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PSG-audio, a scored 
polysomnography dataset with 
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The sleep apnea syndrome is a chronic condition that affects the quality of life and increases the risk 
of severe health conditions such as cardiovascular diseases. However, the prevalence of the syndrome 
in the general population is considered to be heavily underestimated due to the restricted number 
of people seeking diagnosis, with the leading cause for this being the inconvenience of the current 
reference standard for apnea diagnosis: Polysomnography. to enhance patients’ awareness of the 
syndrome, a great endeavour is conducted in the literature. Various home-based apnea detection 
systems are being developed, profiting from information in a restricted set of polysomnography 
signals. In particular, breathing sound has been proven highly effective in detecting apneic events 
during sleep. The development of accurate systems requires multitudinous datasets of audio 
recordings and polysomnograms. In this work, we provide the first open access dataset, comprising 212 
polysomnograms along with synchronized high-quality tracheal and ambient microphone recordings. 
We envision this dataset to be widely used for the development of home-based apnea detection 
techniques and frameworks.

Background & Summary
The sleep apnea syndrome (SAS) is a breathing disorder occurring as a repetitive cessation or severe reduction of 
breathing, leading to disrupted sleep1,2. Although it was noticed even before 1900, under the term “Pickwickian 
syndrome”, in exceptional cases linked to obesity and hypersomnolence, SAS was recognized as a pathological 
chronic condition only after 19703. Since then, various studies attempted to determine the SAS relationship with 
age4–8 or gender4,7,9–12 and with pathological conditions like obesity7,13–17, hypertension16,18–21, diabetes melli-
tus22–25, previously reported stroke26–29 or cardiovascular diseases30–34 and cancer35.

The SAS symptoms include daytime fatigue and sleepiness36,37, headaches, depression or mood changes37,38, 
disrupted interpersonal relationships38, reduced cognitive performance37,38 and increased risk of work and vehicle 
accidents39–41. Despite the symptoms’ severity, the awareness of the syndrome remains restricted42. The epidemi-
ological studies on apnea prevalence in the general population exhibit increased inconsistency (3–7% for men, 
2–5% for women)43–45. This is mainly attributed to the medical protocols’ differences46. However, the restricted 
number of people seeking diagnosis also strongly contributes to SAS prevalence underestimation47.

The reference standard for diagnosing apnea is Polysomnography (PSG): a study of cardiac, neurological and 
respiratory signals over a full night sleep in hospital48. The PSG inconvenience, along with the requirement for 
full night hospitalization, discourages patients from seeking diagnosis. Thus, multiple systems for SAS estima-
tion at home have been developed. They provide easier examination and increase patients’ awareness of SAS. 
The reported studies profit from smartphones’ ubiquity, their connectivity to portable sensors and their com-
putational power, which allows for data processing through built-in applications49–55. Breathing sound has been 
proven highly effective in this endeavour56,57. Most studies employ neural networks (NNs)58–62, thus, they strongly 
depend on annotated PSG data and audio recordings via ambient49 or contact microphones59,60.
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The data collection process is crucial for the effectiveness and accuracy of the evolved systems, contributing 
to both the systems’ development and validation. But data collection is a time-consuming process, requiring a 
large number of patients to undergo a PSG in hospital. Online available datasets are a convenient alternative to 
save valuable time and assure feasibility of comparison between different approaches63–67. However, to the best of 
our knowledge, there is currently no available dataset that includes breathing sound recordings simultaneous to 
PSG. Raw PSG data without contact or ambient microphone recordings are publicly available mainly through the 
National Sleep Research Resource65, referring to sleep studies on the general population65,68,69 or on specific sub-
populations such as paediatric patients70,71, pregnant women72 or elderly men73,74. While tracheal microphones 
participate in standard PSG systems, the recordings are usually of poor quality75 with low sampling frequency 
or narrow dynamic range. The lack of standardization protocols with regard to the microphone type, bandwidth 
and signal compression leads to inconsistent results between the developed methodologies. Even during the 
implementation of proprietary datasets, sound is rarely recorded simultaneously with PSG, with an exception 
being the study of Azarbarzin and Moussavi76. In audio-oriented studies, sound is usually recorded separately77 
and reference scoring of apneas relies solely on sound or a restricted number of PSG signals78, rendering diagnosis 
incomparable to PSG findings.

To meet these challenges, we built and provide an open access dataset comprising 212 PSGs with synchronized 
sound recordings from tracheal and ambient microphones. The data are collected and characterized by the med-
ical team of Sismanoglio – Amalia Fleming General Hospital of Athens, and are open and freely available online 
{https://doi.org/10.11922/sciencedb.00345}79. We trust that this dataset will particularly contribute in: (a) compa-
rable studies on the effectiveness of contact and ambient microphones in apnea detection, (b) studies on breathing 
sound features for specific time detection of apneic episodes and (c) data augmentation of PSG-related studies. 
The dataset is part of an on-going research study and is expected to be enriched in the following months/years.

