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Chromatin accessibility and 
transcriptome landscapes of 
Monomorium pharaonis brain
Mingyue Wang1,2,3,10, Yang Liu1,2,3,10, Tinggang Wen2,3, Weiwei Liu   4,5, Qionghua Gao4,5, 
Jie Zhao4,5, Zijun Xiong   2,3, Zhifeng Wang2,3, Wei Jiang2,3, Yeya Yu2,3,6, Liang Wu1,2,3, 
Yue Yuan1,2,3, Xiaoyu Wei1,2,3, Jiangshan Xu1,2,3, Mengnan Cheng1,2,3, Pei Zhang2,3, Panyi Li2,3, 
Yong Hou   2,3, Huanming Yang1,2,7, Guojie Zhang3,4,5,8, Qiye Li   2,3, Chuanyu Liu   2,3 ✉ & 
Longqi Liu2,3,9 ✉

The emergence of social organization (eusociality) is a major event in insect evolution. Although 
previous studies have investigated the mechanisms underlying caste differentiation and social behavior 
of eusocial insects including ants and honeybees, the molecular circuits governing sociality in these 
insects remain obscure. In this study, we profiled the transcriptome and chromatin accessibility of 
brain tissues in three Monomorium pharaonis ant castes: queens (including mature and un-mated 
queens), males and workers. We provide a comprehensive dataset including 16 RNA-sequencing and 
16 assay for transposase accessible chromatin (ATAC)-sequencing profiles. We also demonstrate strong 
reproducibility of the datasets and have identified specific genes and open chromatin regions in the 
genome that may be associated with the social function of these castes. Our data will be a valuable 
resource for further studies of insect behaviour, particularly the role of brain in the control of eusociality.

Background & Summary
Eusocial insects have their societies based on caste polyphenism, where one or more queens are exclusively 
responsible for reproduction1. In contrast, workers, the largest population in the colony, are almost sterile and 
responsible for supporting the entire community through their labor, including collecting food, maintaining the 
nest and feeding/protecting the newly hatched larvae2. Eusociality in the hymenopteran insects has evolved 10 
times independently3,4. Understanding eusociality in insects is important not only from an evolutionary or envi-
ronmental perspective but also because it may provide clues into the behavior traits of higher species including 
humans.

Genes differentially expressed across castes in the brains of insects contribute to social behavior develop-
ment5,6. Several studies have focused on the overlapping genes or pathways associated with the division of labor 
across different eusocial insect lineages and constructed a set of conserved gene regulatory networks7,8. In this 
regard, one of the key hypotheses for evolution of eusociality emphasized the important role of a core toolkit of 
genes involved in highly conserved pathways, such as metabolism and reproduction9,10. In addition, it is also 
widely accepted that certain single genes can play pivotal roles. For instance, increasing insulin-like peptide 2 (ilp2) 
levels can break larval suppression and induce a stable division of labor in Ooceraea biroi11. Likewise, the neu-
ropeptide corazonin inhibits the transition from worker to gamergate in Harpegnathos saltator12. Alternatively, 
many other studies have recognized the importance of taxonomically restricted genes in the evolution of eusocial 
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behavior and performed a systematic comparison of the participation degree of shared genes and taxonomically 
restricted genes in eusocial division of labor13–16. Despite these relevant studies, the comprehensive lists of genes 
associated with eusocial behavior and their interrelationship are still unknown.

Besides gene expression, epigenetic regulation is also recognized as an important facet in the regulation of 
caste-specific behavior in insects. For example, histone modifications are critical regulators of caste determi-
nations in Camponotus floridanus, as it was shown that distinct histone H3K27ac patterns exist between castes 
of C. floridanus17. Likewise, caste-specific behavior in C. floridanus can be reprogrammed by treatment with a 
small-molecular inhibitor of histone deacetylases, suggesting a regulatory role for histone acetylation in eusocial 
behavior plasticity18. The role of DNA methylation in caste determination has also been investigated in honey-
bees and, interestingly, some of the differentially methylated CpG sites correspond to regulatory regions of genes 
involved in metabolic pathways19. Additionally, distinct DNA methylation patterns in queen and worker larvae 
have been reported in another eusocial insect, the termite Zootermopsis nevadensis19.

