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Single-cell RNa sequencing of 
freshly isolated bovine milk cells 
and cultured primary mammary 
epithelial cells
Doreen Becker  1 ✉, Rosemarie Weikard1, Frieder Hadlich  1 & Christa Kühn  1,2

Bovine mammary function at molecular level is often studied using mammary tissue or primary bovine 
mammary epithelial cells (pbMECs). However, bulk tissue and primary cells are heterogeneous with 
respect to cell populations, adding further transcriptional variation in addition to genetic background. 
Thus, understanding of the variation in gene expression profiles of cell populations and their effect on 
function are limited. to investigate the mononuclear cell composition in bovine milk, we analyzed a 
single-cell suspension from a milk sample. additionally, we harvested cultured pbMECs to characterize 
gene expression in a homogeneous cell population. Using the Drop-seq technology, we generated 
single-cell RNA datasets of somatic milk cells and pbMECs. The final datasets after quality control 
filtering contained 7,119 and 10,549 cells, respectively. The pbMECs formed 14 indefinite clusters 
displaying intrapopulation heterogeneity, whereas the milk cells formed 14 more distinct clusters. Our 
datasets constitute a molecular cell atlas that provides a basis for future studies of milk cell composition 
and gene expression, and could serve as reference datasets for milk cell analysis.

Background & Summary
Bovine mammary structure, function, development and immune response and the underlying transcriptional 
regulatory processes in the mammary tissue have been studied extensively for almost half a century. Due to 
technical advances and new research techniques, molecular mechanisms of lactation, development and immune 
response can be analysed more accurately1,2. However, bovine mammary gland tissue can only be collected by 
biopsy or after slaughter, and comprises a number of heterogeneous cell types (e.g., mammary epithelial cells 
(MECs), myoepithelial cells, adipocytes, fibroblasts) creating potential bias in the outcome of global transcrip-
tome analyses depending on cell composition. Another specific feature of mammary gland tissue is the low com-
plexity of its transcriptome, because milk and whey protein genes are highly expressed, in consequence masking 
the expression of lowly expressed transcripts3,4.

To overcome these challenges, alternative approaches have been developed. Previous studies have shown that 
experiments on primary bovine mammary epithelial cells (pbMECs) enable the study of mammary gland func-
tions5–7, but pbMECs are difficult to collect and often require killing the animal to obtain appropriate amounts of 
tissue. Furthermore, primary cell lines are heterogeneous, and transcriptional variation is substantially impacted 
by the genetic background. Moreover, after culture in in-vitro systems for extended time periods cells lose their 
original cell-type specific properties8, reducing the timeframe for experiments.

Milk-purified MECs can be a valuable, non-invasive source of mammary transcripts9,10. Furthermore, isola-
tion of MECs from milk allows for repetitive sampling of the same animal across several time points, e.g., across 
the entire lactation. This enables an analysis of transcriptional regulation dynamics. In addition, cells in milk 
might represent cells in a distinct physiological status, whereas cells of different differentiation and functional 
stages are present in mammary tissue9.

Bovine milk contains about 104 to 107 cells/ml, although the variation is large between individuals, environ-
mental conditions and time points11,12. Milk cell number is usually reported as number of somatic cells, which 
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comprises the sum across a mixture of different non-epithelial cells (leukocytes)13. In contrast, MECs that are 
exfoliated from the epithelium during lactation are rare in milk and are therefore often not counted separately 
from somatic cells. While on average around 2% of the total milk cells constitute of epithelial cells, the proportion 
of MECs within the total milk cell population varies from one sample to another14. Since the concentration of 
MECs in milk is low, it is essential to collect sufficiently large volumes of milk to obtain a sufficient RNA quan-
tity for mammary transcript analyses15. This limits the number of samples processed at a single collection time 
point, and the number of analyses that can be performed on the same sample. Nevertheless, milk cell samples can 
be used to monitor the mammary response to an invading pathogen. However, it is difficult to distinguish, if a 
change in bulk milk cell transcriptome is based on a change in cell composition or on a change in the expression 
of particular genes in a specific cell type. The same is true for the analysis of bulk mammary gland tissue.

Recent technical advances allow transcripts from thousands of cells to be pooled, sequenced, and subsequently 
identified in a single experiment at single-cell resolution16. This approach enables to assess the functional hetero-
geneity in a cell sample by identifying and characterising subpopulations of cells in a complex cell population17–19.

