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a database framework for rapid 
screening of structure-function 
relationships in PFaS chemistry
an Su & Krishna Rajan ✉

this paper describes a database framework that enables one to rapidly explore systematics in structure-
function relationships associated with new and emerging PFaS chemistries. the data framework maps 
high dimensional information associated with the SMILES approach of encoding molecular structure 
with functionality data including bioactivity and physicochemical property. this ‘PFaS-Map’ is a 
3-dimensional unsupervised visualization tool that can automatically classify new PFAS chemistries 
based on current PFAS classification criteria. We provide examples on how the PFAS-Map can be 
utilized, including the prediction and estimation of yet unmeasured fundamental physical properties 
of PFAS chemistries, uncovering hierarchical characteristics in existing classification schemes, and the 
fusion of data from diverse sources.

Introduction
Perfluoroalkyl or polyfluoroalkyl substances (PFASs) are compounds that contain at least one fully fluorinated 
carbon (e.g. -CF3, -CF2-)1,2. With outstanding qualities in chemical and thermal stability, water repellency, and 
oil repellency, PFASs have been used in a wide range of industrial and commercial products such as food con-
tact materials, ski waxes, fire-fighting foams, water, and stain repellent textiles, medical devices, laboratory 
supplies, and personal care1,3. However, the presence of PFASs in freshwater systems, wildlife, and even human 
blood4–6 have raised serious public concerns about unknown dangers due to PFAS’s high persistence (P), bioac-
cumulation potential (B), toxicity (T), and ease of being transmitted or transported through the environment7. 
Although legacy PFASs such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) and 
some of their precursors are being evaluated to be listed as chemicals of concern and/or considered for regula-
tion8, alternate PFASs with similar structures and functionality, such as short-chain perfluoroalkyl carboxylic 
acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs), perfluoroalkyl phosphinic acids (PFPiAs), and per-
fluoroether carboxylic and sulfonic acids (PFECAs and PFESAs), are still being produced and used8–11. Recent 
developments in high-resolution mass spectrometry has made it possible to discover increasing numbers of alter-
native PFASs which has added thousands of compounds to the PFAS family12,13. By May 2020, there were 7,866 
structurally-defined compounds under the United States Environmental Protection Agency’s (USEPA) PFAS 
master list (https://comptox.epa.gov/dashboard/chemical_lists/pfasmaster).

As this family of ‘forever’ compounds grows rapidly, it is nearly impossible to establish hazard data associ-
ated with each new PFAS chemistry. Thus, having meaningful classifications of PFAS compounds is extremely 
important7,13. A well-acknowledged PFAS classification system was published in 2011 by Buck et al. based on 
the patterns of chemical structure for each group or subgroup1. However, as more and more PFASs have been 
identified in the past decade, there have been efforts to update the Buck’s classification system. The Organization 
for Economic Co-operation and Development (OECD) updated the PFAS classification in 2018 by adding new 
compounds to the family of PFASs such as side-chain aromatics2. As the PFAS classification improves and evolves, 
(e.g. Wang et al.13 and Sha et al.14), the present works aims at establishing an automated PFAS classification system 
that can readily capture the updates in PFAS classification. Machine learning approaches have been used to iden-
tify patterns in existing data on PFAS’s properties (including bioactivity, bond strength, and sources) and used to 
make predictions14–16. Most of the machine learning methods in these studies are based on supervised learning 
using the molecules’ structural information as ‘features’ and properties as ‘labels’; however, the number of PFASs 
with known properties is significantly lower than the number of PFASs with identified structures13. On the other 
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hand, unsupervised learning, an exploratory machine learning technique, capable of finding hidden patterns or 
grouping in data without the need of any labels17, has not been fully utilized in PFAS studies.

