptides were spiked into the samples to allow for quantitation20.

For GCP, histones (10 µg) were propionylated by incubating with NHS-propionate at room tempera-
ture for 30 minutes. Upon quenching (0.1% TFA), samples were desalted using reversed phase SPE car-
tridges (Waters, 186000309) following standard protocol. Samples were lyophilized, resuspended in 50 mM 
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ammonium bicarbonate (pH 8.0), and digested overnight with sequencing-grade modified trypsin (Promega) at 
an enzyme:substrate ratio of 1:50. Peptides were propionylated by incubating with NHS-propionate at 25 °C for 
1 hour. Upon quenching (15% hydroxylamine, 25 °C, 30 min), peptides were desalted using SepPak tC18 µElu-
tion Plate (Waters) and lyophilized. Prior to MS analysis, peptides were resuspended in a mixture of synthetic 
isotope-labeled peptides to allow for quantitation. Detailed P100 and GCP protocols can be found online at 
https://panoramaweb.org/wiki/LINCS/Overview%20Information/page.view?name=sops and in our previous 
publications20,21.

nanoLC-MS/MS analysis. P100 samples were analyzed on an Orbitrap Q-Exactive HF Plus MS (Thermo 
Fisher Scientific) and GCP samples on an Orbitrap Q-Exactive Plus (Thermo Fisher Scientific). Both systems 
were equipped with a nanoflow ionization source (James A. Hill Instrument Services, Arlington, MA) and cou-
pled to a nanoflow Proxeon EASY-nLC 1000 UHPLC system (Thermo Fisher Scientific). Acquisition occurred 
in positive ion mode with the electrospray voltage set at 2 kV for P100 and 2.2 kV for GCP. Samples were injected 
onto an in-house packed 20 cm × 75 μm diameter C18 silica picofrit capillary column (1.9-μm ReproSil-Pur 
C18-AQ beads, Dr. Maisch GmbH, r119.aq; Picofrit 10-μm tip opening, New Objective, PF360-75-10-N-5), 
heated at 50 °C. The mobile phase flow rate was 250 nL/min for P100 and 200 nL/min for GCP and consisted of 
3% ACN/0.1% FA (solvent A) and 90% ACN/0.1% FA (solvent B). Phosphopeptides were separated using the 
following LC gradient: 0–3% B in 3 min, 5–40% B in 50 min, 40–90% B in 1 min, stay at 90% B for 5.5 min, and 
90–50% B in 30 s. Data were acquired using a DIA method to allow for deeper exploration of the phosphopro-
teome38. For MS1 scans, the resolution was set at 60,000 at 200 m/z and the automatic gain control (AGC) target 
was 3e6 with a maximum inject fill time of 20 ms. An overlap DIA method was used with 56 × 22 m/z isolation 
windows covering the 400–1,000 m/z range; the isolation windows in two consecutive cycles had an offset of 
11 m/z38. The default charge state was 4, the resolution was 30,000 at 200 m/z, the AGC target was 1e6, the maxi-
mum inject fill time was 50 ms, the loop count was 27, and the NCE was set to 27.

In GCP, histone peptides were separated using the following LC gradient: 3–40% B in 45 min, 40–90% B in 
5 min, stay at 90% B for 5 min, and 50% B for 5 minutes. Samples were acquired using a PRM method. Scheduling 
for each analyte was performed using an inclusion list entailing a mixture of heavy-isotope labeled peptides, with 
a 60 min window for each analyte. For scheduled samples, the windows were reduced to 3 min for sharp peaks 
and 20 min for early eluted, wide peaks. A full-scan MS was acquired in profile mode with a resolution of 35,000 
at 200 m/z from 280 to 950 m/z, AGC target 1e6, and maximum inject fill time 250 ms. MS2 scans were acquired 
in centroid mode using a default charge state of 2, resolution 17,500 at 200 m/z, AGC target 1e6, maximum inject 
fill time 60 ms, loop count 17, and NCE set to 30.
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Fig. 1 P100 and GCP experimental workflows. (a) Processing workflow for P100 and GCP. (b) Light (L) 
and Heavy (H) peptide signal intensities are extracted in Skyline39 for individual probes within each sample. 
Light:Heavy ratios (L/H) calculated in Skyline are filtered using the Proteomics Signature Pipeline (https://
github.com/cmap/psp). Processed data are represented in the form of a heat map with each column representing 
an individual sample and each row an individual probe.
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Data processing. MS raw data files (Level 0 data) were imported into Skyline39, and MS2 signals of 
light and heavy peptides were extracted. The transition refinement and peak integration were performed 
using Avant-Garde40, an automated data curation R package for transition refinement and peak picking for 
chromatogram-based MS data (Level 1 data). Skyline documents were then imported into PanoramaWeb (https://
panoramaweb.org)41 for automated downstream processing. For each analyte, the log2 ratio of the light to heavy 
peptide ion signal was calculated, and values for all analytes, along with corresponding metadata, were assembled 
into Gene Cluster Text (GCT) files (Level 2 data; Fig. 1b). For each batch of samples (per 96-well plate), a single 
GCT file was generated.