Taken together, these reports suggested crucial roles of transcription and epigenetics in shaping caste differen-
tiation and controlling social behavior in insects. However, a comprehensive dataset of both layers is still lacking, 
hampering further advances in the field of eusociality.

Here, we constructed the transcriptome and chromatin accessibility landscapes of brain tissue of Monomorium 
pharaonis (Fig. 1a), which is the most ubiquitous house ant in the world20,21. Monomorium pharaonis consists of 
three adult castes, workers, queens, and males, with the queen caste containing unmated queens (gynes) and 
mature queens. These four adult groups possess distinct morphologies, lifespans and behaviors, making it an ideal 
model to explore the molecular and neural regulatory mechanisms of eusociality22. We sequenced 32 samples 
from the four groups of ants (16 RNA-seq and 16 ATAC-seq with four biological replicates per group). After data 
quality assessment and filtering, we obtained a total of 240 Gb high-quality base pairs for the RNA-sequencing, 
with more than 95% Q20 bases and approximately 149 million reads per sample. For the ATAC-sequencing, we 
obtained a total of 170 Gb high-quality base pairs reads, with approximately 106 million reads per sample.

Methods
Experimental design.  Four adult groups (workers, gynes, males and queens) of Monomorium pharaonis 
were used for brain RNA-sequencing and ATAC-sequencing profiling. We collected eight brain samples per caste 
group to perform these assays. A total of 32 ant brains were used. Each brain was used as a biological sample for 
either the RNA-sequencing or ATAC-sequencing. The experimental design and analysis workflow are shown in 
Fig. 1.

Animals.  All procedures related to animals in this study were approved by the Institutional Review Board 
on Ethics Committee of BGI (Permit No. FT 19046). Two colonies of Monomorium pharaonis were created from 
a source colony (MP-MQ064) that was collected in June 2016 from Xishuangbanna in the Yunnan province in 
China. We pre-assigned about 200 workers, 10 queens and about 200 total larvae in each of the colonies. The age 
of the selected queens was unknown. The two colonies used in the study were created at the State Key Laboratory 
of Genetic Resource and Evolution, Kunming Institution of Zoology and then sent to the China National Gene 
Bank, BGI-Shenzhen. Ants were maintained for eight weeks before sampling, at a constant temperature of 25 °C 
and 50% humidity and fed with mealworm12. There were about 200 workers, 10 queens, 5 and 8 males, and 7 and 
9 gynes in each colony, respectively, when sampling.
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Fig. 1  Overview of the experimental and data analysis workflow. (a) Four different adult groups from a 
Monomorium pharaonis colony were collected for RNA-sequencing and ATAC-sequencing profiling. (b) 
Analysis workflow for RNA-sequencing and ATAC-sequencing profiles.
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Brain collection and RNA extraction.  Designated ants were picked out and anaesthetized in a dissection 
dish on ice. The ants were then washed with ethanol and PBS twice, and dissected in PBS on ice under the light 
microscope (OLYMPUS, SZX16). To perform the dissection, a pair of forceps held the ant body while another 
pair of forceps inserted into the mouth gripped the head cuticle of the ant. The head was gently pulled off and 
the body discarded. Head cuticle was then gently peeled off with the forceps and the brain was removed. After 
carefully removing the surrounding trachea and ocelli, the ant brain was placed into PBS with 1 U/mL RNase 
inhibitor. All ants were dissected using the same method except that ocelli removal was not required for the 
workers. Brain samples were then washed twice with 500 μl PBS. All samples were collected during daytime (9:00 
to 16:00). Whole-brain RNA was extracted immediately after dissection using an RNeasy Mini Kit (Qiagen) and 
eluted with 10 μl of nuclease-free water (NF-water, Ambion). The total amounts of RNA were measured using an 
RNA HS Qubit (Invitrogen).