Herein, we present the data collection methodology, the emerging ethical issues management, as well as sev-
eral key dataset statistics since a complete characterization of an open access dataset is highly important in order 
to support future research findings80. A discussion is additionally conducted concerning crucial challenges of this 
field, particularly the subjectivity of manual respiratory events labelling and the requirements for multitudinous 
and balanced datasets for developing accurate SAS detection systems.

Methods
Ethical issues management. The participation of the patients in the present study is approved by the 
Local ethics committee of Sismanoglio Hospital and gives rise in several ethical issues that need to be managed 
following the European Regulation for Personal Data Protection81. All patients were asked to give signed consent 
for participating in the study and agree in audio signal recording during their sleep. They were also asked to agree 
on the use of all unnamed recorded data for research purposes. The involvement of the health care personnel in 
the process of the PSG medical examination, providing instruction and help to the patient, requires additional 
consent for their speech recording at the beginning or during the study.

Data acquired from each patient were stored in the hospital and processed by the health specialists to extract 
diagnosis. All personal information leading to identification of the participating individuals (names, credentials, 
contact information, etc.) was removed from the acquired files. An unnamed copy of each PSG study along with 
the corresponding audio files were stored and further processed to participate in the dataset.

Signal acquisition and storage. The data were collected from 212 individuals, who visited the Sleep Study 
Unit of the Sismanoglio – Amalia Fleming General Hospital of Athens for SAS diagnosis. The patients were sub-
jected to a full night sleep study following the standard protocol for split PSG82 in which the first part – approxi-
mately four (4) hours - is a standard diagnostic PSG while the second part is used for titration to optimal level of 
pressure, to eliminate apnea events with continuous positive airway pressure (CPAP). The optimum level pressure 
for all patients following split study protocol is also available in the dataset. If the patient was not suitable for split 
study, diagnostic PSG was not interrupted. Since the developed dataset is built for studying sleep without CPAP 
intervention, only the first part of the recorded study was included. A detailed listing of the signals, recorded 
through the PSG system and the respective sampling frequency for each channel are given in Table 1. PSG chan-
nels monitoring and signal acquisition was performed using the Sleepware G3 software.

Simultaneously with the PSG study a dual channel portable multitrack recorder (Tascam DR-680 MK II) was 
used in order to acquire and store the audio signals from two high-quality microphones: (a) a contact micro-
phone (Clockaudio CTH100) placed on the trachea of the patient and (b) an ultra-linear measurement condenser 
microphone (Behringer ECM8000) placed approximately 1 m above the patient’s bed, over the head position 
(Fig. 1). Both sound signals are sampled at 48 kHz and stored in an SD card as 24-bit uncompressed Waveform 
Audio Format (.wav) files. The contact electret microphone (input impedance: 900 Ω, passband: 350 Hz – 8 kHz) 
acquires only the neck vibrations while it is completely insensitive to environmental noise. The ambient con-
denser microphone is of electret type, omnidirectional, with an input impedance of 200 Ω and a flat frequency 
response in the range of 15 Hz–20 kHz.

Medical data annotation process and diagnosis extraction. Medical characterization of each par-
ticular PSG study is performed by the health specialists of the Sleep Study Unit of the Sismanoglio – Amalia 
Fleming General Hospital of Athens. For each patient, sleep stages and apnea events are scored by two specialists: 
a certified technician performs first level scoring and a 30-year-experienced and certified doctor performs final 
scoring, with verification of the true positive annotated events and addition of missed events. The process of scor-
ing between the specialists is not blind, however, the followed protocol assures increased accuracy. Inter-observer 
agreement was evaluated in the past, maximizing the provided accuracy through the followed process, while 
further examination of the inter- and intra- observer error is beyond the goals of the current project. Additionally, 
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we developed an algorithm that quantifies the decrease in the flow rate amplitude within each scored event to 
validate data and assure high accuracy in the true positive events annotation. The algorithm details and the results 
are presented in Section 3.5.

The scoring of sleep stages during the total sleep time (TST) relies on the general instructions for sleep stage 
labelling1,83. The detection of apnea/hypopnea events, during the recorded sleeping hours, was performed man-
ually by simultaneous observation of all channels of the PSG system, according to the general criteria for apnea 
episode scoring. Audio recordings were not included in the diagnostic process. The final diagnosis concerning 
the categorization of the patient in one of the reported apnea severity cases: “Severe”, “Moderate”, “Mild Apnea” 
and “Normal” was extracted through the Apnea/Hypopnea Index (AHI). The AHI is defined as the ratio of the 
total count of apneic episodes in the entire sleep study over the TST in hours [1], which results in the mean 
count of apneic events per sleeping hour. Up to 5 apnea/hypopnea episodes per hour classify the subject in the 
case of “Normal breathing” during sleep while higher values indicate a gradually increasing severity of SAS (5 
episodes/h ≤ AHI < 15 episodes/h: “Mild Apnea”, 15 episodes/h ≤ AHI < 30 episodes/h: “Moderate Apnea”, 30 
episodes/h ≤ AHI: “Severe Apnea”)1,2.