Further filtering and normalization were executed by the python-based Proteomics Signature Pipeline (PSP, 
available at https://github.com/cmap/psp), integrated into the PanoramaWeb server. Filtering occurred both at 
the sample and the probe level. Samples with a lower number of probes (<80% for P100 and <50% for GCP) were 
filtered out, and probes measured in <90% of samples in P100 and <50% of samples in GCP were also discarded. 
To account for differences in histone loading amounts, samples were further normalized to an invariant peptide 
(H3, 41-49 and H4, 68-78) in GCP (Level 3 data). All samples were subsequently normalized to the row median 
value within each plate (Level 4 data). Connectivity scores indicating how similar two perturbations are to each 
other were subsequently calculated (Level 5 data). For a detailed description of data levels and the connectivity 
concept, see Litichevskiy et al.22.

Data Records
All MS raw files, Skyline documents, and processed GCT files (Levels 0-4 data) are publicly available on Panorama 
Public42 for P10043 and GCP44 (Supplementary Table 2). These data were deposited to the ProteomeXchange 
Consortium via Panorama Public45 with identifiers PXD017458 (P100) and PXD017459 (GCP). The data can 
also be found in the LINCS Data Portal with identifiers LDS-41234 (“P100 aggregated data - Chemical pertur-
bations”) and LDS-41235 (“GCP aggregated data - Chemical perturbations”). Connectivity scores (Level 5 data) 
can be explored and queried using Touchstone-P, part of the Proteomics Connectivity Hub, available at https://
clue.io/proteomics.

Technical Validation
Our initial pilot library contained 3400 proteomic perturbational signatures of 90 compounds in six cell lines, 
including five cancer models (prostate, lung, breast, melanoma, and pancreatic cancer) and one neurodevel-
opmental model (NPC)22. Here, we have expanded our initial library to now include more than 5300 samples, 
corresponding to profiles generated using 119 small compounds and seven cell lines. The selected compounds 
encompass diverse mechanisms of action (MOAs), but common groups of MOAs emerge that represent mech-
anisms directly modulating epigenetic processes (e.g. HDAC inhibitors and methyltransferases/demethyltrans-
ferases) and phosphosignaling pathways (e.g. JAK and Raf/MEK inhibitors) (Fig. 2a). In the expanded dataset, 
we profiled a new set of 29 cardiotoxic compounds, many of which are approved chemotherapeutics46, with the 
intention that our data can support ongoing pharmacology efforts aiming to develop novel, non-toxic therapeu-
tics47. All compounds were further profiled in a second neural cell model, astrocytes, which are a major cell type 
of the central nervous system whose dysregulation is implicated in neurodegeneration and other pathologies31. 
Although astrocytic proteomes from healthy and disease models derived from different biological sources have 
been monitored36,48,49, to the best of our knowledge, epigenetic and phosphoproteome changes elicited upon drug 
perturbations of such large extent have not been reported yet. This dataset complements profiles obtained from 
NPCs using the same set of perturbations and allows for a direct comparison of neural lineage differentiation.