RNA-sequencing library construction.  We applied an optimized Smart-seq2 method for 
RNA-sequencing library construction23. For cDNA generation, the following premixed reagent was added to 
each tube of RNA sample: 5 μl of 10 μM oligo-dT primer (5ʹ-AAGCAGTGGTATCAACGCAGAGTACT-
30VN-3ʹ, where “V” is either “A”, “C”, or “G”, and “N” is any base), 4.86 μl of 10 mM dNTP (New England 
Biolabs), 0.5 μl of 40 U/μl RNase inhibitor (New England Biolabs). Based on the amount of RNA, ERCC Spike-In 
(Ambion) was added to each tube. Then, the mix was incubated at 72 °C for 3 minutes and quickly placed on 
ice. Afterward, 20 μl of first-strand synthesis mix containing 8 μl of 5X first-strand buffer (Invitrogen), 2 μl of 
100 mM dithiothreitol (DTT, Invitrogen), 2 μl of 200U/μl SuperScript II Reverse Transcriptase (Invitrogen), 
8 μl of 5 M Betaine (Sigma), 0.24 μl of 1 M MgCl2 (Millipore), and 0.4 μl of 100 μM template switch oligo 
(5ʹ-AAGCAGTGGTATCAACGCAGAGTACATrGrG + G-3ʹ, where “r” indicates a ribonucleic acid base and 
“+” indicates a locked nucleic acid base, TSO, Exiqon) were added. RNA was reverse transcribed at 42 °C for 
90 minutes, and 10 cycles of 50 °C for 2 minutes and 42 °C for 2 minutes and a final 70 °C for 5 minutes to inacti-
vate the reverse transcriptase. cDNA amplification mix containing 50 μl of KAPA HiFi HotStart ReadyMix (KAPA 
Biosystems), 1 μl of 10 μM IS primer (5ʹ-AAGCAGTGGTATCAACGCAGAGT-3ʹ) and 9 μl of NF-water were 
then added. The amplification followed the following steps: 98 °C for 3 minutes, followed by 13 cycles of 98 °C for 
20 seconds, 67 °C for 20 seconds, 72 °C for 6 minutes and finally 72 °C for 5 minutes. Afterwards, the PCR product 
was purified using 1X AMPure XP beads (Beckman Coulter). We measured cDNA concentration with the Qubit 
dsDNA HS Assay Kit 3.0 (Invitrogen) and analyzed size distribution on an HS DNA chip bioanalyzer (Agilent). 
Libraries were prepared using a fragmentation based method24. For each sample, 300 ng of cDNA was sheared 
with NEBNext dsDNA Fragmentase (New England Biolabs). Fragmented DNA was then purified, end-repaired, 
adapter-added, amplified and size-selected. Afterwards, the library size distribution was detected using an HS 
DNA chip bioanalyzer; the fragment length was in the range from 300 to 500 bp.

ATAC-seq library preparation.  We used a whole-brain transposition method for ATAC-sequencing library 
construction, as previously described25, with minor modifications. In brief, brains were dissected and washed 
twice with 500 μl ice-cold PBS. After centrifugation at 500 x g for 5 minutes, the samples were lysed with 50 μl 
lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630). We next mixed the samples 
harshly by pipetting and then centrifuged at 800 x g for 10 minutes. Supernatants were discarded and replaced 
with a 50 μl transposition reaction mix containing 10 mM TAPS-NaOH (pH 8.5), 5 mM MgCl2, 10% DMF, 
2.5 μl of in-house Tn5 transposase (0.8 U/μl) and NF-water. This mixture was incubated at 37 °C for 30 minutes. 
Afterwards, transposed DNA was purified with MinElute Purification Kit (Qiagen) and amplified with primers 
containing barcodes.

Sequencing.  All data were generated with the BGISEQ-500 platform (MGI)26. First, the DNA concentration 
of each library was measured by Qubit dsDNA HS Assay Kit 3.0. A total of 300 ng of library DNA with different 
sample indexes was pooled for circular single-strand DNA (ssDNA circles). Then, ssDNA circles were used as a 
template to make DNA nanoballs by rolling circle replication. DNA nanoballs were loaded onto the sequencer 
flowcells for 100 bp paired-end for RNA-seq and 50 bp paired-end for ATAC-seq.