In this study, we describe a framework that maps the data on the structure and/or functionality (e.g. bioactiv-
ity, physicochemical property) of PFASs and present the structure-function relationship through a 3D visualiza-
tion schema (PFAS-Map). The first step involves representing each PFAS compound Simplified Molecular Input 
Line Entry System (SMILES)18 format and calculating 1D and 2D molecular descriptors as well as PubChem 
fingerprints using PaDEL-descriptor19 methods to generate the multidimensional features for each compound. As 
a pre-processing step, these nearly 2,000 features are reduced by principal component analysis (PCA) with more 
than 70% original information retained. From this feature space, t- Distributed Stochastic Neighbor Embedding 
(t-SNE) algorithm is applied to visualize the high dimensional space into three dimensions20. In parallel, PFASs 
are automatically classified in classes/subclasses based on their SMILES and molecular descriptors. The SMILES 
classification results, along with the data on PFAS functionality, are also captured in PFAS-Map. With structures, 
classification, and functionality all displayed simultaneously, the structure-function relationship of PFASs can be 
rapidly screened using this PFAS-Map in an organized, straightforward way.

Results
Data souces: US EPa PFaS Master List. The US EPA PFAS Master List of PFAS substances (https://comptox. 
epa.gov/dashboard/chemical_lists/pfasmaster) is a growing inventory that consists of all registered PFASs lists 
from within and outside the United States Environmental Protection Agency (US EPA), organized and struc-
ture-annotated by EPA researchers within the National Center for Computational Toxicology21. By May 2020, the 
number of PFASs included in the list had increased to 7,866. For our study, we removed chemical structures with 
invalid or non-canonical SMILES as well as duplicate chemical structures generated after preprocessing steps (e.g. 
removing salts subgroups, deleting isotopic specifications, neutralizing ionic structures), leaving 6,134 distinct 
chemical structures for further processing.

Incorporation of structure-function classification. The classification of PFAS structure consists of a 
core module and a series of filtering and transformation modules (Fig. 1). The core modules classify the PFASs 
that have well-defined classes and subclasses in Buck’s classification system1 or OECD’s classification2 and its fol-
lowing refinements13,22, while the filtering modules classify the rest of the PFASs (see methods for details). PCA 
reduces ~2,000 descriptors into 74 principal components that capture 70% of explained variance in PFASs’ struc-
ture (see “Scree plot” in figshare_File_1). t-SNE visualizes the principal components in a three-dimensional space 
so that the PFASs presented as three-dimensional arrays are distributed along with the structure classification 

Fig. 1 Structure classification of PFASs in PFAS-Map.
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results that include the PFAS function data. The t-SNE visualization starts by translating distances between data 
points in the high dimensional space, into a symmetric joint probability that encodes their similarities. Likewise, 
a similar probability distribution is defined for the low dimensional space which describes the data similarity. The 
algorithm follows by optimizing the positions in the low dimensional space, in order to minimize the difference 
between the joint probability distributions23. Step and perplexity, the two important hyperparameters for t-SNE24, 
are set to 1,000 and 50, respectively, based on the clustering of PFAS classes/subclasses. Examples of PFAS cluster-
ing with different values of hyperparameters are included in the “optimization” folder in figshare_File_1.

Structure-function database architecture. The architecture of PFAS-Map is shown in Fig. 2. The key 
modules of PFAS-Map include SMILES standardization by RDKit (http://rdkit.org), descriptors calculation by 
PaDEL19, PFAS structure classification, PCA and t-SNE training and transformation, and visualization of t-SNE/
PCA transformation results and classification results. The PFASs from US EPA PFAS Master List (EPA PFASs) are 
preprocessed through the framework, and this output serves as the foundation of the PFAS-Map. Based on this 
foundation, SMILES of PFASs from user input go through the same process including SMILES standardization, 
descriptors calculation, and classification, except that the descriptors calculated are directly transformed using the 
PCA model that is trained by EPA PFASs. Meanwhile, the user-input PFAS functionality data can be visualized on 
PFAS-Map along with the t-SNE/PCA transformation results and classification results.