Samples were processed in batches of 96-well plates, with each plate corresponding to one set of compounds, 
referred to as an “analysis tranche,” profiled in one cell line (Fig. 2b). Using strict criteria, we initially filtered 
our data based on the number of samples in which a probe was detected in each plate and the number of probes 
detected within a sample (Data Processing, Methods). On average, 83% and 88% of the probes passed our filtering 
thresholds in P100 and GCP respectively, indicating high quality data (Fig. 2c). The lower percentage of probes 
passing QC in P100 compared to GCP can be explained by the more stringent threshold employed (80% in P100 
vs. 50% in GCP). Interestingly, fewer P100 probes passed the filtering threshold in astrocytes compared to their 
progenitor cells (NPCs), showing particular sensitivity to epigenetic compound perturbations. Epigenetic com-
pounds, such as HDAC and methyltransferase inhibitors, did not induce strong changes to the P100 phosphosig-
naling landscape, resulting in noisy signatures with poor reproducibility within probes. In contrast, a comparable 
number of probes passed filtering criteria in NPCs and astrocytes in GCP, suggesting a more conserved epigenetic 
landscape across cell lines, as compared to the cell type-specific reduced phosphoproteome. Overall, more than 
95% of the samples across all cell lines passed filtering thresholds, yielding near-complete datasets with few sam-
ple failures.

Within each plate, we included a DMSO vehicle control to obtain baseline measurements relative to which 
perturbation profiles could be compared. To assess technical reproducibility over the course of data generation 
and enable comparisons between samples, we also included two positive controls within each plate, one specific 
to each assay. The P100 positive control was staurosporine, a molecule that inhibits a variety of kinases inducing 
widespread phosphoproteome changes50. For GCP, we used vorinostat, which inhibits the enzymatic activity of 
histone deacetylases (HDACs)51, which catalyze the removal of acetyl groups from lysine residues. The controls 
allowed for comparisons to be made within a plate (same cell line, one set of drugs), within a cell line (same cell 
line, all sets of drugs), and across all plates (all cell lines, all sets of drugs) (Fig. 3a).

Staurosporine profiles were highly reproducible in P100 (calculated using Spearman correlation), with higher 
values calculated within a plate (0.89) and cell line (0.79) and a slightly lower value (0.69) across different cell 
lines, which is expected due to varying genetic cellular backgrounds (Fig. 3a). Despite its role as a P100 control, 
staurosporine also had a particularly reproducible signature in GCP within a plate (0.88) and cell line (0.78). 
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Long treatment periods with staurosporine (24 hours) have been implicated in cell death20, and we observe a 
characteristic epigenetic profile of reduced phosphorylation on H3 S10, a marker of proliferation52. Staurosporine 
causes direct inhibition of aurora B kinase which is responsible for S10 deposition, a factor contributing to cell 
death53. Lower reproducibility (0.57) was observed across all cell lines in GCP, indicating that different cells may 
have different epigenetic responses to staurosporine. In contrast, vorinostat was highly reproducible in GCP 
overall (>0.82), with tight distributions at all three levels, due to a strong increase in acetyl marks upon HDAC 
inhibition. Vorinostat correlated poorly in P100, as expected, since acetyl states are not monitored in this phos-
phoproteomics assay. Finally, DMSO, which represents the baseline profile of a cell line, correlated poorly at all 
three levels due to its “null” signature that reflects little change in the cells.

The technical quality of our expanded dataset was then assessed by comparing the distributions generated 
by replicate and non-replicate correlations (Spearman). In both assays, distributions were well separated with 
median values of replicates at 0.41 for P100 and 0.54 for GCP, and non-replicates at 0 (Fig. 3b). In GCP, we 
observed a bimodal distribution, with two local maxima detected at 0.39 and 0.84 indicating two groups of com-
pounds. The left mode originated from compounds that induce relatively minor changes to histone marks (e.g 
kinase inhibitors), as they target specific pathways that are not expected to impact epigenetics. The right mode 
comprised mainly HDAC inhibitors and other epigenetically active compounds, which induce predictable and 
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Fig. 2 Content and quality control filtering of the phosphosignaling and epigenetics proteomics data library. 
(a) Overview of all mechanisms of action (MOAs) of the compounds employed to build the library. These span 
four broad categories (epigenetically active, neuroactive, kinase/pathway inhibitors and cardiotoxic), each 
representing an ‘analysis tranche’ of drugs. The “Diverse Mechanisms” category encompasses MOAs that appear 
only once in the dataset. (b) Overview of the cell lines and drug treatments employed to build the library. Each 
cell line was treated with all four analysis tranches (29 compounds in each and controls) in 96-well plate batches. 
Blue circles indicate successful sample processing, acquisition and data analysis for GCP, and purple circles for 
P100. (c) Mean number of probes (assay analytes) and samples (perturbation conditions) passing QC thresholds 
for each cell type. Error bars represent the standard deviation calculated within each cell type.
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strong signatures in GCP. Overall, the distributions calculated here resembled our pilot library22, suggesting that 
the addition of cardiovascular drugs and astrocytes did not affect the overall distribution of the library.