RNA-sequencing dataset processing.  Quality validation of raw reads was performed using FastQC (ver-
sion 0.11.6)27. Reads of low quality were filtered using SOAPnuke (version 1.5.2)28. Adapter sequences, primers, 
poly-A tails were found and removed by cutadapt (version 1.16)29. Further quality control was performed by 
FastQC to ensure the cleaned data were suitable for downstream analyses. Quality control results30 were visual-
ized using multiQC (version: 1.7)31. Statistical results of raw data and clean data are displayed in Table 1. Cleaned 
reads were mapped to the reference Monomorium pharaonis genome (GCA_003260585.2)32 using hisat2 (version 
2.0.1-beta)33. The number of reads aligning to every gene of each sample were calculated with featureCounts 
(version 1.5.3)34 to generate a raw count matrix30. Aligned BAM reads were inputted into featureCounts (version 
1.5.3) with a list of genomic features in Gene Transfer Format (GTF, ref_ASM326058v2_top_level.gff3.gz). To 
normalize read counts for sequencing depth and RNA composition, we used the median of ratios method in 
the R (version 3.5) package DESeq2 (version 1.5.3)35. The plotPCA function of DESeq2 (version 1.5.3) was used 
to assess the similarity of genomic specific gene expression patterns among different groups (Fig. 2c). Pearson 
correlation coefficients between samples (Fig. 2e, f) were calculated based on DEseq2 normalized data matrix.

ATAC-sequencing dataset processing.  Raw ATAC-seqquencing data were processed including trim-
ming, aligning, filtering, and quality controlling using an ATAC-sequencing pipeline36. MACS2 (version 2.1.2)37 
based on python 2.7 was used to identify the peaks of accessible regions. We applied the IDR algorithm38 to 
identify peaks reproducible between replicates of each caste. Overlapping peaks were subsequently merged by 
bedtools (version: 2.26.0) intersect39 to produce the final consensus peak set. The full statistical results of data 
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processing and the number of consensus peaks for each sample are listed in Table 2. A standard peak list was 
generated by merging peaks of all samples using bedtools merge39. The usable reads of each sample were then 
mapped to the regions of standard peaks using the intersect function of bedtools and the number of mapped reads 
was counted and listed in a matrix30. We normalized this raw count matrix using the median of ratios method of 
the R package DESeq2 (version 1.5.3). This normalized matrix was subjected to Pearson correlation coefficients 
calculation between replicates and principal component analysis (PCA) (Fig. 3c) by DEseq2.

Identification of widely expressed or specific genes across the four groups.  The raw gene expres-
sion matrix was normalized by Reads Per Million mapped reads (RPM). We calculated the average of RPM value, 
and the coefficient of variation (CV) between the four groups. We selected genes with mean value of RPM greater 
than 300 and the CV value less than 10% as co-expressed genes. We used the Shannon entropy40 to compute the 
specificity index for genes and we defined its relative gene expression level in a group type i as Ri = Ei/ΣE, where 
Ei is the RPM value for the gene in the group i, ΣE is the sum of RPM values in all groups and N is the total 
number of groups. The entropy score for each gene across groups was defined as H = −1 * sum (Ri * log2Ri) 
(1 < i < N), where the value of H ranges between 0 to log2(N). An entropy score close to zero indicates that the 
expression of the gene in question is highly specific based on the score distribution, whereas genes with entropy 
score less than 1.5 were selected as group-specific genes. This result was provided in Figshare30.

Comparative analysis across groups.  Comparative analysis was performed using DESeq2 R package. The 
fold change value between groups and the corresponding P value was calculated. We selected the genes or peaks 
with fold change ≥ 1 and Padj value ≤ 0.05 as differentially expressed genes (DEGs) or differentially accessible 
regions (DARs).

Data Records
A complete list of the 32 ant brain samples is provided in Tables 1 and 2. All raw data in this study are available in 
the NCBI Gene Expression Omnibus (GEO)41 and in the CNGB Sequence Archive (CNSA)42 (https://db.cngb.
org/cnsa/). The multiQC results and matrix of gene count and DEG statistics were submitted to Figshare30.