Some of the functionalities of PFAS-Map (Fig. 3) include (i) the ability to query and visualize classification of 
PFAS chemistry in terms of molecular structure, (ii) explore similarity or dissimilarity of new or existing PFAS 
from the SMILES code and populate the PFAS-Map with SMILES and/or functionality information of new PFAS, 
and (iii) readily explore and establish potentially new structure-function relationships.

Discussion
In this section, we provide some examples of the utility of the PFAS-Map.

 (a) Detection and visualization of sub-classifications of PFAS chemistry.
Figure 4 shows a clear clustering of aromatic and aliphatic PFAS chemistries (Fig. 4b) with the cluster of 
aromatic PFAS (light blue) and aliphatic PFAS (mixed colors). In the aliphatic cluster one can observe four 
sub-clusters---non-PFAA perfluoroalkyls (orange), perfluoroalkyl PFAA precursors (green), PFAAs (dark 
blue), and FASA-based and fluorotelomer-based precursors (purple and orange) as is shown in Fig. 4a. 
Hence in PFAS-Map has the capacity to capture established classifications1,2 as well as reveal sub-classifica-
tions that would not otherwise be easily seen.
As another example, the subclasses of two well-defined classes, FASA-based PFAA precursors and 
fluorotelomer-based PFAA precursors, are shown in Figs. 5 and 6, respectively. The subclasses in the class 
of FASA-based PFAA precursors follows the structural pattern as CnF2n+1-SO2N(CmH2m)-R1. Separation 
of different subclasses as well as trajectories of behavior can be tracked in the t-SNE-PCA components 
represented in the 2D projection of PFAS-Map (Fig. 5). First, the perfluoroalkyl chain length increases 
mainly due to increase in the value of t-SNE-PCA-2. In addition, the sizes of N-alkyl group separate the 
compounds having the same functional group but different sizes of N-alkyl group. Furthermore, the PFASs 
with the same perfluoroalkyl chain but different functional groups are also separated. The n:2 fluorotel-
omer subclasses in the class of FASA-based PFAA precursors follows the structural pattern as CnF-
2n+1-C2H4-R1. The distribution pattern of the n:2 fluorotelomers are similar to the FASA-based precursors-
--the perfluoroalkyl chain length increases mainly along t-SNE-PCA-2 (except fluorotelomer phosphates) 
while the functional groups separate subclasses. Similar patterns in the perfluoroalkyl chain lengths, size of 
alkyl group(s), and the separation based on functional groups are also observed in the subclasses of other 
classes, as is shown in figshare File 1.

Fig. 2 The architecture of PFAS-Map.
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 (b) Screening the relationship between PFASs structure and toxicity from two sets of experimental data.
The PFAS-Map helps us visualize trends in experimental data on PFAS’s activity/property relationships 
so as to uncover hidden structure-toxicity relationships that could not have been easily seen when the 
same data is presented in tabular form. Weiss et al. studied the competition between a series of PFASs 
and thyroxine (T4) for binding to the human thyroid hormone transport protein (TTR) and they showed 
the competition in the T4-TTR binding (%) (lower value means a higher amount of PFAS is binding to 
TTR)25. Figure 7 plots the T4-TTR binding data on the 2D projection of PFAS-Map. The binding data 
shows similar trends in PFCAs and PFSAs: the binding is higher (shown in red) when it comes to short 
chain-length (C4) or chain-length longer than C10, while the binding is the lowest (shown in blue) when it 
comes to C8. Hence, it is straightforward to have an estimated range of binding values for C5, C7, C9, C10, 
C11 for PFSAs, and C5 for PFCAs. Meanwhile, the significantly different binding values seen from the map 
between 2H-Perfluoro-2-octenoic acid (FTUA (6:2)) and 6:2 fluorotelomer alcohol (FTOH (6:2)) and the 
high binding value for FOSAs and FOSEs infers that the T4 competition exists mostly in PFAAs but rarely 
in PFAA precursors.
The US EPA’s CompTox Chemical Dashboard provides a chemical activity summary for each of the PFASs 
that have been tested by ToxCast assays21,26, and the summaries are visualized in PFAS-Map (Fig. 8). For 
each PFAS, its chemical activity is characterized by a ‘hit ratio’ (the ratio of the number of active assays to 
the number of all assays tested27). Two significant phenomena are observed. First, most of the compounds 
with higher hit ratio are PFAAs, and an increased hit ratio is observed for PFAAs as the perfluoroalkyl 
chain length increases. In addition, the hit ratio is generally lower for the non-acid PFAA precursors. By 
comparing the results from Figs. 7 and 8, we can find similarities in the structure-toxicity relationship of 
PFASs. For example, as one of the earliest regulated PFASs, PFOS has the most significant toxicity---it leads 
to one of the lowest T4-TTR protein bindings (Fig. 7) and, notably, has one of the highest hit ratios (Fig. 8). 

