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a near-global, high resolution land 
surface parameter dataset for the 
variable infiltration capacity model
Jacob R. Schaperow  1 ✉, Dongyue Li  1,2, Steven a. Margulis1 & Dennis P. Lettenmaier2

Hydrologic models predict the spatial and temporal distribution of water and energy at the land surface. 
Currently, parameter availability limits global-scale hydrologic modelling to very coarse resolution, 
hindering researchers from resolving fine-scale variability. With the aim of addressing this problem, we 
present a set of globally consistent soil and vegetation parameters for the Variable Infiltration Capacity 
(VIC) model at 1/16° resolution (approximately 6 km at the equator), with spatial coverage from 60°S 
to 85°N. Soil parameters derived from interpolated soil profiles and vegetation parameters estimated 
from space-based MODIS measurements have been compiled into input files for both the Classic and 
Image drivers of the VIC model, version 5. Geographical subsetting codes are provided, as well. Our 
dataset provides all necessary land surface parameters to run the VIC model at regional to global scale. 
We evaluate VICGlobal’s ability to simulate the water balance in the Upper Colorado River basin and 12 
smaller basins in the CONUS, and their ability to simulate the radiation budget at six SURFRAD stations 
in the CONUS.

Background & Summary
The Variable Infiltration Capacity (VIC, https://github.com/UW-Hydro/VIC) model is a macroscale, 
semi-distributed hydrologic model1–3 that calculates land surface states and fluxes by solving the surface water 
and energy balances. The model has a wide user base — the citation index Web of Science shows the original 
VIC paper3 has been cited nearly 2000 times, with contributing authors from at least 56 countries. Despite the 
model′s popularity, there are only a few ready-made soil and vegetation parameter datasets that modelers can 
use to run VIC outside the continental United States. Previous global input datasets4–8 have been compiled for 
VIC at resolutions ranging from 2° to 1/4°. Many studies, including Su et al.5, Zhou et al.7, and Adam et al.8 use 
parameters based on the 2° soil and vegetation parameters developed by Nijssen et al.4 (henceforth N2001). As 
useful as the N2001 dataset has been over the years, the VIC-modeling community would be well-served by a 
higher-resolution update. The N2001 dataset and its derivatives are limited by the dataset’s coarse resolution, 
geographically sparse subset of leaf-area index observations, and assumptions of temporally-invariant albedo 
and 100 percent canopy coverage for all land cover classes, as noted by Bohn and Vivoni9, who developed a new 
VIC parameter dataset for North America that addresses these issues. Our dataset, VICGlobal, emulates their 
approach at a global-scale.

VICGlobal’s predecessor, the N2001 soil and vegetation parameters, may be appropriate for continental-scale 
modelling, but its coarse resolution makes it less useful for parameterizing VIC at smaller scales. Coarse resolu-
tion land surface models miss topographic variability, distort river networks, and prevent proper representation 
of land-atmosphere interactions in coupled land-atmosphere models. At coarse resolution, topographic char-
acteristics such as elevation and vegetation cover are averaged over a large grid cell, so the model will miss key 
details such as the effect of terrain on the radiation balance and the effect of vegetation on ET-soil moisture 
partitioning. This is particularly important in mountainous regions, where there are large changes in topography 
across relatively small areas. While VIC does not represent fluxes from one grid cell to another, it is frequently 
coupled to a routing model to simulate how runoff flows between grid cells. At very coarse resolutions, the mod-
elled river network loses its resemblance to the true river network, necessitating upscaling algorithms to obtain 
usable coarse-resolution river networks (e.g. Wu et al.10). Finally, high resolution land surface modelling could 
improve our ability to simulate land-atmosphere interactions that occur over relatively small spatial scales11. With 
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1/16° grid cells and representation of up to 17 land cover classes within each grid cell, VICGlobal is a step toward 
addressing each of these resolution-related challenges.

Regional-scale VIC inputs at 1/16° resolution already exist but have limited coverage outside North America. 
Livneh et al.12 (henceforth L2013) set up the VIC model over the conterminous United States (CONUS) using soil 
and vegetation data compiled from sources including the Food and Agriculture Organization (FAO)/UNESCO 
Soil Map of the World and the Advanced Very High Resolution Radiometer (AVHRR). The L2013 VIC param-
eterization is based on that of Maurer et al.13, with calibration for a better match with streamflow data. Bohn 
and Vivoni9 (henceforth BV2019) released an updated 1/16° vegetation parameter dataset for the CONUS, 
Mexico, and part of Canada, improving on of the limitations of the L2013 dataset, such as its assumption of 
temporally-invariant albedo. They estimated time-varying albedo, leaf-area index (LAI), and fractional canopy 
cover using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS).