Signals synchronization. A critical step is the synchronization of the acquired audio signals with the PSG 
signals derived from separately activated systems. The synchronization algorithm employs the tracheal sound 

Channel label Description
Sampling 
frequency (Hz)

Physical 
minimum (a.u.)

Physical 
maximum (a.u.)

Digital 
minimum

Digital 
maximum

‘EEG A1-A2’ Electroencephalogram (reference channel) 200 −313 313 −32768 32767

‘EEG C3-A2’ Electroencephalogram (channel 1) 200 −313 313 −32768 32767

‘EEG C4-A1’ Electroencephalogram (channel 2) 200 −313 313 −32768 32767

‘EOG LOC-A2’ Electroculogram (left eye) 200 −313 313 −32768 32767

‘EOG ROC-A2’ Electroculogram (right eye) 200 −313 313 −32768 32767

‘EMG Chin’ Electromyogram (placed on chin) 200 −78 78 −32768 32767

‘Leg 1’ Leg movement signal (right leg) 200 −78 78 −32768 32767

‘Leg 2’ Leg movement signal (left leg) 200 −78 78 −32768 32767

‘ECG I’ Electrocardiogram 200 −8333 8333 −32768 32767

‘RR’ RR interval in the ECG 10 0 200 0 200

‘Snore’ Contact microphone (placed on trachea) 500 −100 100 −32768 32767

‘Flow Patient’ Thermistor 100 −100 100 −32768 32767

‘Flow Patient’ Pressure cannula 100 −100 100 −32768 32767

‘Effort THO’ Respiratory belt (thoracic volume changes) 100 −100 100 −32768 32767

‘Effort ABD’ Respiratory belt (abdomen volume changes) 100 −100 100 −32768 32767

‘SpO2’ Oxymeter 1 0 102.3 0 1023

‘Body’ Position of the body (S = supine, R = right, 
L = left) 1 0 255 0 255

‘PulseRate’ The pulse rate extracted by the ECG 1 0 255 0 255

‘Tracheal’ High-quality contact microphone (placed 
on trachea) 48000 −100 100 −32768 32767

‘Microphone’ Ambient microphone (placed ~1 m above 
patient head) 48000 −100 100 −32768 32767

Table 1. Basic properties of the channels included in the EDF files of the dataset.

Fig. 1 Contact and ambient microphones installed in the sleep study room, along with the multitrack recorder.
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recorded from a separate, low quality, contact microphone of the PSG system (channel label “Snore”) – sampling 
frequency: 500 Hz and bit depth: 16-bits. The two acquired tracheal sound signals were synchronized by extract-
ing the signal envelope with Hilbert transform. Prior to this step, it was necessary to reduce the sampling rate of 
the high-quality tracheal signal so that the two signals have a common sampling frequency of 500 Hz. The cross 
correlation of the two signal envelopes is extracted and the delay in the activation of the two systems is estimated 
by the time difference value that maximizes cross correlation. To accurately determine this delay, we examine at 
least 10 min of the signals, while the supervisors of the sleep study are given the instruction to activate the two 
systems with the minimum possible delay, most frequently below 30 s. Manual observation of the signals results in 
the estimation of the error in synchronization and the rejection of those PSG studies that exhibit an error higher 
than 2 s in this step. Thus, among a total number of 240 patients that underwent PSG study between April 2019 
and July 2020, 28 patients were rejected from the herein presented dataset as they exhibit low quality audio or 
PSG recordings – mainly due to the dislocation of one or more sensors – and the corresponding signals could not 
be accurately synchronized.

Data records
The storage of polysomnographic and breathing sound data was performed by employing the European Data 
Format (EDF) common in medical data storage and transfer84. The EDF files contain the channels listed in 
Table 1, with the corresponding sampling frequency and digital and physical maximum and minimum values. 
While the PSG data were retrieved from equivalent EDF files and remain unchanged, the additional audio data 
were retrieved from uncompressed WAV files and stored in the EDF files under the channel names “Tracheal” 
and “Microphone”, corresponding to the tracheal sound signal and the ambient microphone signal respectively. 
The import of the separately recorded high-quality audio data (“Tracheal” and “Microphone”) was performed by 
using zero padding policy for the missing parts of the signals, as a result of the synchronization process. EDF is 
selected due to its popularity in medical data storage and transform, despite the fact that, for the audio signal, this 
format results in a reduction of the bit depth. Indeed, the most common version of EDF files requires storage in 
16-bit while the original WAV files were stored in 24-bit depth. Alternatively, BioSemi Data Format (BDF) files 
could be used, which is a 24-bit version of EDF files; however, this option was rejected due to its still restricted 
popularity and the existence of fewer software platforms that support it. The conversion of the initially acquired 
high-quality audio recordings from 24 to 16-bit depth is performed by neglecting the least significant bits of each 
sample value. The statistical absolute error due to this conversion presents an average value of 7.6291 · 10−6 while 
the maximum value does not exceed 1.5259 · 10−5. These values impose minor quality reduction in the audio 
recordings that is not expected to affect the studies related to breathing or snoring sound properties. The EDF files 
corresponding to each patient study are cropped in parts of 1 h duration each, to facilitate handling. Each patient 
was labelled with a unique representative patient number (range 993–1496).