In spite of this progress in technology, the current understanding of the spectrum of molecular heterogene-
ity in milk cells as well as in pbMECs is still limited. In this study, we assessed the gene expression across 7,119 
single-cells that were isolated from a bovine milk sample and 10,549 pbMECs using single-cell RNA sequencing 
(scRNA-seq). The cells were processed using the 10x Chromium Single-cell 3′ workflow. Single-cell libraries 
were sequenced on an Illumina HiSeq 2500 platform. Subsequent data analysis was performed with Seurat, a 
scRNA-seq analysis tool20.

The datasets presented here provide the first single-cell profiles of pbMECs and cells isolated from bovine 
milk. They provide a suitable reference and basis for future single-cell gene expression studies, e.g., to investigate 
the response of specific cells to environmental disruptors including pathogen challenges.

Methods
Isolation of mononuclear cells from milk. Residual milk was collected in four 50 ml tubes from one 
udder quarter (total amount = 200 ml) of a clinically healthy cow immediately subsequent to a regular machine 
milking. The individual was in its 56th week of the first lactation and had an average milk somatic cell count 
(SCC) of roughly 182,000 cells/ml across the previous three lactation weeks (Fig. 1a). The collection tubes were 
centrifuged at 3000 × g for 10 min. Subsequently, the fat layer and the supernatant were removed and 20 ml 1X 
PBS (Biochrom, Germany) was added to the pellet. The pellet was resuspended using wide-bore tips. After a 
further centrifugation for 10 min at 3000 × g, the supernatant was discarded and the pellet was resuspended in 
10 ml 1X PBS. After a third centrifugation of the tube at 3000 × g for 10 min, the supernatant was discarded again, 
and the pellet was resuspended in 1 ml 1X PBS. The resulting cell suspension was transferred to a 2 ml low-bind 
DNA tube using a Flowmi cell strainer (Sigma Aldrich, USA) to remove cell debris. Then, all cells were carefully 
layered over 8 ml of cold Biocoll (Biochrom, Germany) with a density of 1.077 g/ml in a 15 ml tube followed by 
a centrifugation step at 800 × g for 30 min with the centrifuge brake set to off-mode. After centrifugation, the 
middle layer of the gradient was carefully collected and transferred to a 2 ml low-bind DNA tube before single-cell 
libraries were prepared.

Isolation of pbMECs. Primary bovine mammary epithelial cells (pbMECs) were isolated from a healthy 
mammary gland quarter of a cow in the 5th week of its first lactation according to the methods described by 
Cifrian et al.21 and Hensen et al.22 and modified as described by Yang et al.23 Initially, the skin of an udder from 

Fig. 1 Outline of laboratory and bioinformatic workflow. The workflow comprises isolation of (a) mononuclear 
cells from milk or (b) pbMECs from bulk mammary gland tissue, preparation of single-cell suspensions, library 
construction, sequencing and (c) the final bioinformatic scRNA-seq workflow. Adapted from Liu et al.31.
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a freshly slaughtered cow was rinsed with 70% ethanol and subsequently removed. From the mammary paren-
chyma, cubes predominantly containing milk ducts and to a lesser extent secretory tissue were collected in HBSS 
(Hank’s Balanced Salt Solution, buffered with HEPES, supplemented with APS solution; Sigma). Minced pieces 
comprising preferentially epithelial areas were immersed into 30 ml HBSS and shaken continuously for five min-
utes. Thereafter, large clumps were allowed to sediment until the supernatant was clear of visible clumps. The sedi-
ment was homogenized in 20 ml of HBSS supplemented with 200 U/ml collagenase, Type IV. The homogenate was 
shaken at 37 °C and filtered through a mesh steel grid gradient (500 µm, 300 µm, 150 µm and 90 µm) (Sigma) for 
retrieving isolated cells. This procedure was repeated four times in 45 min intervals. Cells were collected after cen-
trifugation (1000 × g for 10 min), washed five times in HBSS and finally plated on collagen-coated plates (Greiner 
Bio-One, Germany). They were cultured in RPMI1640 medium (Biochrom AG), supplemented with prolactin, 
hydrocortisone, insulin and 10% FCS as described previously23. After ~four days of unperturbed growth, fibro-
blasts were removed by selective trypsinization (Trypsin-EDTA (0.25%/0.02%), Biochrom AG)23. Pure pbMECs 
were cultured for further six days before harvesting and preparation of a single-cell solution (Fig. 1b).

