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Genome sequence analysis of 
multidrug-resistant Mycobacterium 
tuberculosis from Malaysia
Joon Liang tan  1, alfred Simbun2, Kok-Gan Chan  3,4 & Yun Fong Ngeow5 ✉

Mycobacterium tuberculosis (MtB) is commonly used as a model to study pathogenicity and multiple 
drug resistance in bacteria. these MtB characteristics are highly dependent on the evolution and 
phylogeography of the bacterium. In this paper, we describe 15 new genomes of multidrug-resistant 
MtB (MDRtB) from Malaysia. the assessments and annotations on the genome assemblies suggest 
that strain differences are due to lineages and horizontal gene transfer during the course of evolution. 
the genomes show mutations listed in current drug resistance databases and global MtB collections. 
this genome data will augment existing information available for comparative genomic studies to 
understand MtB drug resistance mechanisms and evolution.

Background & Summary
Tuberculosis (TB) is still a public health challenge in many parts of the world. In Malaysia, an upper-middle 
income country in South-East Asia with a population of a little over 32 million, the TB incidence is still esti-
mated as 92 per 100,000 population in 2019 (https://www.who.int/tb/country/data/profiles/en/), despite having 
active TB prevention programmes in place since the 1960s. Fortunately, the incidence of multidrug-resistant TB 
(MDRTB) has remained relatively low at about 1.5% of new TB cases and 3.1% of treated infections, and there 
have been only two reports of extensively drug-resistant TB (XDRTB) since 20151,2. Nevertheless, the increas-
ing detection of drug-resistant TB (DRTB) has raised concerns and prompted more vigorous surveillance and 
control strategies to prevent further escalation of the drug resistance problem. Specific control measures include 
the routine screening of foreign workers from high TB burden countries as official data showed that foreigners 
contributed to about 12–14% of TB in the country (http://www.moh.gov.my)3.

The GENEXPERT MTB/RIF testing of sputum samples is widely used in major hospitals in the country. Rapid 
molecular assays for the detection of resistance-associated mutations are also available for the testing of MTB 
isolates in TB laboratories. In addition, there is increasing awareness of the advantage of using whole genome 
sequencing to study drug resistance patterns and mechanisms. In this study, we analysed the genomes of 15 local 
isolates of MDRTB and compared them with drug-susceptible TB (DSTB) and MDRTB from other parts of the 
world. With these comparisons we hope to expand our understanding of the genetic determinants of drug resist-
ance in MTB as well as the evolution of drug resistance in these bacteria.

Methods
MDRtB strains. The 15 MDRTB genomes used in this study were extracted from archived strains iso-
lated from patients with pulmonary tuberculosis who were recruited for a study on TB molecular epidemiol-
ogy approved by the University Malaya Medical Centre (UMMC) Medical Research Ethics Committee (MREC) 
(reference no. 975.28). The UMMC MREC does not require a separate approval for the use of archived bacterial 
isolates from clinical specimens.

The patients were referred to the tertiary care reference hospital from several states in Malaysia, from 
2009–2012. The archived isolates were recovered with the BACTEC MGIT 960 liquid culture system (Becton 
Dickinson), re-identified and tested for rifampicin and isoniazid resistances using the Hain Genotype 
MTBDRplus Line Probe Assay (Hain Lifescience GmbH, Germany) according to the manufacturer’s instructions.
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Generation of draft genomes. For whole-genome sequencing, subcultures on Lowenstein-Jensen slants 
were heat inactivated at 80 °C for 2 h, and cooled down to room temperature before DNA extraction using the 
phenol/Chloroform/Isoamylalcohol (PCI) method4. DNA of adequate quality and quantity was used for sequenc-
ing using the MiSeq platform.

The sequencing reads were quality controlled using Trimmomatic5. The reads with quality lower than Q20 
were removed prior to assembly. The clean reads were assembled in Vague assembler6. Each assembly was con-
ducted using multiple k-mer sizes. Only the assemblies with the highest N50 and genome size of approximately 
4 × 106 bases were selected. The assemblies were then polished using error-corrected Illumina reads with bwa 
(parameter: index; mem), SAMTOOLS (parameter: view –bS; sort) and PILON 1.17(parameter: –fix all; –genome 
H37Rv)7–9.