In the dataset, additional .rml files are responsible for all annotations corresponding to each patient. These 
files include the sleeping stages and the labelled events. The annotated events are characterized by the family in 
which they belong (“respiratory”, “neurological”, “limb activity related”, “nasal” and “cardiac”) and the type, which 
is related to each event family according to Table 2. In particular, the “respiratory” episodes, which are the main 
concern of this report, include among others all apnea related episodes of specific type: “Obstructive Apnea”, 
“Central Apnea”, “Mixed Apnea” and “Hypopnea”. Additionally, the.rml files contain all annotated episodes of 
relative oxygen desaturation and arousal events. Concerning the patients’ data, the information on the age and 
gender of each participating individual were kept in the corresponding.rml files.

All data are stored in an open access dataset, available for free download here: https://doi.org/10.11922/
sciencedb.0034579.

technical Validation
Basic statistical features on the divergence of patients participating in the dataset. A major 
issue in the use of polysomnographic data in related studies and systems development is the balancing between 
different categories of patients that are included in the used dataset. The divergence of the participating subjects 
with regards to factors such as the gender, the age and the final diagnosis of SAS severity may noticeably alter the 
features of recorded breathing and snoring sound and the episodes properties such as the duration of each epi-
sode. The PSG is usually prescribed to patients who complain about excessive sleepiness during daytime or loud 
snoring during sleep, symptoms that are strongly related to the presence of SAS. As expected, the majority of the 
participants (88.7%) belong to the group of “Severe Apnea” while the percentage of “normal” cases is restricted, 

Event Family Specific types

Respiratory ‘Obstructive Apnea’/‘Central Apnea’/‘Mixed Apnea’/‘Hypopnea’/‘Cheyne Stokes Respiration’/‘Periodic 
Respiration’/‘Respiratory effort- related arousal (RERA)’

Neurological ‘Arousal’

Limb ‘Leg Movement’/‘Alternating Leg Muscle Activation’/‘Hypnagogic Foot Tremor’/‘Excessive 
Freagmentary Myoclonus’/‘Rythmic Movement Disorder’

Nasal ‘Snore’

Cardiac ‘Bradycardia’/‘Tachycardia’/‘Long RR’/‘Ptt Drop’/‘Heart rate Drop’/‘Heart Rate Rise’/‘Asystole’/‘Sinus 
Tachycardia’/‘Narrow Complex Tachycardia’/‘Wide Complex Tachycardia’/‘Atrial Fibrilation’

SpO2 ‘Relative Desaturation’/‘Absolute Desaturation’

Table 2. Annotated events family and corresponding types.
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not exceeding 1.4% of all diagnosed individuals (Fig. 2a). Taking into account the increased risk of SAS in male 
population, the gender classification of the participating subjects is strongly imbalanced, with male population 
representing 76% of the entire dataset (Fig. 3a). The age distribution of patients ranges from 34 to 76 years for 
women and 23 to 85 years for men. The mean values are 57.2 and 57.9 years for women and men respectively, with 
different ages equally distributed in men and women (Fig. 3b).

The age distribution of the total population participating in the dataset exhibits significant similarities between 
the different groups of apnea severity classes (see Supplementary Fig. 1) despite the existence of imbalanced data 
among them. It is also interesting that the distribution of AHI extends over approximately the same range for 
both male and female individuals (Fig. 3c). These statistics assure that although the dataset is subjected to severe 
unbalancing between the different groups, the dataset information concerning apnea/hyponea episodes covers a 
wide range of AHI – consequently all SAS severity classes – and a wide range of ages. It is reminded that all sta-
tistical measures presented here should not be considered as epidemiological data but only as features indicative 
of the dataset’s balancing.

the annotated apnea related episodes. The labelled apnea/hypopnea events belong to the “Respiratory” 
family and were further subcategorized in the corresponding types of “Obstructive Apnea”, “Central Apnea”, 
“Mixed Apnea” and “Hypopnea”. Although the software in use for manual observation and annotation of data 
(Sleepware G3) allows for labelling of subtypes of hypopnea, the latest protocol for apnea scoring1, followed in 
this work, suggests the subdivision of hypopnea events into the cause-related types (Obstructive and Central) to 
be avoided85,86. The majority (99.94%) of all annotated respiratory events (total sum 49525 episodes) were specific 
types of Apnea (35896 events) or Hypopnea (13601 episodes). As expected, the obstructive sleep apnea episodes 
dominate in frequency of appearance among all annotated apneic episodes (57.4%), while central apnea events 
represent only 3.6% of the total count of labelled episodes (Fig. 4a).