Fig. 3 The user interface of PFAS-Map. Upper left: side bar for function selection; Upper right: exploring EPA 
PFASs; Lower left: classifying potential PFASs; Lower right: exploring user-input PFAS functionality data.
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Fig. 4 PFAS-Map showing EPA PFASs in classes from two different perspectives. a). The perspective showing 
the classes of aliphatic PFASs. b) The perspective showing the separation of aromatic PFASs from aliphatic 
PFASs. Abbreviations: PFAA: perfluoroalkyl acids. An interactive version of this figure is provided in figshare 
File 1.

Fig. 5 2D projection of PFAS-Map (TSNE-PCA-2 and TSNE-PCA-3) showing all subclasses under the class 
of FASA-based PFAA precursors. Abbreviations: FASEs: perfluoroalkane sulfonamidoethanols; FASAs–
perfluoroalkane sulfonamides; FASAAs: perfluoroalkane sulfonamidoacetic acids; FASACs: perfluoroalkane 
sulfonamidoethyl acrylates; FASMACs–perfluoroalkane sulfonamidoethyl methacrylates. An interactive 
version of this figure is provided in figshare File 1.

https://doi.org/10.1038/s41597-021-00798-x
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Also, the non-acid fluorotelomers are generally less toxic than PFAAs based on their higher T4-TTR bind-
ings (Fig. 7) and lower hit ratio (Fig. 8), suggesting that the removal of acidic groups can potentially lower 
the toxicity of PFASs.

 (c) Screening structure-activity relationships of PFAS chemicals.

Fig. 6 2D projection of PFAS-Map (TSNE-PCA-1 and TSNE-PCA-2) showing n:2 fluorotelomer subclasses 
under the class of fluorotelomer-based PFAA precursors. Abbreviations: FTOHs: fluorotelomer alcohols; 
FTACs: fluorotelomer acrylates; FTMACs: fluorotelomer methacrylates; FTIs: fluorotelomer iodides; FTOs: 
fluorotelomer olefins; FTSAs: fluorotelomer sulfonic acids; monoPAPs: fluorotelomer phosphates, monoester; 
diPAPs: fluorotelomer phosphates, diester; FTALs: fluorotelomer aldehydes; FTCAs: fluorotelomer carboxylic 
acids; FTUALs: fluorotelomer unsaturated aldehyde; FTUCAs: fluorotelomer unsaturated carboxylic acid. An 
interactive version of this figure is provided in figshare File 1.