Concentration and viability of milk cells and pbMECs. A parallel test on inclusion of acridine orange 
(AO), but resistance to propidium iodide (PI) influx discriminated viable cells from dead cells, cell debris or milk 
micelles24. Briefly, the cell suspension was mixed with AO/PI (Nexcelom Bioscience Ltd, UK) in a 1:1 ratio and 
incubated at room temperature for five minutes. Stained objects were examined using the cell counter Auto2000 
(Nexcelom, UK). Only viable cells fluoresced green, while nonviable cells fluoresced bright red and milk micelles 
yielded no signal. The cell counter Auto2000 was also used to determine cell concentration.

Preparation of single-cell libraries, sequencing and alignment. Cells were prepared according to the 
10x Genomics Single-cell Protocols Cell Preparation Guide (10x Genomics; CG00053, Rev C). The protocol is 
optimized to provide droplets containing only a single viable cell without contamination by cell-free nucleic acids 
or potential inhibitors of subsequent enzymatic reactions (e.g. reverse transcription). Briefly, cells were pelleted by 
gentle centrifugation and repeatedly washed with 1X PBS containing 0.04% BSA (400 µg/ml) and finally adjusted 
to a target cell concentration of 1,000 cells/µl for downstream experiments.

Single-cell RNA sequencing (scRNA-seq) libraries from pbMECs and mononuclear milk cells were generated 
with the Chromium Next GEM Single-cell 3′ v3.1 assay (10x Genomics) according to manufacturer’s instructions 
(10x Genomics User Guide Chromium Next GEM Single-cell 3′ Reagent Kits v3.1 (CG000204, Rev B)). Briefly, 
samples were further diluted to a concentration equivalent to a target cell recovery of 10,000 cells after sequencing 
and subsequently they were loaded onto a 10x Genomics Single-cell 3′ Chip together with the reverse transcrip-
tion enzyme master mix.

On the 10x Genomics Single-cell 3′ Chip, cells and gel beads, which were coated with oligonucleotides to ena-
ble mRNA capture and barcoding, were partitioned into Gel Beads-in-Emulsions (GEMs). Within GEMs reverse 
transcription took place. The resulting cDNA for each sample was amplified and used for library preparation 
using the Single-cell 3′ Reagent Kit. The resulting cDNA sequencing libraries were assessed for quality and DNA 
concentration using a High Sensitivity DNA chip on a BioAnalyzer 2100 (Agilent Technologies) before they were 
sequenced on the Illumina HiSeq 2500 platform (Illumina) with sequencing parameters as recommended by 10x 
Genomics using two lanes per sample.

Sequencing reads were analysed using the Cell Ranger v3.1.0 alignment software provided by 10x Genomics 
(https://support.10xgenomics.com). Briefly, FASTQ files were obtained from HiSeq 2500 raw base call files via 
the Cell Ranger mkfastq pipeline. Subsequently, the FASTQ files were aligned to the Bos taurus ARS-UCD1.2 
genome25 with the Ensembl 98 annotation release using STAR26 implemented in the Cell Ranger count pipeline, 
which also conducts the subsequent filtering and counting of cell barcodes and Unique Molecular Identifiers 
(UMIs). Those reads generated by barcode-associated cells, which passed the pipeline-internal QC, were quanti-
fied and used for establishing a gene-barcode matrix.

Bioinformatic analysis. For data analysis, we followed best-practice recommendation for scRNA-seq anal-
ysis27–29 including quality control, normalization and scaling of the data, regressing out technical and unwanted 
biological effects, feature selection, dimensionality reduction, clustering and visualization of the data (Fig. 1c) 
using the scRNA-seq package Seurat v3.1.420 in the R environment (R version 3.6.3). This workflow with adapta-
tion of filtering thresholds is widely used for scRNA-seq analysis30–34 and described in detail below.

QC filtering. For data processing, we imported the gene-barcode matrices established by Cell Ranger into the 
Seurat environment. We filtered genes that were observed in less than 10 cells to remove genes that might orig-
inate from random noise. Regarding cells, thresholds for filtering were <300 genes expressed and <500 UMIs 
counted. Additionally, we removed cells with mitochondrial reads comprising more than 20% of all reads and 
with an overall complexity of gene expression under 0.8. After filtering, we retained 7,119 milk cells and 10,549 
pbMECs, respectively (Table 1).