The criteria for labelling all types of different apnea episodes are clearly defined in the protocol for sleep 
apnea scoring1. These criteria refer to air flow signals – measured through pressure drop and air thermal changes 
close to patient’s nose – or to the thoracoabdominal movements representing the breathing effort. The oxygen 
relative desaturation and possible arousal – indicated by the corresponding neurological signals – are employed 
as additional factors contributing to the safe identification of apneic episodes. The employed criteria are equal 
for all patients. The sound signal does not participate in the diagnosis process. However, the research approaches 
relying on snoring and breathing sound recordings to perform apnea detection, frequently discuss the variation 
of sound features between patients with different SAS severity. An apneic episode may significantly differ in 
terms of sound characteristics for a mild snorer compared to a heavy snorer, while snoring characteristics are 
strongly related to the presence of SAS. Therefore, the distribution of annotated episodes in patients belonging 
to a different SAS severity class is considered an important factor, indicative of the expected variability of sound 
features. Figure 4(b–e) summarizes the distribution of the main four categories of apneic events (“Obstructive”, 
“Central”, “Mixed” and “Hypopnea”) per sleeping hour in relation to the patients’ overall diagnosis (SAS severity 
class: “Severe”, “Moderate”, “Mild” and “Normal”). As expected by the prevalence of central apnea syndrome, the 
frequency of central and mixed apnea episodes is concentrated in the range between 0–5 and 0–20 apneas per 
sleeping hour, respectively, independently of the severity group in which the patient is classified. The obstructive 
apnea events represent the major contributor to the final AHI and consequently to the overall diagnosis for the 
patient87,88, with the variation in the frequency of appearance resembling the AHI distribution. The hypopnea 
events of this dataset are particularly frequent in the case of moderately apneic individuals, though such a deduc-
tion should also take into account the restricted number of moderate apneic subjects participating in the dataset 
and it requires further investigation. In Fig. 4e,f a comparison of the Apnea Index (AI) and Hypopnea Index (HI) 
is attempted. The AI is extracted as the sum of all types of apnea events per sleeping hour, while HI includes only 
the hypopnea episodes present per hour of sleep. Except for the recent tendency towards separate interpretation 
of these indices for more accurate diagnosis of SAS severity, the aforementioned comparison clearly indicates 
that apnea events contribute mostly to the overall SAS severity estimation for this dataset. This might be a useful 
aspect to consider in the development of sound-based systems for SAS detection, taking into account that the air 

Fig. 2 Dataset statistics on patients’ apnea syndrome severity. (a) Patients’ distribution among the classes 
of different apnea severity. (b) The distribution of AHI value in all subjects participating in the dataset with 
labeling of the corresponding apnea severity class.
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flowing, through the completely or partially collapsed upper airway system of the patient respectively, must result 
in significantly different sound characteristics.

Additionally, Fig. 5 illustrates the distribution of episodes’ duration with regard to the types of apnea/hypo-
pnea. The duration of apnea/hypopnea episodes is believed to represent a particularly interesting factor in the 
process of sleep study interpretation, suggested by multiple researchers as a separate index to be measured. It is 
believed that the duration of an apneic episode highly correlates with the effects of relative oxygen desaturation 
and probably with significant hypoxemia89. In the provided dataset, the duration of labelled episodes ranges 
from 10 s (minimum duration of an acceptable apneic episode) to 128.5 s corresponding to a specific “mixed” 
apnea event. The distribution of apneic events duration, studied separately for the four main types of apnea, 
indicates that “mixed” apneas exhibit a significantly higher mean duration (24.6457 s) compared to all other types 
− 19.0656 s, 16.1016 s and 16.162 s mean duration for “obstructive”, “central” and “hypopnea” events, respectively. 

Fig. 3 Dataset variability with regards to the patients’ age and gender. (a) Gender distribution and (b) age 
distribution examined separately for men and women for all subjects participating in the dataset. (c) AHI 
distribution separately for the male and female participants.

Fig. 4 Dataset variability with regards to the scored apnea/hypopnea episodes. (a) Frequency of appearance of 
different types of apnea/hypopnea episodes in the provided data. The distribution of (b) obstructive apnea, (c) 
central apnea (d) mixed apnea and (e) hypopnea events per sleeping hour for patients belonging in different 
SAS severity class. (e) and (f): comparison of Apnea Index (AI) and Hypopnea Index (HI) as separate indicators 
contributing to the final overall characterization of the patient with regards to SAS severity.
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The distributions of the mean and maximum event duration per patient do not exhibit significant differences that 
could classify patients into the four SAS severity categories (see Supplementary Fig. 2) with the longer apneas 
being present in “Severe” apnea patients and the shorter in “Normal breathing” subjects.