Technical Validation
RNA-sequencing metrics and reproducibility.  A total of 16 RNA libraries were prepared and 
sequenced, with the sequencing depth ranging from 104.63 to 171.60 million reads. Raw reads were filtered, 
resulting in percentages of clean reads ranging between 75% and 86% (Table 1). The Q20 values for the clean 
reads were above 95% (Table 1). The quality of sequencing was validated by FastQC, then multiple results were 
compared with MultiQC and a representative result (all gyne samples) of the visualized Phred quality score per 
base was shown in Fig. 2a. The CG content ranged from 40% to 45%, following a normal distribution (Fig. 2b). 
Clean reads were then mapped to Monomorium pharaonis genome. A full statistics of quality control for each 
sample was displayed in Table 1.

The reproducibility of replicates of RNA-sequencing datasets was examined using PCA, in which samples 
were clearly separated by caste categories, with PC1 and PC2 jointly explaining 76% of the total variance in gene 
expression (Fig. 2c). Heatmap clustering of Pearson correlation coefficients from the comparison of the 16 data-
sets revealed a strong correlation between replicates of the same caste ants (Fig. 2d). Interestingly, three female 
groups (queens, gynes, and workers) had a nearer distance between each other than their distance to the male 
group. Pearson correlation analysis showed a correlation coefficient above 0.99 between replicates, revealing high 

Sample ID
Number of raw 
reads

Number of 
clean reads

Percentage of 
clean reads

GC% (Clean 
reads)

Clean_Reads_
Q20(%)

Number of 
mapped reads

Percentage of 
mapped reads

Gyne_RNA_1 119,235,814 102,841,766 86% 41% 95.80 67,659,598 65.79%

Gyne_RNA_2 172,470,928 146,346,992 85% 40% 95.89 99,164,722 67.76%

Gyne_RNA_3 203,319,094 171,549,152 84% 40% 95.98 116,893,592 68.14%

Gyne_RNA_4 181,881,936 154,635,550 85% 40% 95.54 103,327,476 66.82%

Male_RNA_1 222,617,504 166,697,332 75% 41% 96.41 107,553,118 64.52%

Male_RNA_2 171,733,948 134,612,370 78% 40% 95.57 85,721,158 63.68%

Male_RNA_3 163,818,754 130,940,972 80% 40% 95.33 84,941,408 64.87%

Male_RNA_4 194,226,758 152,877,424 79% 40% 95.65 100,715,648 65.88%

Queen_RNA_1 132,821,280 111,244,700 84% 41% 95.63 71,886,325 64.62%

Queen_RNA_2 172,918,396 141,405,076 82% 41% 95.75 93,129,383 65.86%

Queen_RNA_3 205,540,136 168,019,436 82% 40% 96.07 111,816,936 66.55%

Queen_RNA_4 211,761,094 173,207,908 82% 40% 96.16 116,828,734 67.45%

Worker_RNA_1 197,792,502 161,019,502 81% 41% 96.53 110,733,112 68.77%

Worker_RNA_2 182,845,616 152,743,314 84% 41% 96.04 102,536,588 67.13%

Worker_RNA_3 200,398,174 167,348,656 84% 40% 95.93 112,659,116 67.32%

Worker_RNA_4 187,128,572 158,590,210 85% 40% 95.39 106,556,762 67.19%

Table 1.  RNA-seq metadata and mapping statistics.
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Fig. 2  RNA-sequencing data quality metrics. (a) Mean quality values across each base position in the reads 
of RNA-sequencing datasets. (b) The GC content across the whole length of each sequence in read files of 
the RNA-sequencing datasets. (c) PCA plot of all 16 RNA-seq profiles. (d) Heatmap clustering of correlation 
coefficients across all 16 samples RNA-sequencing profiles. (e) Scatter plots showing the Pearson correlations 
between biological replicates. (f) Scatter plots showing the Pearson correlations between Qiu, B. et al. published 
datasets and our RNA-seq profiles.
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reliability of the RNA-sequencing data (Fig. 2e). The RNA-sequencing data in our study were comparable with 
previously published RNA-sequencing data of gynes and workers7 (Fig. 2f). Taken together, these results suggest 
that our datasets are a reliable data resource for future studies.