Normalization, data scaling & regression. The expression data was normalized using the “NormalizeData” func-
tion of the Seurat package to reduce possible technical bias caused by differences in sequencing depths between 
cells35. The UMI count data for each gene were first divided by the total UMI counts of each cell, subsequently 
multiplied by the scale factor and finally log-transformed for normalization. A list of cell cycle-specific marker 
genes36 (Supplementary Table S1) served for inferring each cell’s cell cycle phase based on the cell’s respective 
expression levels. The function “CellCycleScoring” in the Seurat package classified the cell regarding cell cycle 
stage (G1, G2/M or S) and assigned respective scores to each cell. Potential sources of unspecific variation in the 
data were removed by regressing out the mitochondrial gene proportion, the cell cycle effect and UMI count using 
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linear models and finally by scaling and centering the residuals as implemented in the function “ScaleData” of 
the Seurat package.

Dimensional reduction, Uniform Manifold Approximation and Projection (UMAP) & clustering. Based on expres-
sion, we identified 2,000 highly variable genes (via the function “FindVariableFeatures”). The scaled and normal-
ized expression data of respective genes served as input for a principal component (PC) analysis, and the first 20 
PCs were used to plot the variability between cells in a two-dimensional diagram by means of the UMAP proce-
dure to reduce dimensionality of the input data. Cells were clustered into subpopulations according to the same 
PCs using the Seurat function “FindClusters” (resolution = 0.8), which is a graph-based clustering approach20.

Identification of cluster marker genes & cell type assignment. The function “FindAllMarkers” of the Seurat pack-
age identified genes differentially expressed between a distinct cell cluster and the other clusters in the respective 
dataset (milk cells, pMECs). The most differentially expressed genes can be considered cluster-specific marker 
genes. Cell types were assigned manually to clusters based on cell type marker expression specific to each cluster. 
Cell type markers were retrieved from the literature34,37–47 and a single-cell database48. Clusters with cells that 
expressed marker genes for a specific cell type at the highest levels were assigned the corresponding cell type label.

Data Records
The sequencing data have been deposited in the “Functional Annotation of Animal Genomes” (FAANG) data 
coordination center database (https://data.faang.org/home) with accession PRJEB41576 (https://data.faang.org/
dataset/PRJEB41576), which directly channels all information to the European Nucleotide Archive (ENA)49. A 
Seurat object containing the analysed data is available via Figshare for milk cells and pbMECs respectively50.

technical Validation
Mononuclear cells were isolated from milk, and pbMECs were harvested after primary cell isolation and initial 
cell culture. GEMs were prepared with a Chromium Controller (10x Genomics, Pleasanton, CA). Following ini-
tial cDNA synthesis, the output was amplified with 13 or 11 PCR cycles for milk cells and pbMECs, respectively. 
Quality control as well as quantification of the resulting PCR products was determined with a DNA high sensi-
tivity assay on a BioAnalyzer 2100 (Agilent Technologies). The peak of the fragment size distribution was around 
1,300 to 1,500 bp (Fig. 2a) and therefore indicated a good quality of cDNA synthesis. After cDNA fragmenta-
tion, adaptor ligation and PCR amplification, the resulting library quality was evaluated via a BioAnalyzer 2100 
(Agilent Technologies) (Fig. 2b).

After sequencing of libraries on two lanes per sample on an Illumina HiSeq 2500 and processing of raw 
sequencing data with Cell Ranger v3.1.0, reads were analysed with Seurat20. Both milk cell and pbMEC libraries 
achieved a high mapping rate for reads of 93.3% and 91.2%, respectively (Table 1), and the mapping metrics 
showed a similar pattern between the samples (Supplementary Table S2). For an average of 83.9% and 82.7% 
bases of milk cell and pbMEC reads, respectively, the phred quality score was 30 and beyond (Q30), indicating 
that high-quality mapping data were generated for downstream analyses51. We detected a median number of 829 
expressed genes per cell for the milk cells and a median of 1,614 expressed genes per cell for the pbMECs.

Because it is essential that feature count data are obtained from viable cells, we applied strict data thresholds to 
exclude data that could originate from damaged cells or other technical issues52. A high percentage of mitochon-
drial transcripts indicates cells in apoptosis52,53, presumably due to the loss of cytoplasmic RNA from perforated 
cells leading to a relative enrichment of mitochondrial transcripts. There is a particular risk for apoptotic cells 
within the MECs due to a cell turnover of the secretory tissue54. Hence, we computed the mitochondrial transcript 
to gene read ratio in both samples and removed cells with a ratio of >0.2. We also removed cells with <500 dis-
tinct reads in a cell and <300 expressed genes detected per cell, as these indicate damaged cells. Additionally, we 
calculated the library complexity and filtered the data for a complexity >0.8. Supplementary Figure S1 illustrates 
the number of genes, unique molecular identifiers (UMIs), the percentage of mitochondrial transcript reads in 
each cell and the library complexity of the milk cell (Supplementary Figure S1a) and the pbMEC (Supplementary 
Figure S1b) dataset before and after applying the filter criteria. After QC filtering, we retained high quality data 
for 7,119 cells isolated from milk and 10,549 pbMECs.