Sleeping vs. recording time and intra-night aHi variability in the collected PSGs. The devel-
opment of home-based systems aims at patients’ convenience; therefore, a restricted number of sensors are 
employed. A major argument questioning the provided accuracy by home-based systems in comparison to the 
gold standard of PSG study is the inability of these systems to count the TST of the patient. Assuming that the 
total recording time can replace the TST, home-based apnea detectors may result in a severe underestimation of 
the AHI. In the provided dataset, the TST of the patients – identified through the PSG neurological channels – is 
compared to the total recording time. For the majority of the participating individuals (95.05%) the TST was 
more than 80% of the recording time, while for approximately 70% of them the difference between the two values 
did not exceed 10% (Fig. 6a). These results are practically independent from the severity class.

The impact on the AHI and SAS severity estimation can be calculated through the comparison of the AHI 
– derived by the TST of each patient – and the hypothetical SAS severity estimation based on the ratio of the 
number of apneas/hypopneas over the total recording time of each individual study. The results, illustrated in 
Fig. 6b,indicate that only 8 out of 212 patients would have been misdiagnosed. In particular, the change in classi-
fication appears mainly as a demotion from “Severe” to “Moderate” apnea classes.

In the same context, intra-night variability of the AHI can noticeably alter the final diagnosis in case only a few 
hours of sleep are taken into account. Recent publications, in the field of AHI interpretation, prove the significant 
variability of the index through the night and particularly the increase of obstructive apnea events frequency 
towards morning90. More precisely, the researchers suggest that the use of the highest AHI met through a time 
frame of 2 hours could be beneficial in reaching high level of accuracy in the SAS severity diagnosis. In the dataset 
provided herein, the intra-night variations of AHI are presented though (a) the study of the first 3 hours of sleep 
and (b) the difference between the current and the final AHI – derived as the averaged frequency of apneic events 
over the TST. In this particular statistical value, representing the dataset, we excluded the patients that did not 
complete a minimum duration of 3 h of recordings in the split-study protocol. Thus, only 177 patients appear 
in the plot of Fig. 7a. It is indicated that the mean difference between the current and total AHI (averaged for 
all subjects) gradually decreases reaching ~7% after the second hour of sleep (Fig. 7a). However, this difference, 
studied particularly for each patient, proves the existence of cases where the AHI of the first 3 hours of sleep is 
significantly lower than the final AHI (see Supplementary Fig. 3). By studying some specific cases of patients, we 
noticed the presence of a large number among them, in which the AHI remains stable after the 2nd sleeping hour, 
with the variations in these first 2 hours of sleep either overestimating or underestimating SAS severity (Fig. 7b). 
By studying the cases of patients subjected to a full night sleep protocol (total recording time at least equal to 7 h) 
we noticed that the variation of AHI may be important, leading to a final diagnosis change even within the last 
hour of sleep (Fig. 7c). It is therefore concluded that longer recordings can cover all different cases and lead to 
more accurate diagnosis, while it might be beneficial for home-based systems to rely on the recordings after the 
first two hours of sleep where the variations of AHI seem to reduce with respect to the final index.

additional PSG channels: the Spo2 and arousal events used in apneic/hypopneic events’ detec-
tion. Oxygen desaturation during sleep is of crucial importance since it indicates the degree of hypoxemia91,92. 
The Oxygen Desaturation Index (ODI) is defined as the average number of oxygen desaturation episodes per 
sleeping hour and it strongly correlates with the AHI of a patient93,94. In the dataset reported herein, the ODI 
exhibits an ascending behaviour when AHI increases (Fig. 8a). However, the indicated factors quantifying the 
goodness of fit with a linear relationship between the two indices (sum of squares due to error - SSE: 5.881e + 04, 
R-square: 0.6801, Adjusted R-square: 0.6786, root mean squared error - RMSE: 16.73) prove that there are cases 
of patients exhibiting low ODI while their AHI classifies them in the upper groups of SAS severity (“severe” or 
“moderate”). Based on the literature, the ODI is often studied, either along with AHI or separately, for the diag-
nosis of SAS severity95. In Fig. 8b,we illustrate the ODI distribution for each class of SAS severity for all patients 
of this dataset. Ιt is clearly depicted that the vast majority of patients characterized by severe apnea present an 
increased ODI while those with moderate or mild apnea exhibit a much lower ODI.