Fig. 7 PFAS competed T4-TTR binding (%)25 data shown on the 2D projection (TSNE-PCA-1/TSNE-
PCA-2) of the PFAS-Map. Abbreviations: PFBA: perfluorobutanoic acid; PFBS: perfluorobutane sulfonic 
acid; PFHxA: perfluorohexanoic acid; 7H-PFHpA: 7H-perfluoroheptanoic acid; PFHpA: perfluoroheptanoic 
acid; PFHxS: perfluorohexane sulfonic acid; PFOA: perfluorooctanoic acid; PFNA: perfluorononanoic acid; 
FOSA: perfluorooctanesulfonamide; PFOS: perfluorooctanesulfonic acid; PFDcA: perfluorodecanoic acid; 
PFUnA: perfluoroundecanoic acid; PFDS: perfluorodecane sulfonic acid; PFDoA: perfluorododecanoic 
acid; PFTdA: perfluorotetradecanoic acid; FTUA (6:2): 2H-perfluoro-2-octenoic acid; N-MeFOSA: 
N-methylperfluorooctanesulfonamide; FTOH (8:2): 8:2 fluorotelomer alcohol; FTOH (6:2): 6:2 fluorotelomer 
alcohol; N-EtFOSA: N-ethylperfluorooctanesulfonamide; N-MeFOSE: N-methyl-N-(2-hydroxyethyl)
perfluorooctanesulfonamide; N-EtFOSE: N-ethyl-N-(2-hydroxyethyl)perfluorooctanesulfonamide. An 
interactive version of this figure is provided in figshare File 1.

https://doi.org/10.1038/s41597-021-00798-x
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PFAS-Map can also be coupled with dissociation data to study the structure-persistence relationship of PFASs. 
Figure 9 shows the mean C-F bond dissociation energy (the average of all C-F bonds’ dissociation energy in a 
molecule) calculated based on Raza et al.’s work on machine learning prediction of PFAS defluorination15. The 
PFAS map highlights the trend that the mean dissociation energy generally decreases as the length of perfluoro-
alkyl chain increases, and also that the mean dissociation energy for aromatic PFASs is significantly higher than 
those aliphatic PFASs with a similar number of carbons.

Fig. 8 Currently available PFASs ToxCast chemical activity summary data21,26 shown on the 2D projection 
(TSNE-PCA-1 and TSNE-PCA-2) of the PFAS-Map. The hit ratio (the ratio of active assays to the number of all 
assays tested27) in fractional form is converted to percentage (e.g. 210/851 = 24.7% for PFUnA). Abbreviations: 
PFBS: perfluorobutane sulfonic acid; PFHxA: perfluorohexanoic acid; PFHpA: perfluoroheptanoic acid; 
PFHxS: perfluorohexane sulfonic acid; PFOA: perfluorooctanoic acid; PFNA: perfluorononanoic acid; FOSA: 
perfluorooctanesulfonamide; PFOS: perfluorooctanesulfonic acid; PFDcA: perfluorodecanoic acid; PFUnA: 
perfluoroundecanoic acid; FTOH (8:2): 8:2 fluorotelomer alcohol; FTOH (6:2): 6:2 fluorotelomer alcohol; 
N-EtFOSA: N-ethylperfluorooctanesulfonamide; OpyPF6: 1-methyl-3-octylimidazolium hexafluorophosphate; 
6:2 FTMAC: 6:2 fluorotelomer methacrylate; 6:2 FTI: 1H,1H,2H,2H-perfluorooctyl iodide. An interactive 
version of this figure is provided in figshare File 1.

Fig. 9 PFAS-Map showing the predicted mean C-F bond dissociation energy from the Raza et al.’s work “A 
Machine Learning Approach for Predicting Defluorination of Per and Polyfluoroalkyl Substances (PFAS) for 
Their Efficient Treatment and Removal”15. An interactive version of this figure is provided in figshare File 1.