Filtered raw read counts were normalized in order to account for differences in sequencing depth per cell. 
However, normalized data may still contain biological noise such as mitochondrial gene expression or effects 
of the cell cycle phase causing variability beyond the study design, which should be excluded from the data55. 
Therefore, we assigned each cell a cell cycle score based on the expression of the cell cycle gene markers. To 
remove all signals related to cell cycle, quantitative scores for the cell cycle phases were used in downstream anal-
yses. According to the cell cycle scores, 3,743 pbMECs and 1,195 milk cells were assigned to the G2M phase, 3,264 
pbMECs and 2,146 milk cells to the S phase and 3,542 pbMECs and 3,778 milk cells to the G1 phase. All clusters 

Sample
Estimated number 
of cells

Number of 
reads

Reads mapped 
to genome

Mean reads 
per cell

Total genes 
detected

Median genes 
per cell

Number of cells 
post filtering

Milk cells 8,218 444,840,327 93.3% 54,130 17,953 829 7,119

pbMECs 15,486 394,325,753 91.2% 25,463 17,971 1,614 10,549

Table 1. Overview of the mapping parameters for the 10x Genomics scRNA-seq datasets established for milk 
cells and pbMECs. Estimates were generated by Cell Ranger on the raw data. Number of cells after QC filtering 
in Seurat are given in the last column.
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of the pbMECs were equally represented in the pbMECs data cell cycle scores, whereas the distribution of the cell 
cycle scores varied in the milk cell dataset clusters (Supplementary Figure S2). In addition, we scaled the data and 
regressed against gene count and mitochondrial gene expression.

Fig. 2 Quality control of cDNA amplification and library preparation. Concentration and quality were 
assessed on a BioAnalyzer with a High Sensitivity DNA Chip. Size distribution was evaluated by a standard size 
ladder. (a) Size distribution of amplified cDNA from pbMECs (left) and milk cells (right). (b) Fragment size 
distribution of the sequencing libraries obtained from pbMECs (left) and milk cells (right).

Fig. 3 Clustering of single cell data in milk and pbMECs. (a) Two dimensional cell clustering via Uniform 
Manifold Approximation and Projection (UMAP) from the first 20 principal components for the population 
of 7,119 milk cells. Cluster allocation of each cell is indicated by color. (b) Two dimensional cell clustering via 
Uniform Manifold Approximation and Projection (UMAP) from the first 20 principal components for the 
population of 10,549 pbMECs. Cluster allocation of each cell is indicated by color.
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We used the scaled datasets to identify variable expressed genes and performed a dimensional reduction via 
PC analysis, and visualized the data using UMAP (Fig. 3). The pbMECs formed 14 indistinct clusters, whereas 
the milk cells formed 14 separated clusters. Differential expressed genes between clusters were identified. The 10 
top-scoring genes per cluster can be found in Supplementary Table S3 for milk cell clusters and Supplementary 
Table S4 for pbMEC clusters, respectively. Cell cycle phase and cluster assignment are reported in Data Table 1 
and Data Table 2 for the milk cell and pbMEC dataset, and can be accessed via Figshare50.

From the literature12,14,56, we expected to find several immune cell types including monocytes, macrophages 
and lymphocytes (T cells and B cells) as well as a low number of MECs in the milk cell dataset. Accordingly, we 
looked at the expression of immune cell34,37–42,48 and MEC markers43,44 throughout the clusters of this dataset for 
validation that the established dataset is indeed representative of a milk cell population (Fig. 4a). We detected 
that the cluster, which comprises 2.5% cells (n = 178) of the dataset was the only cluster, in which cells clearly 
expressed B cell markers, whereas the cluster, which contains 2.47% of all cells (n = 176), expressed epithelial 
cell markers (KRT5, KRT7, KRT8, KRT17, KRT18, KRT19 and CLDN4, Fig. 4a). Two cell clusters contain cells 
dominantly expressing T cell markers, whereas cells of another cluster expressed NK cell markers. The expression 
patterns of three clusters were very similar. These clusters mainly expressed monocyte markers. Dendritic cell 
markers were expressed by a cluster containing 446 cells. Lymphocytes and macrophages are the dominant cell 
types in milk of healthy mammary glands14,56 and form numerous different sub-populations with distinct func-
tions. Distribution of the milk cells across clusters is reported in Supplementary Table S3.