Fig. 5 Distribution of the duration of events labeled in the dataset. The distribution is given separately for the 
main four categories of apnea/hypopnea events (“Obstructive”, “Central”, “Mixed” and “Hypopnea”).
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The association of ODI with AHI is partially explained by the fact that an apneic episode is frequently (but not 
always) followed by an episode of relative decrease of oxygen saturation; an oxygen desaturation event is defined 
as an episode of at least 3% reduction in the oxygen saturation level. In many available systems, these events 
have been employed as indicative of the preceding apneic event96. Herein, we report basic statistical values of 
the oxygen desaturation events that are linked to a specific event of apnea/hypopnea (of any type: “Obstructive”, 
“Central”, “Mixed apnea” or “Hypopnea”). The criterion for the association of the two events is not clearly deter-
mined in the literature. Some studies have used the criterion that the oxygen desaturation occurs within a frame 
of 60 s with reference to the onset of the associated apnea/hypopnea episode97. We follow the same criterion 
resulting in 31178 apnea/hypopnea events – among the sum of 49497 events annotated in this dataset – followed 
by a relative oxygen desaturation episode, thus a percentage of 62.99% of all labelled events. Particularly, 65.63% 
of the “obstructive” apneas, 60.24% of “central” apneas and 70.88% of “mixed” apneas were followed by a desatu-
ration event. A lower percentage of “hypopneas” is accompanied by an episode of oxygen saturation drop (only 
54.53%).

Among the SpO2 episodes that are associated with a specific apnea/hypopnea event, 94.5% appear with a delay 
of at least 10 s with reference to the onset of the event. From the distribution of the time delay in the occurrence 
of oxygen desaturation in the different types of apneic events it is clear that negligible differences appear between 
the different types of apnea/hypopnea (Fig. 9a). Moreover, for this dataset the mean delay in an SpO2 event occur-
rence does not seem to correlate with the SAS severity class (see Supplementary Fig. 4), despite what is recently 
discussed in literature97. The statistical features presented in this section should be seen through the prism of 
the imbalanced number of subjects participating in each SAS severity group but also of the fact that the manual 
process for apneic events labelling was performed independently from the oxygen desaturation events’ scoring.

In the same context, the arousals associated with the presence of apnea/hypopnea events have been studied. 
Regarded as an immediate consequence of an apnea, an arousal accompanies an apneic event and results in ces-
sation of sleep. In this dataset, a percentage of 80.9% (40042 events) of all annotated apneas – of any type – are 
followed by an immediate arousal event, occurring within a time frame of 5 s after the end of the apnea/hypo-
pnea episode. When studying separately each type of apnea: “obstructive”, “mixed” and “central” apneas present a 
percentage of 84.83%, 86.53% and 76.55% respectively, while “hypopneas” exhibit a lower percentage of 70.89%. 
Based on the appropriate statistical values, we can conclude that for the majority (159 out of 212) of the patients 
– regardless the SAS severity of their final diagnosis – more than 80% of apneic episodes are accompanied by an 

Fig. 6 Statistics of the dataset with respect to the scored TST and the total recording time for each patient.  
(a) Difference between the TST and the total recording time, expressed as a percentage over the total recording 
hours. (b) The estimated AHI when the total recording time is taken into account instead of the TST, for each 
patient. The provided AHI should be used as reference value for the development of home-based systems that 
do not perform detection of the sleep stages.

Fig. 7 Dataset description with respect to the AHI intra-night variability. (a) The mean (averaged over all 
patients) difference between the current and final AHI for the first four hours of sleep. Only the patients with at 
least 3 complete hours of sleep (206 out of 212) participate in the extracted statistical values, while the average 
difference between the 4th hour AHI and the final AHI is extracted by 147 patients that have completed the 4th 
hour of sleep. (b) The intra-night variation of AHI for 5 patients following a split PSG study protocol. (c) The 
intra-night variation of AHI for 4 patients that have completed at least 7 hours of recordings without CPAP.
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immediate arousal (see Supplementary Fig. 5), while the time of occurrence of the arousal is by average located 
2.5 s after the end of the apneic episode. The arousal onset time does not seem to depend on the type of preceding 
apnea, since the distribution of the time of occurrence for each type separately indicates similar mean values for 
all types (Fig. 9b).

Subjectivity of manual labelling of apnea/hypopnea events: How significant is the human 
induced error in SaS severity estimation. With the scoring of the apneic events being performed manu-
ally by the simultaneous observation of multiple channel, we do expect that a human error is induced in the data-
set scoring98. This error should be mainly attributed to the inability of the doctor to precisely determine the degree 
of air flow reduction by visual observation of the flow rate signals (signal label: ‘Flow Patient’ corresponding to 
a thermistor and a pressure cannula sensor). For the case of a candidate apneic/hypopneic episode presenting a 
moderate reduction (close to 30%) in the flow rate, the doctors are forced to label the event as positive apneic to 
eliminate the risk of false negative diagnosis of the SAS severity of the patient. Consequently, an increased num-
ber of false positive annotated apneas are anticipated in the dataset.