Genome annotation and analysis. The genomes were annotated in Prokka-Roary-Piggy pipelines with 
recommended guidelines10–12. In short, structural annotation for ORF prediction was conducted in Prokka 
(parameter: –gffver 3; –kingdom bacteria; –evalue 1e-06) and the output in the GFF3 format was subjected to Roary. 
In Roary, the core and accessory genomes of the Malaysian MDRTB were identified (parameter: -I 95; -e; -n).  
The annotation output from Prokka, together with the pan-genome analysis in Roary was used for intergenic 
regions prediction in Piggy (parameter: -n 90; -l 90; -m g). The lineages of the strains were predicted using the 
polished scaffold in TB Profiler web server13, based on the SNP barcode derived from 1,601 genomes14.

Protein sequences yielded from the genome annotation were submitted to the Comprehensive Antibiotic 
Resistance Database (CARD 2017)15. In addition, the Malaysian MDRTB genomes were compared with the 
collection of MDRTB genomes from multiple countries as deposited in the Tuberculosis Antibiotic Resistance 
Catalog Project (TB-ARC) of the Broad Institute (accessed on February 2019). The project is now hosted by NCBI 
and searchable with the keyword “TB-ARC”. The data files for more than 1000 MDRTB strains were downloaded 
for comparative genomics analysis using the variant calling methods described by Manson and colleagues16.

Data Records
The draft genomes of the 15 Malaysian strains were captured with sequencing reads ranging from approximately 
4.9 × 106 to 7.6 × 106 sequences, with a mean sequencing depth of 135.7 × per genome. The genome sizes ranged 
from approximately 4.2Mbps to 4.3Mbps (Table 1). The genome sequences have been made available in GenBank 
with the accession numbers VASA00000000 to VASF00000000 and VARR00000000 to VARZ0000000017, and 
SRA identifier SRP22327718.

technical Validation
Whole genome data. The reliability of the genomes yielded from this study was assessed based on multiple 
aspects. The sequences were compared to the established reference genome of M. tuberculosis H37Rv19. With a 
number of contigs ranging from 149 to 439, the sequencing covered an average of 99.26% of the H37Rv genome 
(Table 1). Pan-genome analysis also showed no significant differences in the distribution of coding sequences 
among the strains. A total of 3484 (about 97%) core gene families in the 15 MDRTB strains17,20 were observed in 
M. tuberculosis H37Rv. The remaining 100 core gene families shared among the 15 MDRTB strains but not with 
H37Rv, were mostly hypothetical proteins and PE protein families. The high similarity in genomic regions and 
contents supports the reliability of the yielded genomes.

The presence of accessory genomes was evaluated to understand the factors potentially contributing to the differ-
ences among the assemblies and M. tuberculosis H37Rv. Among the accessory proteins, eight CRISPR proteins were 
found in strains 112, 113, 116 and 117, seven in strains 108, 109 and 110, six in strain 107 and five in the remaining 
seven strains. The number of intergenic regions predicted in each of the 15 strains ranged from 2172 to 2288, of 

Strain Genome Size (bp) N50 (bp) #Contig #CDS Lineage

103 4,278,889 68,530 170 4401 2.2.1

105 4,281,806 60,231 182 4402 2.2.1

106 4,282,240 71,491 165 4453 2.2.1

107 4,279,413 72,657 167 4442 2.2.1

108 4,275,219 72,767 163 4395 2.1

109 4,276,209 70,168 165 4408 2.1

110 4,261,340 42,986 212 4379 2.1

111 4,250,037 64,525 175 4340 2.1

112 4,,307,983 73,646 165 4414 1.1.3

113 4,269,918 79,261 153 4446 4.3.4.1

114 4,274,285 72,713 155 4390 2.2.1

115 4,257,368 18,772 439 4564 2.2.1

116 4,300,269 65,873 165 4401 1.1.3

117 4,322,642 79,033 149 4454 1.2.2

119 4,214,818 27,899 362 4456 2.2.1

Table 1. Genome Overview of the 15 MDRTB.
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which, 1365 were shared by all 15 strains, 1453 shared by at least two strains and 974 were strain-specific. CRISPR 
and intergenic regions have been reported to be the sequences influenced by horizontal gene transfer12. These fea-
tures appear to be the main contributory factors to the dissimilarities among the strains and M. tuberculosis H37Rv.