Drawing on the L2013 and BV2019 VIC parameterizations, we developed VICGlobal, a near-global dataset of 
soil and vegetation parameters for the VIC model at 1/16° resolution, which VIC users can download and subset 
to their region of study. We estimated soil parameters based on the 30 arc-second FAO Harmonized World Soil 
Database14 (HWSD). Vegetation parameters are based on 500 m resolution MODIS observations. VICGlobal 
includes all the necessary parameters to run regional- to global-scale VIC simulations. We provide MATLAB® 
codes to subset the VICGlobal parameters to a particular domain. In addition to parameters, meteorological forc-
ing data are required to run VIC. We do not include meteorological forcing data as part of VICGlobal. Instead, we 
direct readers to existing forcing datasets with near-global coverage, such as the reanalysis datasets MERRA-215 
and GLDAS16, or real-time measurement-based datasets — see e.g. Xiao et al.17, Livneh et al.12,18, Bohn et al.19

Finally, a note on the file format: The upgrade from VIC version 4 (VIC-4) to VIC version 5 (VIC-5) intro-
duced two “drivers” for running the model. The Image driver takes NetCDF files as inputs, while the Classic driver 
takes ASCII text files. The VICGlobal parameter files are available in two formats: one for VIC-5 Classic, and one 
for VIC-5 Image.

Methods
This section describes how we used freely-available data to compile Classic driver input files for the VIC model. 
First, we created parameter files for VIC-5 Classic, then we converted them to NetCDF format for VIC-5 Image. 
VIC-5 Classic requires three parameter files: a soil parameter file, a vegetation parameter file, and a vegetation 
library file. An optional elevation band file can be provided to resolve sub-grid variability in elevation, which is 
important in regions with complex topography. The parameters are arranged as a relational database: each grid 
cell has a unique identifier, called a grid cell number, in the soil parameter file, that VIC uses to find the corre-
sponding rows of data in the vegetation parameter and elevation band files. The Image driver uses a different 
setup, with all parameters stored in a single NetCDF file.

Soil parameters. The soil parameter file for VIC-5 Classic is an ASCII text file that includes soil parameters 
such as hydraulic conductivity and porosity, but also other kinds of static parameters, such as average precipita-
tion and time zone offset from GMT. Each row of the soil parameter file represents one grid cell, and each column 
represents a different variable. We compiled the soil parameter file using MERIT20 elevation data, soil texture data 
from the FAO HWSD, pedotransfer tables relating soil texture to other soil properties, and interpolated weather 
station data (WorldClim21). Any remaining parameters were set to suggested values from the VIC model’s docu-
mentation2. The following sections describe the estimation of each variable in the soil parameter file, summarized 
in Table 1.

elevation and land mask. The VICGlobal soil parameter file uses the Multi-Error-Removed 
Improved-Terrain (MERIT20) digital elevation model (DEM) to define the elevations, latitudes, and longitudes 
of each land grid cell. The MERIT DEM is an error-corrected and extended version of the SRTM DEM, with 3 
arc-second resolution and coverage from 60°S to 85°N and 180°W to 180°E. Specifically, MERIT is a combi-
nation of the SRTM, AW3D, and Viewfinder Panoramas’ DEMs, corrected for striping, speckle, absolute bias, 
and tree height bias. We used bilinear interpolation to aggregate MERIT to 1/16° resolution and derive a 1/16° 
MERIT-based land mask and DEM (Figure S1).

Soil texture data. Soil texture (percent sand, silt, and clay) and bulk density were obtained from the FAO 
HWSD, a gridded soil parameter dataset derived from in-situ measurements of the soil column. We used a 0.05° 
resolution NetCDF dataset converted from the original HWSD Microsoft Access database by Wieder et al.22. We 
resampled the HWSD soil data from 0.05° to 1/16° resolution using bilinear interpolation with the MATLAB® 
function griddedInterpolant. While HWSD has near global coverage, there are missing data in some places around 
the world, notably Greenland and northern Africa. We filled in these missing data using inpainting, a gap-filling 
method from the field of image processing. We used the MATLAB® function inpaintnans23, which uses a partial 
differential equation method to fill in missing data, to fill gaps in the HWSD data over the MERIT land mask. 
Figure 1 shows the HWSD bulk density data before and after inpainting.

The HWSD data are divided into “topsoil” and “subsoil” parameters. The first 30 cm of the soil column are con-
sidered topsoil and the lower 70 cm subsoil. VIC is typically run with three soil layers, so we created a three-layer 
soil parameter file by breaking up the 30 cm HWSD topsoil layer into two soil layers: one of 10 cm and one of 
20 cm, so the final soil parameter file has three layers, with thicknesses of 10 cm, 20 cm and 70 cm, from top to 
bottom of the soil column. Ten centimeters has been a common choice for the uppermost layer soil depth in VIC 
modeling applications since its use by Liang et al.24. Soil layer depths are typically used as calibration parameters. 
VICGlobal values should be considered a starting estimate.
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Calculating soil parameter values based on soil textures. Pedotransfer functions (e.g. Cosby et al.25) 
relate readily available soil properties, such as soil texture, to less easily-observed properties, such as hydraulic 
conductivity. After resampling the HWSD data from 1/4° to 1/16° resolution, we estimated soil parameters by 
classifying each grid cell’s USDA soil texture class and assigning physical soil properties based on a lookup table 
included with the VIC documentation2,26. The lookup table (Table 2) relates the 12 USDA soil texture classes 
to bulk density, field capacity, wilting point, porosity, saturated hydraulic conductivity, and slope of the soil 
water retention curve in Campbell’s equation. We classified soil textures using the USDA soil texture triangle, as 
implemented by the MATLAB® function soil_classification27. Figure 2 shows the derived USDA soil texture map. 
We used these along with the lookup table to estimate saturated hydraulic conductivity (Ksat), the exponent in 
Campbell’s equation for hydraulic conductivity (expt), fractional soil moisture at the critical point (wcrfract), where 
the critical point is about 70% of field capacity, fractional soil moisture at the wilting point (wpwpfract), quartz 
content, and porosity for each soil layer. The lookup table26 did not include quartz content, so we supplemented it 
with the soil texture-quartz content lookup table from Peters-Lidard et al.28.