In order to examine the degree of human induced error, we developed a simple algorithm that automatically 
checks the compliance of the annotated events’ characteristics with the recommended criteria for apnea scoring1. 
The rule being followed requires, for any respiratory event, a reduction in both flow rate sensors at least equal 
to 30% of the amplitude in the previous state of normal breathing. It is also mandatory for an annotated apnea 
event to exhibit a dominant frequency within the range of normal breathing rate in order to be excluded from 
the positive apneas list. A normal breath lasts for approximately 3–5 s. Thus a range of 0.16–0.4 Hz was selected 
for the breathing rate rule. The algorithmic process, for flow rate amplitude reduction, extracts the signal envelop 
through Hilbert transformation, in a way that restricted in time changes – less than 3 s in duration – are ignored. 
By examining a 5 s time frame prior and after the annotated event, we extracted the maximum flow rate ampli-
tude corresponding to normal breathing. The comparison of this normal breathing amplitude with the minimum 
amplitude detected within the annotated event determines whether the candidate episode should be accepted as 
positively annotated or should be rejected as apnea-negative.

Fig. 8 Dataset statistics with respect to the scored ODI per patient. (a) Relationship between the ODI and the 
AHI for all patients in the dataset. While the ascending behavior of the ODI with the increase of the AHI is 
obvious, the goodness of fit with a linear model expressed by 4 factors is SSE: 5.881e + 04, R-square: 0.6801, 
Adjusted R-square: 0.6786, RMSE: 16.73. (b) The distribution of ODI for patients belonging to different SAS 
severity class.

Fig. 9 Dataset statistics with respect to the annotated relative oxygen desaturation events and arousals.  
(a) Distribution of time of occurrence of oxygen desaturation events with respect to the associated apnea  
related episode onset for the main types of apnea/hypopnea (Obstructive, Central, Mixed apnea and 
Hypopnea). (b) Distribution of the time of arousal occurrence with respect to the end time of the associated 
apnea, illustrated separately for each type of apnea.
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The aforementioned process resulted in the rejection of 1711 false positive annotated apneas among the total 
sum of 49497 events (3.46%). It is important to note that the number of falsely positive annotated apneas does not 
seem to correlate with the overall diagnosis of the patient (Fig. 10a). The impact of false positive apneas on the 
SAS severity estimation is minor, with only 4.24% (9 out of the total sum 212) of the patients receiving an overes-
timated classification of their state of apnea severity. The distribution of AHI extracted by the true positive anno-
tated apnea/hypopnea events along with the delivered to patient SAS severity diagnosis is illustrated in Fig. 10b.

Among the identified false positive apneas the majority belongs to the type of “hypopnea” (1448 events), 257 
were classified to “obstructive” apnea, only 5 events were of type “mixed” apnea and 1 event of type “central”. This 
particularly illustrates the shortcoming in the quantification of the reduction in the airflow by simple observation 
of the signals by the doctor.

Two major issues concerning interpretation of flow rate signals have been extensively discussed in the liter-
ature. In particular, it is reported that the use of only the nasal pressure sensor could lead to an overestimation 
of apnea events since the air flow through mouth is entirely ignored99. It is also reported that pressure sensors 
are non-linear therefore their use frequently leads to an overestimation of the flow signal amplitude and an 
erroneously overdetection of hypopneic events99,100. The second important aspect affecting interpretation of 
airflow-related PSG channels is the accuracy limitations of thermistors. They are reported to underestimate flow 
reduction, through specific flow pattern studies simulating breathing process101. This non-linearity of thermal 
sensors may lead to a severe under-detection of apneic or hypopneic events90,92. Though the aforementioned 
issues still remain under discussion in the literature, the criteria set in this work, for false positive detection count-
ing, concerned both channels with the requirement to exhibit simultaneously a noticeable reduction of amplitude. 
In the case where only one of the employed sensors monitors a flow reduction, the event was accounted for false 
positive detection. An exception in this process appears when the signal exhibits very low amplitude, considered 
as noise. In that case, the corresponding channel was entirely excluded from the investigation, since the sensor 
could be temporarily dislocated and the corresponding results could be misleading.

While the rejection of the detected false positive annotated apneas slightly alter the final diagnosis for each 
patient, the extraction of a list of true positive apneas may be valuable for the development of highly accurate 
automatic systems for SAS estimation. Thus, we opted for the inclusion of additional events annotation (.rml) 
files in the dataset named with the prefix “clean” for use in comparative studies and particularly in studies aiming 
at the development of automatic SAS estimation systems based on breathing sound.

Code availability
In this study we used Sleepware G3 software for all PSG data acquisition and events annotation. The software is 
provided by Philips Inc. The custom code used in this work refers to: (a) the algorithm for the synchronization of 
audio recordings with the PSG signals, so that the information of all annotated episodes and sleep stages can be 
accurately transferred to the audio signals as well and (b) the detection of false positive apnea/hypopnea events 
due to the inability of the doctors to precisely quantify the reduction in the airflow amplitude measured through 
the flow rate channels of the PSG (thermistor and pressure cannula sensors). All custom code developed for this 
study is available online (“code.rar” file) along with the files of the dataset79.
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