We further tested reproducibility by performing 10 random permutation tests of all samples compared with 
the permutation null and investigated whether true replicate correlations were at the highest 5% of a distribution 
(q value < 0.05). If so, the compound was considered “reproducible”. Control samples contributed 12 replicates 
per cell line, while compounds contributed 3 replicates per cell line. We observed > 70% reproducibility in all cell 
lines, with fewer compounds reproducible in GCP due to compound classes (e.g. kinase inhibitors) that did not 
induce large changes in the chromatin space (Fig. 3c). Overall, the quality metrics described here revealed repro-
ducible signatures within and across plates, increasing confidence in the quality of data produced.

Usage Notes
In the current study, we expanded our pilot library of P100 and GCP data, originally consisting of 3400 sam-
ples, to a total of 5300 samples. Levels 0-4 data are made available as a resource to the research community on 
Panorama Public (see Data Records). GCTs of filtered and normalized data (Level 4) can be downloaded from 
Panorama Public and visualized as a heatmap in Morpheus, a software tool developed at the Broad Institute and 
accessible at https://clue.io/morpheus. Data visualization allows us to easily identify how specific phosphosites or 
epigenetic markers respond to unique perturbations. In addition to visualization, Morpheus also offers various 
data analysis options such as hierarchical clustering and marker selection.

Level 4 data can be queried using the Touchstone-P query tool at https://clue.io/proteomics to explore connec-
tivity between drug signatures. The query returns connectivity values that researchers can use to identify drugs 
with signatures strongly connected or anti-connected to their compound of interest, as well as noting if the top 
hits have similar or different mechanisms of action; examples are given in the case studies below. Overall, this 
study provides an extensive proteomics library cataloging cellular responses to compounds involved in treating 
cancer and other diseases. We anticipate that this library will be used to confirm biological mechanisms and also 
raise new hypotheses for further investigation.
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Fig. 3 Quality assessment of the LINCS signaling and epigenetics proteomics data library. (a) Correlation 
of replicates for experimental controls employed in the library. Boxplots show the distribution of Spearman 
correlation coefficients for replicates within the same plate, within the same cell line, and across all cell lines. 
Boxes indicate the extents of the 1st and 3rd quartile, while whiskers indicate 1.5x the interquartile range. (b) 
Distributions of all Spearman correlations among replicates (red) and among non-replicates (gray) across the 
whole dataset, with dashed lines representing the median of the distribution. (c) Bar chart showing the number 
of compounds considered reproducible in each cell line for each assay. The permutation test was run 10 times 
with 10,000 bootstrapped iterations; bars represent the average and error bars represent the standard deviation 
of the 10 runs.

https://doi.org/10.1038/s41597-021-01008-4
https://clue.io/morpheus
https://clue.io/proteomics


7Scientific Data |           (2021) 8:226  | https://doi.org/10.1038/s41597-021-01008-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