https://doi.org/10.1038/s41597-021-00798-x
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The examples discussed above demonstrate the versatility of the PFAS Map. The automated capabilities in our 
database infrastructure, driven by unsupervised learning methods, provides one the means to easily visualize 
classification patterns and trends in structures-function relationships in PFAS chemistry. One of the current 
bottlenecks of PFAS research is the significantly larger number of PFASs with known chemical structures com-
pared to the number of PFASs with known properties. Hence, an unsupervised learning model like PFAS-Map 
fills a pressing need to appropriately classify most of PFAS molecules which are, at present, unlabeled in terms of 
their toxicity/hazard impact. Since the PFAS-Map is built using open-source information, it can accommodate 
updates from the scientific literature on the PFAS classification rules; these changes can be added to the source 
code of classification program ensuring that new classification patterns are readily tracked. Finally, as noted at 
the outset of our manuscript, this paper focuses on unsupervised structural classification of PFAS compounds. 
The PFAS-Map serves as an inference tool to assess the potential functionality of new PFAS molecules when com-
pared with available property data. A clear next stage of development for the PFAS Map is to extend its capabilities 
to prediction. Aside from applying enhanced machine learning strategies, developing robust predictive methods 
on toxicity requires the incorporation of additional descriptors that capture the details of molecular mechanisms 
that govern the interaction of PFAS with biological macromolecules28,29, that govern behavior such as bioactivity 
and bioaccumulation. This will be the subject of forthcoming papers.

Methods
SMILES standardization. The motivation for SMILES standardization is that one chemical structure can 
have various valid canonical SMILES generated by different computational tools or used by different databases. 
For example, perfluorooctanesulfonic acid (PFOS) has at least three canonical SMILES: C(C(C(C(C(F)(F)S(=O)
(=O)O)(F)F)(F)F)(F)F)(C(C(C(F)(F)F)(F)F)(F)F)(F)F (PubChem), OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)
(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F (EPA CompTox), and O=S(=O)(O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)
C(F)(F)C(F)(F)C(F)(F)F (RDKit). Hence, our standardization tool based on RDKit is implemented to convert 
SMILES from different sources into RDKit SMILES so that a RDKit-SMILES-based PFASs classification algo-
rithm can be designed. User input SMILES goes through SMILES standardization, descriptors calculation, PFAS 
classification in the same way as EPA PFASs. The only difference is that the descriptors of user input PFAS will be 
directly transformed by the PCA model pre-trained by the EPA PFASs so that the user input PFAS and EPA PFASs 
can be shown in the same PFAS-Map.

Descriptors calculation. The molecular descriptors and fingerprints of the chemical structures are calcu-
lated by PaDELPy (https://github.com/ECRL/PaDELPy), a python library for the PaDEL-descriptors software19. 
1D and 2D molecular descriptors and PubChem fingerprints (altogether called “descriptors” in the following 
text) are calculated for each chemical structure. The descriptors that have invalid value for a significant number 
of chemical structures are removed. Simple-count descriptors (e.g. number of C, H, O, N, P, S, and F, number of 
aromatic atoms) are used for the classification model along with SMILES. Meanwhile, all the descriptors of EPA 
PFASs are used as training data for PCA.

PFAS structure classification. As is shown in Fig. 1, module 1 filters the chemical structures not matching 
the most current definition of PFAS---containing “at least one -CF3 or -CF2- group”1,2. The module categorizes 
the unmatched chemical structures as “PFAS derivatives” if they fall into any of three subclasses: PFASs having 
-F substituted by -Cl or -Br, PFASs containing a fluorinated C = C carbon or C = O carbon, or PFASs containing 
fluorinated aromatic carbons. Otherwise, the chemical structure is marked as “not PFAS”. Module 2 separates 
the PFASs that contain one or more Silicon atom and classify them as “Silicon PFASs” as no existing rule is 
available in the literature so far that can further classify the PFASs containing Silicon to our knowledge. After 
Module 3 filtering the side-chain fluorinated aromatics PFASs defined by OECD2, the cyclic aliphatic PFASs 
are transformed to acyclic aliphatic PFASs in Module 4 by breaking the rings and add a F atom to the beginning 
and ending carbons of the ring. For example, O=S(=O)(O)C1(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C1(F)F (unde-
cafluorocyclohexanesulfonic acid) is converted to O=S(=O)(O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)
F) (perfluorohexanesulfonic acid). After going through the pre-screen modules, the chemical structures that have 
not been categorized enter the core module of the classification system. The core module follows a “class-subclass” 
two-level classification, inheriting the majority of Buck’s classification rules1 for the classes including perfluoro-
alkyl acids (PFAAs), perfluoroalkyl PFAA precursors, perfluoroalkane-sulfonamide-based (FASA-based) PFAA 
precursors, and fluorotelomer-based PFAA precursors. Additional classes not in Buck’s system but OECD’s 
classification2 and following refinements13,22, such as perfluorinated alkanes, alkenes, alcohols, ketones, are also 
included as the class of non-PFAA perfluoroalkyls. In the core module, the chemical structures are tested to see 
if they match the structure pattern of each subclass based on their SMILES and molecular descriptors. Detailed 
classification algorithms can be referred in the source code.