Region of difference. An evaluation of the region of difference (RD)21 revealed diverse evolutionary his-
tories among the 15 strains: seven were predicted to be of East Asian Lineage 2.2.1 by the deletions of RD105, 
RD181 and RD207; four showed the RD105 deletion that suggested East Asian Lineage 2.1.; two had the RD239 
deletion associated with Indo-Oceanic Lineage 1.1.3; one strain was of Lineage 1.2.2, while one strain with RD174 
and a 7 bp deletion of the pks15/1 was assigned to the Euro-American Lineage 4.3.4.1. All the strains showed 
intralineages SNP of >12, suggesting no epidemiological link among the strains22.

Drug resistance. We sought to assess the genetic factors contributing to the drug resistance properties 
among the strains. On screening against curated collections of drug resistance genes in CARD, the genes found 
in all strains were the transcription regulator rbpA (except strain 119), the efflux gene efpA associated with the 
expression of rifampicin resistance, the response regulator mtrA that modulates drug susceptibility, the gyrA and 
gyrase inhibitor mfpA involved in fluoroquinolone resistance and the AAC(2′) linked with aminoglycoside resist-
ance. All but one strain had the erythromycin methyltransferase erm(37) that confers resistance to streptogramin, 
lincosamide and macrolides (Online-only Table 1).

Additionally, shared variants associated with drug resistance were found. All strains had a C117D substitution 
in the murA gene known to contribute to fosfomycin resistance, and all had a S95T substitution in gyrA that is 
associated with fluoroquinolone resistance, with one strain having an additional S91P substitution. Twelve and 
three strains showed four (D516G, H526T, L511R, S450L) and three mutations (D516G, L511R, H526T) respec-
tively, in the rpoB gene involved with rifampicin resistance. Other substitutions observed included a consistent 
A2274G mutation in the 23S rRNA that had been reported to confer clarithromycin resistance, and mutations in 
the embA, embB, embC, embR, katG, pncA, thyA and rpsL genes that are associated with phenotypic resistance 
in various anti-TB drugs (Online-only Table 1).

Genome-wide screening of coding regions with PhyResSE23 showed results that are congruent with those 
observed in the CARD analysis. In addition, variants upstream to known resistance conferring mutations were 
also identified. Intergenic mutations known to be associated with drug resistance were found in six strains. These 
comprised isoniazid resistance-associated mutations at the upstream of Rv1483 in strains 106, 109, 110, 113 and 
115, and a single kanamycin resistance-associated mutation upstream to Rv2416c in strain 108.

Compared to H37Rv, the number of single nucleotide polymorphisms in the 15 Malaysian MDRTB strains 
ranged from 820 to 2230. Six nonsynonymous mutations and upstream variants located in known drug resistance 
genes were not matched with SNPs in the PhyResSE database. Global comparisons with TB-ARC showed all six 
variants could be found in at least one MDRTB from other countries. The two most commonly shared variants 
between the 15 Malaysian MDRTB and the global MDRTB are the variants G7362C and G9304A in the gyrA gene 
known to be responsible for fluoroquinolone resistance. No Malaysian-specific polymorphisms were observed on 
comparison with global strains in the TB-ARC.

Our genome-wide screening did not detect any evidence of XDRTB as defined by resistance to first-line 
anti-TB drugs plus any fluoroquinolone and at least one of three injectable second-line drugs (amikacin, kana-
mycin, or capreomycin). While all strains harboured the fluoroquinolone resistance (mfpA, gyrA) genes, none 
were found to have the genes for capreomycin (tlyA, Ins49GC), amikacin (rrs) and kanamycin (rrs; eis, whiB7, 
gidB). The AAC(2′) aminoglycoside acetyltransferase gene found in all strains has been reported to be universally 
present in many mycobacterial species24. It is unclear whether its presence together with fluoroquinolone resist-
ance genes predisposed to the emergence of XDRTB in Malaysia, two years after the completion of this study.

Usage Notes
Surrounded by high TB burden regions in SE Asia, Malaysia has to be vigilant against further dissemination of TB 
and MDRTB in the country. More in-depth analyses of genome sequence information will provide a better under-
standing of MDRTB genetics and transmission dynamics which may ultimately lead to more effective strategies 
for the clinical and public health management of TB.
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