Use case 1: GCP query of external data. The Touchstone-P query tool can be employed by investigators 
to classify the epigenetic signatures of their own samples, as GCP and GCP-like data is relatively common in the 
chromatin proteomics field. For example, over 800 cell lines have been profiled as part of the Cancer Cell Line 
Encyclopedia (CCLE) project54. In Fig. 4a,Touchstone-P is used to evaluate whether the CCLE cell line NB4, 
harboring an EZH2 mutation (T236A), acts via a gain-of-function mechanism, in which case EZH2 activity 
should be increased. To investigate this, we performed a query of the wild-type EZH2 cell line, GA-10, and the 
mutant EZH2 line, NB4, against our LINCS database and obtained connectivity values for each compound in the 
library. Negative connectivity values of NB4 with EZH2 inhibitors, compounds that have been shown to decrease 
the activity of the wild type enzyme55, would point to a gain-of-function mechanism for NB455. Indeed, sorting 
NB4 connectivity values in ascending order, four of the top ten hits are identified as EZH2 inhibitors (CPI-169, 
EPZ-005687, GSK-126) showcasing the power of Touchstone-P for deciphering the functional implications of 
mutations. If no genetic information was known about the NB4 line a priori, the EZH2 gain-of-function mutation 
could have been predicted from these results. Similarly, researchers can use this tool to establish predictions about 
their cell system when no other classifications are available.
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Fig. 4 Use case illustrations for GCP and P100 data query. (a) Connectivity query of chromatin signatures of 
EZH2 wild-type (GA-10) and EZH2 mutant (NB4) cell lines from the Cancer Cell Line Encyclopedia (CCLE)54. 
This query illustrates how the library can be used to validate a presumptive gain-of-function mutation. Results 
are sorted from bottom to top ranks for the NB4 line (bottom 5% shown here) and identify EZH2 inhibitors 
(CPI-169, EPZ-005687, and GSK-126, highlighted in blue) as the most anti-connected hits. (b) Query results 
and connectivity matrix of two gamma secretase inhibitors, BMS-906024 and Semagacestat, in NPCs and 
astrocytes. For both drugs, the first ten rows correspond to the top ten most connected drugs to astrocytes, and 
the bottom ten rows to the top ten most connected drugs to NPCs. This query illustrates how the library can 
provide insight to a compound’s mechanism of action in differentiated cell types.
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Use case 2: Exploring cell type-specific responses using P100. NPCs give rise to many of the major 
cell types in the central nervous system, including astrocytes56, which support both neuronal signaling and cer-
ebrovascular integrity57. Due to the difficulty in obtaining primary human astrocytes, in vitro differentiation of 
NPCs into astrocytes is preferred for investigation. To date, no proteomics studies that compare isogenic NPCs 
and astrocytes in response to drug perturbations have been reported. We were interested in leveraging the LINCS 
library to compare signaling patterns between these two cell types upon perturbation by drugs with similar mech-
anisms of action (MOAs). We focused our analysis on two gamma secretase inhibitors given the gamma secre-
tase pathway’s relevance in neural differentiation58, and we queried the profiles of NPCs and astrocytes treated 
with BMS-906024 and semagacestat against the entire phosphoproteomic library. Replicate profiles were highly 
reproducible, as shown by high connectivity values of each drug to itself within each cell type; however, across cell 
types, lower connectivity values were observed for each compound, with semagacestat demonstrating low posi-
tive connectivity to itself between cell types and BMS-906024 showing negative connectivity (Fig. 4b). Differences 
in the morphology and biological function of NPCs and astrocytes could explain their differing cellular responses 
to the same drug. For example, in NPCs gamma secretase inhibitors can suppress NOTCH-1 signaling to support 
differentiation59, while in astrocytes these inhibitors can prevent secretion of amyloid-beta60. Moreover, the differ-
ences in connectivity patterns displayed by semagacestat and BMS-906024 between cell types could suggest that 
gamma secretase inhibitors have unique selectivities that modulate their activities in different cell types. Since it 
is known that the gamma secretase complex is composed of many components that can regulate each other, with 
different isoforms leading to alternative function61,62, perhaps semagacestat acts more universally in inhibiting 
the gamma secretase complex to produce more similar signatures in different cell types than BMS-906024 does.

Several unexpected connections were also observed for both drugs in both cell types, which could provide 
insight into secondary MOAs implicated in potential off-target effects. In both NPCs and astrocytes, BMS-906024 
showed strong connections to several histone lysine methyltransferase inhibitors, and semagacestat showed 
off-target connectivity to a number of different phosphosignaling pathway inhibitors (Fig. 4b). Unintended 
responses to a drug can have harmful clinical implications; for example, semagacestat failed a clinical trial for 
treatment of Alzheimer’s disease because it not only failed to slow disease progression, but also demonstrated an 
increase in adverse events such as development of skin cancers and infections63. Our library can thus be a useful 
resource to reveal potential off-targets for further investigation and to provide insight into underlying MOAs that 
could contribute to side effects of drug administration.

This example query of gamma secretase inhibitors in neural cell types demonstrates how our expanded library 
can be used to reveal differing responses across different cell types elicited by compounds with the same MOA. It 
is emerging that neurological diseases often impact several different cell types in the human brain. Understanding 
how each cell type responds to pharmacological perturbations and whether a drug exhibits a synchronous (con-
nected) or dyssynchronous (anti-connected) response across multiple cell types will be critical for developing the 
next generation of therapeutics for neurological diseases.

Code availability
The Proteomics Signature Pipeline (PSP) is available online at https://github.com/cmap/psp. Avant-garde 
is available at https://github.com/SebVaca/Avant_garde and can be downloaded from the Skyline Tool 
Store directly in the Skyline interface or at https://skyline.ms/skyts/home/software/Skyline/tools/details.
view?name=AvantGardeDIA.
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