We set the variable infiltration capacity parameter b 0 2infilt = . , the maximum baseflow fraction threshold 
d 0 001s = . , and maximum soil moisture threshold w 0 9s = . , their suggested values from the VIC documentation. 
These parameters, along with maximum baseflow velocity (dsmax) and soil depth, are typically calibrated. We set 
the baseflow curve exponent c = 2, the soil thermal damping depth dp = 4 m, soil density = 2685 kg/m3, surface 
roughness = 0.001 m, and snow roughness = 0.0005 m, also based on guidance from the VIC documentation. The 
soil moisture diffusion parameter phis is not used in the current version of VIC, so we set it to the no-data value 
(−999). The final few soil parameters — dsmax, initial soil moisture (initm), and bubbling pressure (bubble)— 
were calculated using the following equations, based on guidance from the VIC documentation.

dsmax slope K (1)sat= ∗

initm wcr porosity t (2)fract l= ∗ ∗

Soil parameter Description Source

run_cell Flag for running this cell

grid_cell Grid cell number

lat Latitude MERIT20

lon Longitude MERIT

binfilt Variable infiltration capacity parameter VIC documentation2

ds Fraction of Dsmax where nonlinear baseflow occurs VIC documentation2

dsmax Maximum velocity of baseflow (mm/day) HWSD*

ws Fraction of maximum soil moisture where nonlinear baseflow occurs VIC documentation2

c Exponent used in baseflow curve VIC documentation2

expt Exponent in Campbell’s equation for hydraulic conductivity HWSD*

Ksat Saturated hydraulic conductivity (mm/day) HWSD*

phis Soil moisture diffusion parameter in each soil layer (not used) Not used

initm Initial moisture content (mm) HWSD*

elev Elevation (m) MERIT

depth Thickness of each soil layer (m) HWSD14

avg_T Average soil temperature (°C) WorldClim21

dp Soil thermal damping depth (m) VIC documentation2

bubble Bubbling pressure of soil (cm) HWSD*

quartz Quartz content HWSD*

bulk_density Bulk density of soil (kg/m3) HWSD14

soil_density Soil particle density (kg/m3) VIC documentation2

offgmt Time zone offset relative to GMT (hr) Based on longitude

wcrfract Fractional soil moisture content at critical point HWSD*

wpwpfract Fractional soil moisture content at wilting point HWSD*

Rough Surface roughness length of bare soil (m) VIC documentation2

snow_rough Surface roughness length of snowpack (m) VIC documentation2

annual_prec Average annual precipitation (mm) WorldClim21

resid_moist Residual moisture fraction Assumed zero

fs_active Flag for whether to run frozen soils module

July_Tavg Average July temperature (°C) WorldClim21

Table 1. VIC model parameters for the soil parameter file. Parameters whose source is “VIC documentation” 
were set to suggested values from the VIC documentation2. Bold parameters have distinct values in each of the 
three soil layers. *Calculated based on HWSD soil texture data, using pedotransfer table (Table 2).
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= . ∗ + .bubble expt0 32 4 3 (3)

Equation (1) estimates dsmax for each grid cell as the product of soil-column average Ksat and land surface 
slope, which was calculated from the elevation data using the MATLAB® function gradientm29g. Equation (2), 
where tl is the thickness of soil layer l, assumes that initial soil moisture is equal to the fractional soil moisture 

USDA class
Field 
capacity

Wilting 
point Porosity Ksat (cm/hr)

Slope (b) of the retention 
curve, in log space

Quartz 
content

Sand 0.08 0.03 0.43 38.41 4.1 0.95

Loamy sand 0.15 0.06 0.42 10.87 3.99 0.85

Sandy loam 0.21 0.09 0.40 5.24 4.84 0.69

Loam 0.32 0.12 0.46 3.96 3.79 0.19

Silt loam 0.28 0.08 0.52 8.59 3.05 0.05

Silt 0.29 0.14 0.43 1.97 5.30 0.41

Sandy clay loam 0.27 0.17 0.39 2.40 8.66 0.61

Clay loam 0.36 0.21 0.48 4.57 7.48 0.09

Silty clay loam 0.34 0.21 0.46 1.77 8.02 0.25

Sandy clay 0.31 0.23 0.41 1.19 13.00 0.50

Silty clay 0.37 0.25 0.49 2.95 9.76 0.08

Clay 0.36 0.27 0.47 3.18 12.28 0.25

Table 2. USDA soil texture class lookup table. Field capacity, wilting point, porosity, saturated hydraulic 
conductivity (Ksat), and b are taken from a lookup table26, which is provided with the VIC version 4 software 
documentation.
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Fig. 1 Bulk density data from the Harmonized World Soils Database (HWSD). The top panel shows HWSD 
bulk density data resampled to 1/16° resolution, the middle panel shows bulk density after infilling holes, and 
the bottom panel shows the difference.
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content at the critical point. Equation (3) calculates bubbling pressure as a function of expt, based on linear 
regression of bubbling pressure vs. expt30. Figures S2–S9 in the Supplementary Information show maps of each 
soil parameter. We assumed residual soil moisture, the amount of soil moisture that cannot be removed from the 
soil by drainage or evapotranspiration, was zero.