Sample ID
Number of 
total reads

Number of 
mapped reads

Percentage of 
mapped reads

Number of 
usable reads

Percentage of 
usable reads

IDR 
peaks

Gyne_ATAC_1 172,172,820 163,448,845 94.93% 101,679,214 62.21% 38,585

Gyne_ATAC_2 137,815,754 130,970,332 95.03% 80,777,684 61.68% 38,585

Gyne_ATAC_3 198,553,750 189,962,529 95.67% 121,923,602 64.18% 38,585

Gyne_ATAC_4 124,501,796 115,458,488 92.74% 67,259,356 58.25% 38,585

Male_ATAC_1 48,790,218 42,106,287 86.30% 11,758,208 27.93% 16,685

Male_ATAC_2 53,764,102 47,327,040 88.03% 12,623,986 26.67% 16,685

Male_ATAC_3 45,813,866 40,610,146 88.64% 11,407,130 28.09% 16,685

Male_ATAC_4 42,554,344 38,399,918 90.24% 13,183,374 34.33% 16,685

Queen_ATAC_1 164,009,260 150,776,896 91.93% 59,420,000 39.41% 21,511

Queen_ATAC_2 91,740,402 82,496,005 89.92% 28,134,824 34.10% 21,511

Queen_ATAC_3 83,372,050 74,384,447 89.22% 20,508,800 27.57% 21,511

Queen_ATAC_4 175,570,098 163,084,283 92.89% 61,121,772 37.48% 21,511

Worker_ATAC_1 21,994,036 19,617,446 89.19% 8,703,090 44.36% 17,557

Worker_ATAC_2 83,557,276 77,937,726 93.27% 39,371,144 50.52% 17,557

Worker_ATAC_3 202,419,104 191,023,775 94.37% 122,065,556 63.90% 17,557

Worker_ATAC_4 57,754,220 53,530,040 92.69% 25,656,598 47.93% 17,557

Table 2.  ATAC-seq metadata and mapping statistics.
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Fig. 3  ATAC-sequencing data quality metrics. (a) The ATAC-sequencing signal enrichment around (2 K) 
the TSS for four representative samples (Gyne, Male, Queen, Worker). (b) Insert size distribution of ATAC-
sequencing profiles for the same samples shown in 2a. (c) Scatter plots showing the Pearson correlations 
between biological replicates. (d) PCA plot of all 16 ATAC-sequencing profiles.
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ATAC-sequencing quality control.  We performed the quality assessment of ATAC-sequencing data-
sets by a variety of quality metrics (Table 2), including number of reads, mapping rate, and usable reads. Each 
sample obtained an average of 49 million usable reads after filtration, resulting in about 20, 000 reproducible 
peaks after IDR analysis (Table 2). We calculated the reads enrichment around transcription start sites (TSS) 
and observed a strong enrichment (Table 2 and Fig. 3a), suggesting the high quality of the datasets. This was 
also supported by the periodic pattern of fragment size, consistent with previous ATAC-sequencing pro-
files43,44 (Fig. 3b). Reproducibility between replicates was measured by Pearson correlation coefficients and all 
the replicates from each caste own the correlation coefficient more than 0.95 (Fig. 3c). The reproducibility of 
ATAC-sequencing datasets was further studied using PCA, where samples from the same caste tended to cluster 
together (Fig. 3d). As expected, we noted that the ATAC-sequencing samples presented a similar clustering result 
as RNA-sequencing, with the three female groups being closer to each other. Overall, these analyses demonstrated 
that our ATAC-sequencing datasets can reliably detect accessible regions in the genome and can be used to fur-
ther explore the molecular foundation between epigenomic regulation and social behavior.

Comparative analysis between castes.  We identified a set of genes widely expressed in the brain of all 
castes and also caste brain-specific genes as well30. We found that genes co-expressed in the brains of four groups 
(600 genes) have a larger number than caste-specific genes (144 genes). These two sets of genes are provided in 
Figshare30, which can be used for further analysis and exploration. We counted the number of DEGs (Fig. 4a) 
or DARs (Fig. 4b) in gynes, workers and males compared with queens. We found that males show the biggest 
difference with queens in both gene expression and chromatin accessibility, suggesting that sex may be the most 
significant factor resulting in differential regulation of gene expression within the ant colony. On the contrary, 
gynes and queens presented the smallest difference, with only 229 DEGs and 1,350 DARs. The number of DEGs 
(583) and DARs (2,171) between queens and workers was almost twice as those between queens and gynes, sug-
gesting higher similarity of the latter two.