For the pbMEC dataset, we expected the cells to express characteristic epithelial cell markers, i.e., cytokerat-
ins and claudins43,44. All pbMECs clusters abundantly expressed KRT5, KRT7, KRT8, KRT17, KRT18, KRT19 
and CLDN4 (Fig. 4b). Furthermore, eight of the 14 clusters displayed cytokeratin genes within the top 10 
cluster-specific marker genes (Supplementary Table S4).

Isolation of the pbMECs was performed from bulk mammary tissue with a trypsinization step to exclude 
fibroblasts. Thus, it was likely that the investigated pbMEC population still contained some fibroblasts. Hence, we 
checked the expression of fibroblast markers, i.e., MMP2, LUM, COL6A2, COL1A2, DCN, FBLN2 and THBS245–47. 
Indeed, all these genes were mainly expressed in one cluster (Fig. 4b). Therefore, we could conclude that this 

b c

Fig. 4 Analysis of cell type specific marker gene expression. The dot size encodes the proportion of cells that 
express the gene, while the color encodes the scaled average expression level across those cells (dark blue is 
high). At the top of each dot plot, the cell types, in which the marker genes are expressed (a,b) or the datasets (c) 
are indicated (a) Expression of immune cell (macrophage, monocyte, DC, T cell, B cell, NK cell) and epithelial 
cell marker genes (MEC) in the clusters of the milk cell dataset. (b) Expression of epithelial cell (MEC) and 
fibroblast (fibroblast) marker genes in the pbMEC clusters. Epithelial cell markers are expressed in all clusters 
(left), whereas the expression of fibroblast markers is restricted to one cluster (right). (c) Expression of casein 
(CSN1S1, CSN1S2, CSN2, CSN3) and whey protein (LALBA, PAEP) genes in pbMECs (left) and milk cells 
(right). CSN1S2 and LALBA were not expressed in pbMECs.
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cluster of the pbMEC dataset is composed of fibroblasts (0.69% of the cells in the dataset (n = 73)). However, 
taken together, the pbMEC clusters are fairly homogeneous. Distribution of the pbMECs across clusters is 
reported in Supplementary Table S4. From the results of cluster expression profiles, we can conclude that the cell 
populations studied display characteristic expression profiles for pbMECs and bovine milk cells, respectively.

Additionally, we checked the expression of casein and whey protein genes57 throughout both datasets (Fig. 4c). 
The mammary tissue and milk cells of lactating dairy is known for a low-complexity transcriptome with milk 
protein genes (caseins, whey proteins) as the most abundant transcripts accounting for up to 70% of all transcripts 
expressed4,58. Indeed, milk protein genes were expressed in all clusters of the milk cell dataset, with the highest 
expression level in the cluster, which contains cells expressing epithelial cell markers and most likely represent 
MECs. On the other hand, only a few cells in the pbMEC dataset expressed casein and whey protein genes, with 
epithelial cells in subcluster 8 showing the highest expression level. In the lactating mammary gland, two different 
types of epithelial cells can be discriminated: myoepithelial and luminal epithelial cells59. Luminal epithelial cells 
comprise ductal epithelial cells lining the ducts of the mammary gland, and alveolar epithelial cells, which are the 
actual secretory cells in the mammary gland60. The expression pattern of pbMECs in our study clearly reflects the 
sampling protocol of the cells, which have been mainly isolated from ductal regions of udder tissue. Our data on 
cell type distribution in the pbMEC dataset are in line with this sampling preference, because the proportion of 
ductal epithelial cells, which do not secrete milk proteins and therefore do not express the respective genes, seems 
to be considerably higher than the proportion of cells with milk protein expression representing presumably 
alveolar cells.

Taken together, our datasets represent a valuable resource for dissecting cell-to-cell gene expression variation 
and cell population heterogeneity of bovine mononuclear milk cells and, to a lesser extent, pbMECs. Additionally, 
these data could be a reference dataset for bovine milk cell analyses, as the dataset displays the different milk cell 
populations varying in ontogenetic and original background.

Code availability
Auxiliary File 1 (milk cells) and Auxiliary File 2 (pbMECs) contain the R code (R version 3.6.3) for scRNA-seq 
data processing and subsequent visualization of the output. They are publicly accessible via Figshare50.
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