Elevation bands. VIC uses an elevation band file (also called a snow band file) to account for subgrid het-
erogeneity in grid cell elevations. The assumption of uniform elevation over an entire grid cell can lead to mode-
ling errors in mountainous regions, where higher topography is associated with cooler temperatures and higher 
precipitation rates. The elevation band file accounts for subgrid variability in topography by dividing each grid 
cell into a number of elevation bands, each of which is simulated separately. VIC adjusts temperature, pressure, 
and precipitation depending on the elevation in each band. We prepared an elevation band file with five eleva-
tion bands by comparing the 1/16° DEM used for the soil parameter file with a 30 arc-second DEM. Both DEMs 
were derived by aggregating MERIT data. For simplicity, we assumed precipitation was evenly distributed among 
elevation bands within a grid cell. The elevation band file is provided with the caveat that using elevation bands 
requires more computing power; users may wish to turn elevation bands on or off (via the VIC global parameter 
file) depending on their needs.

Vegetation parameters. VIC-5 Classic uses a vegetation parameter file to define the fractional cover of 
different vegetation types within each grid cell and some of their physical properties. Other vegetation parameters 
are stored in the “vegetation library” file. (VIC-5 Image simply stores all parameters in a single “parameter” file.) 
The VIC-5 Classic vegetation parameter file consists of information about fractional cover of each land cover 
type in each grid cell, and their corresponding root zone depths and root fractions within each root zone. The 
vegetation parameter file can optionally include time-varying LAI, fractional canopy cover, and albedo data, but 
it is simpler to specify these in the vegetation library (at the cost of not representing some spatial heterogeneity).

We used MODIS land cover data from the 0.05° MODIS MCD12C1 Collection 6 data product31 to assign 
fractional land cover values to each grid cell by calculating the average land cover for MCD12C1 observations 
over the 2017 calendar year. We chose 2017 because it was the most recent year with data in all the MODIS-based 
datasets used for this study, and there is very low interannual variability of land cover32 in MCD12C1 Collection 
6. Figure 3 shows majority land cover types from the 2017 MCD12C1 observations.

Like all global land cover data products, MCD12C1 makes classification errors. Sulla-Menashe et al.32 
reported 67% overall IGBP classification accuracy for 2001 land cover. Classification errors are more common 
in the “mixed” land covers, such as cropland/natural vegetation mosaic, shrublands, grasslands, and savannas. 
Fortunately for our purposes, the vegetation parameters for commonly-confused land covers tend to be fairly 
similar themselves, which reduces the impact of misclassification on land surface modelling results. For example, 
the LAI of open shrubland is not too different from the LAI of closed shrubland.

Fig. 2 USDA soil texture classifications based on HWSD. Topsoil is soil from 0–30 cm below the surface, and 
subsoil is soil between 30–100 cm deep.

https://doi.org/10.1038/s41597-021-00999-4


6Scientific Data |           (2021) 8:216  | https://doi.org/10.1038/s41597-021-00999-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

We calculated root fraction as a function of land cover class following the method of Zeng33, who defined the 
following formula (Eq. 4) for use in parameterizing land surface models:

= − +− −Y e e1 1
2
( ) (4)

ad bd

where Y = cumulative root fraction, d = depth, and a and b are empirical parameters defined by Zeng33 for each 
International Geosphere–Biosphere Programme (IGBP) land cover type, based on a rooting depth database com-
piled from more than 200 field surveys. We used this formula with depths of 0.1 m, 0.7 m, and dr, corresponding 
to three root zones. The value of dr, the maximum rooting depth for each IGBP land cover type, was taken from 
Zeng33. This method assumes that the depth and distribution of roots depends only on the land cover type; we 
assume that land cover type is the primary control on root characteristics. Table 3 shows root fractions and root 
zone depths for each IGBP land cover type.

Like previous large-scale VIC vegetation cover datasets, our vegetation parameter file neglects land cover 
change over time. However, it does have a few other advantages over past vegetation parameter datasets. The 
land cover classification used in the N2001 and L2013 VIC parameter sets is referred to as “UMD-NLDAS” 
because it is a modified version of the AVHRR-based University of Maryland (UMD) land cover product34. The 
UMD-NLDAS classification was modified for the North American Land Data Assimilation project (NLDAS35) to 
exclude open water, urban, and snow and ice land cover classes (see BV2019). VICGlobal uses 17 IGBP land cover 
classes, including urban, barren, perennial snow and ice, and inland water bodies, permitting better description 
of land cover variability than the 11 UMD-NLDAS classification.