We next investigated the relationship between expression and chromatin accessibility for DEGs across the four 
castes (Fig. 4c). Interestingly, we found that locusta insulin-related peptide (LIRP) and vitellogenin-2 (vg-2) show 
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high expression level in queens. LIRP is a type of 5 kDa peptide and first discovered from locust corpora cardiaca 
(CCs)-extracts45,46. LIRP contains 3 exons separated by 2 introns, resembling the vertebrate insulin genes47,48, 
whose function is to regulate eusocial division of labor and caste determination and was reported to show consist-
ently higher expression in queens9,11. Vitellogenin (Vg) encodes for the major egg yolk protein precursor in insects 
and many other oviparous species49. Our finding is supported by a previous study demonstrating that Vg showed 
higher expression in reproductive groups of eusocial insects, as it functions as a lipid carrier that provisions devel-
oping oocytes with yolk and constitutes a reliable indicator of female reproductive activity50. Small lysine-rich 
protein 1 (SMKR1), ras-related and estrogen-regulated growth inhibitor (RERG), and pro-sesilin were also identified 
as caste-specific genes expressed in gyne, worker and male brains, respectively. SMKR1 is a lysine-rich protein 
and may play an important role in brain development in unmated female ants51. RERG is a member of the RAS 
superfamily of GTPases and a estrogen-regulated growth inhibitor. The higher expression of RERG in worker is 
consistent with previous study of worker-biased genes in eusocial insects52. Resilin is an elastomeric protein found 
in many insects53. The high expression of pro-resilin may enable males to jump or pivot wings efficiently.

Interestingly, the open regions near these genes showed similar patterns as gene expression across castes 
(Fig. 4c), suggesting that their transcriptional regulatory elements are crucial for the differential gene expres-
sion. Moreover, we found two genes involved in vision, retinal homeobox protein Rx1 (Rx1) and glycine receptor 
subunit alpha-3 (Glra3), showing lower levels of both expression and chromatin accessibility in workers, which 
suggests distinct visual systems across workers and the three other groups. Supporting this, it has been previously 
reported that ocelli is absent in workers of Monomorium pharaonis54. In summary, our study provides an impor-
tant resource of the epigenome and transcriptome of ant brain, which will be of great importance to study the 
regulatory mechanisms behind caste differentiation in eusocial insects.

Usage Notes
The RNA-seq data processing pipeline, including data filtering, read mapping and gene expression quantifica-
tion was run on the Linux operating system (centOS). The optimized parameters are provided in the main text. 
Differential gene expression (DGE) analysis R source codes used for the downstream data analysis and visualiza-
tion are provided in Supplementary File 1.

Code availability
Data processing was performed using open source software. The approach of tools and parameters used were as 
below.

SOAPnuke: https://github.com/BGI-flexlab/SOAPnuke. Version: 1.5.2. Parameters: filter -A 0.5 -M 2 -l 10 -q 
0.3 -n 0.05 -Q 2 -d.

Cutadapt: https://cutadapt.readthedocs.io/en/stable/. Version: 1.16. Parameters: -m 5 -e 0.10.
HISAT2: http://www.ccb.jhu.edu/software/hisat. Version 2.0.1-beta. Parameters: -p 4 –phred33 –sensitive –

no-discordant –no-mixed -I 1 -X 1000.
featureCounts: http://subread.sourceforge.net/. Version 1.5.3. Parameters: -T 5 -p -t exon -g gene_id.
MACS2: https://github.com/taoliu/MACS. Version 2.1.2. Parameters: macs2 callpeak -t input.bam -f BAM -g 

259040147 -n name.output -B -q 0.01 --nomodel.
Bedtools: https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html. Version: 2.26.0. Parameters: 

bedtools intersect -a standardpeak.bed -b input.bam -c > output.count.
The R code used for calculating the correlation and comparative analysis are available in the supplementary 

materials.
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