Principal component analysis (Pca). A PCA model is trained with the descriptors data of EPA PFASs 
using Scikit-learn30, a Python machine learning module. The trained PCA model reduced the dimensionality 
of the descriptors from 2090 to fewer than 100 but still obtains a significant percentage (e.g. 70%) of explained 
variance of PFAS structure. This feature reduction is needed to fasten the computation and suppress the noise in 
the further processing of the t-SNE algorithm20. The trained PCA model is also used to transform the descriptors 
from user-input SMILES of PFASs so that the user-input PFASs can be included in PFAS-Maps along with the 
EPA PFASs.

t-Distributed stochastic neighbor embedding (t-SNE). The PCA-reduced data in PFAS structure is 
feed into a t-SNE model, projecting the EPA PFASs into a three-dimensional space. t-SNE is a dimensionality 
reduction algorithm that is often used to visualize high-dimensionality datasets in a lower-dimensional space20. 
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Step and perplexity are the two important hyperparameters for t-SNE. Step is the number of iterations needed for 
the model to reach a stable configuration24, while perplexity defines the local information entropy that determines 
the size of neighborhoods in clustering23. In our study, the t-SNE model is implemented in Scikit-learn30. The two 
hyperparameters are optimized based on the ranges suggested by Scikit-learn (https://scikit-learn.org/stable/
modules/generated/sklearn.manifold.TSNE.html) as well as the observation of PFAS class/subclass clustering. A 
step or perplexity lower than the optimized number leads to a more scattered clustering of PFASs, while a higher 
value of step or perplexity does not significantly change the clustering but increases the cost of computational 
resources. Details of the implementation can be found in the provided source code.

Framework visualization. Combining the classification results with the t-SNE/PCA results, PFASs 
are visualized in a 3D interactive graph by Plotly (https://plotly.com) with the value of the three components 
(TSNE-PCAs) as the three coordinates (x, y, z) of the markers, while the colors of markers show the respective 
class/subclass of the PFASs. For user-input PFAS activity/property data, the data is reflected in the color of the 
markers or as hover text above the markers.

Data availability
The authors declare that the main data supporting the finding of this study are available within the article. 
All the supporting data have been deposited at figshare31. 3D-interactive figures of PFAS-Maps, including the 
classifications of EPA PFASs and PFAS structure-function relationship screening, are included in the “figshare 
File 1” folder. The datasets required for the operation of the PFAS-Map (e.g. the SMILES, t-SNE/PCA results, 
and classification results of EPA PFASs) are included in the “PFAS-Map” folder. The data is also available on the 
Materials Data Engineering Laboratory - MaDE@UB portal (http://madeatub.buffalo.edu).

code availability
The code supporting the finding of this study have been deposited at figshare31. All code needed for the user 
interface of PFAS, as well as the repeating of data pre-processing are included in “PFAS-Map” folder. The folder 
also contains a detailed PDF instruction and a demonstration video for the installation and use of the PFAS-Map. 
The code is also available on the Materials Data Engineering Laboratory - MaDE@UB portal (http://madeatub.
buffalo.edu).
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