Vegetation library file. The vegetation library maps each land cover type to a set of vegetation parameters 
(Table 4). We adapted the LDAS vegetation library36 for use with the 17 IGBP land cover classes, taking monthly 
average LAI, fractional canopy cover (fcanopy), and albedo values obtained from recent MODIS data products. 
We set architectural resistance (r0) and minimum stomatal resistance (rmin) to values from literature (described 
below). The rest of the parameters, which are described in the N2001 paper, were left to their original LDAS vege-
tation library values. This section describes how we estimated LAI, fcanopy, albedo, r0, and rmin, and how we trans-
ferred the remaining parameters from the 11 UMD-NLDAS land cover classes to the 17 IGBP land cover classes.

We used MODIS observations from the year 2017 to calculate monthly average LAI, fcanopy, and albedo for 
each IGBP land cover type. We calculated LAI and albedo from the MODIS-based Global LAnd Surface Satellite 
dataset (GLASS37–39) and fcanopy from NDVI observations (MCD13C140) The expression used for fcanopy fol-
lows BV2019:

=





−
−






fcanopy NDVI NDVI
NDVI NDVI (5)

min

max min

2

where NDVImin and NDVImax are the minimum and maximum values of NDVI observed for that month. Monthly 
LAI, fcanopy, and albedo values were calculated by averaging over all grid cells of the same land cover type, 
counting only cells that were at least 90% homogenous, to avoid noise from grid cells with multiple land covers. 
Excepting perennial snow and ice land cover, the vegetation parameters in the VIC vegetation library should 
describe snow-free vegetation. Therefore, before calculating LAI, fcanopy, and albedo for each land cover class, we 
used fractional snow cover data from MOD10CM41, a global 0.05 degree monthly snow cover dataset, to exclude 
grid cells with more than 90% snow cover. Additionally, we set albedo to 0.05 for open water, and we set LAI and 
fcanopy to 0 for open water and perennial snow and ice.

The resistances rmin and r0 play a role in determining how much plant transpiration occurs. Higher resistance 
means less transpiration. Stomatal resistance is resistance to the release of water through the plant stomata, and 

Fig. 3 MODIS MCD12C1 majority land cover types (IGBP classifications). .
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architectural resistance is the aerodynamic resistance between the leaves and the canopy top42. Two sets of resist-
ance parameters have been used in past large-scale VIC implementations. N2001 ran VIC over the entire globe 
using rmin values adapted from Dorman and Sellers’ global database of rmin values43 computed using the Simple 
Biosphere Model44 (SiB). The Nijssen et al.45 r0 values were taken from Ducoudre et al.’s SECHIBA land surface 
parameterization42. The other set of rmin and r0 parameters are those used in the LDAS vegetation library and in 
studies such as Livneh et al.12. This set of rmin values comes from Mao et al.46 and Mao and Cherkauer47. We used 
the rmin values from SiB44 and the r0 values from SECHIBA42 for VICGlobal as they appeared to be the better 
documented values.

For the other parameters in the vegetation library file (displacement height, roughness length, etc.), we 
assigned values using the existing LDAS vegetation library. Since there are 17 IGBP land cover classes, and only 
11 UMD-NLDAS land cover classes in the LDAS vegetation library, we re-assigned some IGBP land cover classes 
to take the parameters of UMD-NLDAS land cover classes. We remapped barren land, permanent wetlands, snow 
and ice, urban land, and water bodies to take the parameters of “grasslands” from the LDAS vegetation param-
eter file. While the characteristics of the barren, snow and ice, urban, and water land cover types clearly differ 
from those of grasslands, their low LAI and fcanopy values, corresponding to sparse vegetation, essentially “turns 
off ” the other vegetation parameters in the VIC model, as pointed out by BV2019. The other remappings were 
more straightforward. Croplands and croplands/natural vegetation mosaics inherited values from “croplands,” 
savannas became “wooded grasslands,” and woody savannas became “woodlands.” We were thus able to assign 
vegetation parameter values to the each of the 17 IGBP land cover classes.

To calculate global average time series of seasonally-varying vegetation parameters would be of limited inter-
est as the seasonal cycle would average out across the equator. Therefore, we calculated average monthly fcanopy, 
LAI, and albedo for each vegetation type in each hemisphere, and we developed two separate vegetation library 

Depth(1) Depth(2) Depth(3) Fract(1) Fract(2) Fract(3)

Open water 0.1 0.6 0.8 0.44 0.45 0.11

Evergreen needleleaf forest 0.1 0.6 1.1 0.34 0.51 0.14

Evergreen broadleaf forest 0.1 0.6 2.3 0.32 0.44 0.23

Deciduous needleleaf forest 0.1 0.6 1.3 0.34 0.5 0.16

Deciduous broadleaf forest 0.1 0.6 1.3 0.31 0.52 0.17

Mixed forest 0.1 0.6 1.7 0.25 0.52 0.22

Closed shrublands 0.1 0.6 1.8 0.31 0.49 0.21

Open shrublands 0.1 0.6 2.4 0.33 0.43 0.24

Savanna 0.1 0.6 1.7 0.36 0.45 0.19

Woody savanna 0.1 0.6 1 0.37 0.5 0.13

Grasslands 0.1 0.6 0.8 0.44 0.45 0.11

Permanent wetlands 0.1 0.6 0.8 0.44 0.45 0.11

Cropland 0.1 0.6 0.8 0.33 0.55 0.12

Urban 0.1 0.6 0.8 0.44 0.45 0.11

Cropland/natural vegetation mosaic 0.1 0.6 0.8 0.33 0.55 0.12

Permanent snow and ice 0.1 0.6 0.8 0.44 0.45 0.11

Barren 0.1 0.6 3.3 0.22 0.46 0.31

Table 3. Root zone depths (m) and fraction of roots in each zone for IGBP land cover classes.

Parameter Description Source

Overstory Flag for whether the land cover type has an overstory LDAS36

R0 (s/m) Architectural resistance SECHIBA42

Rmin (s/m) Minimum stomatal resistance SiB44

LAI Monthly average leaf-area index 2017 GLASS LAI37–39

Canopy cover fraction Monthly average partial vegetation cover fraction 2017 MODIS NDVI40

Albedo Monthly average albedo 2017 GLASS albedo37–39

Roughness length (m) Average roughness length LDAS36

Displacement height (m) Average displacement height LDAS36

WindH Wind measurement height LDAS36

RGL Minimum incoming shortwave radiation for 
transpiration to occur LDAS36

Solar attenuation Radiation attenuation factor LDAS36, set to 0.5

Wind attenuation Wind attenuation factor through the overstory LDAS36, set to 0.5

Trunk fraction Ratio of total tree height that is trunk LDAS36, set to 0.2

Table 4. VIC model parameters for the vegetation library file. Parameters remapped from UMD-NLDAS to 
IGBP classification, following BV2019, are assigned the source “LDAS.”
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files: one for the northern hemisphere and one for the southern hemisphere. Maps of January and July LAI, 
fcanopy, and albedo are shown in Fig. 4. For illustrative purposes, the parameter values in this figure have been 
averaged over the 17 IGBP land cover classes using area-based weighting. Figures S14–S19 show maps of the 
remaining vegetation parameters. Figures S20–S22 show the cycle of LAI, fractional canopy cover, and albedo for 
each vegetation type, averaged separately over each hemisphere.

Data Records
Soil and vegetation parameters for the VIC model are available for download at Zenodo48 in NetCDF format 
for version 5 of the VIC model. The files are stored as zip archives. parameters_classic.zip contains ASCII text 
files with soil parameters, vegetation parameters, elevation bands, and two vegetation library files — one of the 
northern hemisphere and one for the southern hemisphere — for VIC-5 Classic. parameters_global.zip contains 
a NetCDF “parameter” file with all the soil and vegetation parameters described above and a NetCDF “domain” 
file describing the VICGlobal domain (all land mass between 60°S and 85°N) for VIC-5 Image. MATLAB® codes 
for subsetting either set of parameters from the entire VICGlobal extent to a subregion of interest. Additionally, 
parameter and domain files pre-subsetted to North America, South America, Africa, Eurasia, and Oceania are 
available for download.

technical Validation
Streamflow and snow-water equivalent in the Upper Colorado Basin. Having created input files 
for the VIC model, we tested the parameters in a large, well-studied river basin. We used the VICGlobal parame-
ters to run VIC in water balance mode over the Upper Colorado River Basin (UCRB), a 293,600 km2 basin in the 
western United States. We ran VIC once using the VICGlobal parameters and once using the L2013 parameters. 
Both simulations used the meteorological forcing data from L2013, at a six-hourly timestep, in water balance 
mode, for the 6-year period from Oct. 1, 2005 to Sept. 30, 2011.

We compared estimated streamflow from the VICGlobal and L2013 simulations with naturalized stream-
flow estimates from the U.S. Bureau of Reclamation49 (USBR) at Lees Ferry, Arizona (Fig. 5). Naturalized flow is 
measured streamflow adjusted for the effects of reservoir storage and management and consumptive uses such as 
irrigation. We compared our VIC model outputs with naturalized streamflow because our VIC implementation 
does not simulate consumptive water use or reservoir storage. Due to differences in soil and vegetation param-
eters between the two sets of input files, there are notable differences in the hydrographs from each simulation. 
Relative to the L2013 results, the uncalibrated VICGlobal peak flows’ timing is too early and their magnitude is 
too high. This is expected given that the L2013 parameters have been calibrated to get a good match to gauge data.

To understand the cause of this mismatch, we examine seven commonly calibrated soil parameters, which are 
difficult or impossible to estimate from measurements: ds, ws, dsmax, binfilt, and the thicknesses of each soil layer 
(t1, t2, t3). Taking a closer look at these soil parameters in the UCRB (Fig. 6), we see that the infiltration capacity 
parameter binfilt is considerably higher in the VICGlobal parameters than it is in the L2013 parameters, which 

Fig. 4 Maps of leaf-area index, albedo, and fractional canopy cover values. Parameter values have been averaged 
over the 17 IGBP land cover classes using area-based weighting.
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would tend to cause higher runoff rates. ds is lower for VICGlobal than for L2013, so nonlinear baseflow occurs 
at a lower fraction of dsmax, tending to make baseflow peaks occur earlier. dsmax is considerably higher for 
VICGlobal than for L2013 in much of the UCRB, so the maximum baseflow rate is higher for VICGlobal. Finally, 
the thicker soil layers in L2013 mean that more water can infiltrate into the soil before baseflow occurs. Table 5 
describes each of the seven calibration parameters and their influence on VIC model outputs. VIC users seeking 
more guidance on calibrating soil parameters should consult the VIC model documentation and relevant litera-
ture50–52. We calibrated the VICGlobal parameters binfilt, dsmax, and t3, the same parameters calibrated by L2013, 
to get a good match between predicted and observed (USBR naturalized) streamflow. However, decreasing binfilt 
on its own was not enough to reduce the high runoff estimates produced by the VICGlobal parameters (VIC’s 
sensitivity to binfilt depends on the water-holding capacity of the upper two soil layers). By introducing the thick-
ness of the second soil layer t2 as a fourth calibration parameter, we were able to reduce runoff and increase tran-
spiration. The final set of calibrated parameters was b 0 038infilt = . , dsmax = 0.60 mm⁄day, t2 = 1.5m, and t3 = 1.6m.

For this analysis, we used manual calibration because the model run time made automated methods, which 
require hundreds to thousands of model runs, impractical. We used a custom MATLAB® application — a graph-
ical user interface for running the VIC model, tuning its parameters, and displaying its outputs — to assist with 
manual calibration. We assumed the calibrated parameters were uniform over the basin. In addition to calibration 
by trial and error, VICGlobal users may also wish to explore automated calibration methods such as the Shuffled 
Complex Evolutionary algorithm53 (SCE-UA) or Dynamically-Dimensioned Search54 (DDS) when practical.

The calibrated VICGlobal simulation outperformed the L2013 simulation, with a Kling-Gupta efficiency55 
(KGE) of 0.24, compared to −0.26 for L2013 and −1.7 for the uncalibrated VICGlobal simulation. We also com-
pared simulated snow-water equivalent (SWE) between the VICGlobal and L2013 simulations. Spatial patterns of 
simulated SWE were consistent between the two simulations (Fig. 7a–c), as were patterns of snow accumulation 
and melt (Fig. 7d). VICGlobal SWE was 3 mm higher than L2013 SWE, on average. Snow sublimation, including 
canopy sublimation, was higher for L2013 than for VICGlobal, which helps explain the slight overestimate of 
SWE by VICGlobal relative to L2013. Overall, VICGlobal is able reproduce the timing, magnitude, and spatial 
pattern of L2013-simulated SWE in the UCRB, with no need for parameter calibration.

Fig. 5 Monthly discharge estimates at Lee’s Ferry (the outlet of the Upper Colorado River Basin). The dotted 
cyan line shows the uncalibrated VICGlobal estimate, the dark blue line shows the calibrated VICGlobal 
estimate, the red line shows the L2013 estimate, and the black line shows the U.S. Bureau of Reclamation 
naturalized streamflow data.

Fig. 6 Maps of VICGlobal and L2013 soil parameters in the Upper Colorado River Basin.
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Water balance in 12 unregulated CONUS basins. Beyond the Upper Colorado Basin, we evaluated the 
VICGlobal parameters’ potential for modelling the water and energy balance in 12 basins, ranging from 1500–
25000 km2, chosen for good spatial coverage of the CONUS. Modelled discharge was compared with monthly 
observations at USGS reference stream gages56 at each basin outlet; we used the DDS method to calibrate binfilt, 
dsmax, t2, and t3. (These basins are small enough for automatic calibration to be practical.) The calibration was 
performed with L2013 meteorological forcing data, for calendar year 1993, with the VIC model run from 1990 – 
1992 as spin-up. After 500 model evaluations (50 for the Clearwater River), the average discharge calibration KGE 
was 0.47, with a maximum of 0.83 for the Clearwater River in Idaho and a minimum of 0.01 for the White River in 
Arkansas. Using the calibrated parameters, we performed a validation run from 1994–2011. Table 6 shows good-
ness of fit between modelled and measured discharge for the 18-year validation run. Figure 8 shows discharge 
plots for each basin over the validation period. Good matches can be seen for the Clearwater, New, Homochitto, 
Mattawamkeag, Gasconade, Trinity, and Little Fork rivers, while the White, Sheyenne, Brazos, and San Simon 
rivers did not respond well to calibration, suggesting that parameters other than the four calibrated here are to 
blame. See e.g. Demaria et al.50 for more insight on VIC calibration.

Description Effect Min Max

ds Fraction of dsmax where non-linear 
baseflow begins.

For a given soil moisture content, the linear 
baseflow term increases with ds, while the 
nonlinear term decreases.

0 1

dsmax Maximum baseflow velocity in lowest 
soil layer Baseflow increases proportionally to dsmax. 0 About 30 mm/day

ws Fraction of max soil moisture at which 
nonlinear baseflow occurs.

Higher value raises the water content required for 
rapid increase in baseflow (nonlinear baseflow 
term), resulting in delayed baseflow peaks.

0 1

binfilt
Infiltration capacity parameter. Defines 
the shape of the VIC curve.

Higher value of b gives lower infiltration and thus 
higher surface runoff. 0 0.4

t1 Thickness of upper soil layer
Thicker soil means more water can be stored 
before baseflow occurs. Also, more evaporation 
occurs if there is more water stored in the soil.

0.01 m 0.5 m

t2 Thickness of middle soil layer Controls water availability for transpiration. 
Thicker soils store more water. 0.05 m 1 m

t3 Thickness of bottom soil layer
Thicker soil means more water can be stored 
before baseflow occurs. Controls water 
availability for baseflow.

0.5 m 2.5 m

Table 5. Commonly calibrated soil parameters in the VIC model and their effects on model outputs. The 
baseflow equations are found in Liang et al. (1994).

Fig. 7 Time-average snow-water equivalent (SWE) maps (a–c) and basin-average SWE time series (d) for the 
Upper Colorado River Basin comparing simulations using the L2013 and VICGlobal parameters.
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Surface radiation budget validation with SURFRAD. To evaluate how well the (uncalibrated) 
VICGlobal parameters simulate the surface radiation balance, we ran VIC over six SURFRAD57 sites, using soil 
parameters from the 1/16° grid cell containing the SURFRAD sites. We ran hourly simulations in energy balance 
mode from 1995–2011, with 1994 as a spin-up year. Meteorological inputs taken from meteorological stations at 
the sites provided input data for the model, except for precipitation, which we took from L2013.

The first row of Fig. 9 shows modelled and observed net radiation, upwelling longwave, downwelling long-
wave, upwelling shortwave, and downwelling shortwave radiation averaged over each day from 1995–2011 for 
six SURFRAD sites in the CONUS. Downwelling shortwave and longwave radiation predictions similar to the 
observations because the SURFRAD data were used as inputs for the VIC model (but not identical because pre-
cipitation inputs were taken from L2013 due to lack of ground measurements at the sites). There is a positive bias 
for net radiation resulting from a slight low bias for upwelling shortwave radiation. Overall, the bias is small.

The second and third rows of Fig. 9 show scatterplots of predicted vs. observed upwelling shortwave and long-
wave radiation, with one-to-one lines shown in black. The correlation between predicted and observed upwelling 
shortwave and longwave radiation is close to 1 (ranges from 0.96–0.99 for all sites). Running VIC with VICGlobal 
parameters allows simulation of upwelling longwave radiation with an RMSE of 25 W/m2 and RMSE of 15 W/
m2 for upwelling shortwave radiation. In Fig. 9, we have excluded data at times when snow covers the ground to 
address the scale-issue — the spatial scale of the VIC simulations (a 1/16° grid cell) is much larger than that of the 
SURFRAD measurement — because of snow’s large role in determining upwelling solar radiation, we excluded 

Calibration (1993) Validation (1994–2011)

DA (km2)KGE RMSE KGE RMSE

Clearwater River 0.83 167 0.50 214 14268

Homochitto River 0.72 60 0.49 58 2073

Suwannee River 0.71 42 0.37 81 6136

New River 0.69 38 0.57 47 2952

Mattawamkeag River 0.64 86 0.70 66 3676

Gasconade River 0.62 235 0.72 115 8265

Sheyenne River 0.60 9 −0.87 28 7582

Trinity River 0.46 76 0.51 56 1980

Little Fork River 0.24 43 0.52 44 4383

San Simon Wash 0.12 1 −0.04 1 1482

Brazos River 0.05 1 −0.65 10 3348

White River 0.01 60 −1.47 117 25791

Table 6. Goodness of fit metrics for the 1994–2011 validation run over 12 CONUS basins.
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Fig. 8 Monthly discharge predictions for 12 CONUS basins compared to USGS reference gauge measurements.
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times when either the VIC model or SURFRAD measurements had snow on the ground using an albedo thresh-
old of 0.4; none of the VICGlobal albedos for non-snowy land surfaces are this large.

Usage Notes
We have described VICGlobal, a globally-consistent 1/16° VIC parameter dataset with soil and vegetation param-
eters derived from the latest satellite-based remote sensing datasets (MODIS and MERIT, which is based on 
SRTM data) and in-situ soil data from the FAO HWSD. In addition to its higher resolution, VICGlobal has an 
advantage over previous global VIC setups due to its inclusion of seasonally-varying fractional canopy cover, LAI, 
and albedo, and because it explicitly accounts for barren, wetland, open water, and perennial snow and ice land 
covers. VICGlobal is provided in geographic coordinates, referenced to the WGS84 ellipsoid and datum.

VICGlobal has a few limitations. Its parameters are uncalibrated, so users must calibrate sensitive yet 
hard-to-measure parameters such as soil depth and the variable infiltration capacity parameter to get a good 
match between simulated and observed discharge. Several of the vegetation parameters, such as roughness length 
and displacement height, are assumed constant in time, even though realistically these parameters change as 
vegetation blooms and senesces throughout the year. And while we believe our monthly, hemisphere-average 
fractional canopy cover, LAI, and albedo are a major improvement over past global datasets, the most realistic 
parameter set would have them vary from grid cell to grid cell, even for the same vegetation type. Despite its lim-
itations, we hope that VICGlobal, with its relatively high spatial resolution, wide coverage, and easy availability 
will be a valuable resource for VIC users.

Code availability
The scripts used to create the VICGlobal data set can be found on the corresponding author’s Github page 
(https://github.com/jschap1/vicglobal-prep and https://github.com/jschap1/vegpar). The VICGlobal parameters 
were subset to the Upper Colorado River Basin using the subsetting codes included with the VICGlobal dataset, 
archived on Zenodo48.
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