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Very high resolution, altitude-
corrected, tMPa-based monthly 
satellite precipitation product over 
the CONUS
Hossein Hashemi  1, Jessica Fayne  2 ✉, Venkat Lakshmi3 & George J. Huffman4

the tropical Rainfall Measuring Mission (tRMM) Multisatellite Precipitation analysis (tMPa) product 
provided over 17 years of gridded precipitation datasets. However, the accuracy and spatial resolution 
of tMPa limits the applicability in hydrometeorological applications. We present a dataset that 
enhances the accuracy and spatial resolution of the TMPA monthly product (3B43). We resample 
the TMPA data to a 1 km grid and apply a correction function derived from the Parameter-elevation 
Regressions on Independent Slopes Model (PRISM) to reduce bias in the data. We confirm a linear 
relationship between bias and elevation above 1,500 meters where TMPA underestimates measured 
precipitation, providing a proof-of-concept of how simple linear scaling can be used to augment existing 
satellite datasets. the result of the correction is the High-Resolution altitude-Corrected Precipitation 
product (HRAC-Precip) for the CONUS. Using 9,200 precipitation stations from the Global Historical 
Climatology Network (GHCN), we compare the accuracy of TMPA 3B43 versus the new HRAC-Precip 
product. The results show an improvement of the mean absolute error of 12.98% on average.

Background & Summary
The use of the satellite precipitation products in environmental applications has been limited by their accuracy 
and spatial resolution. Despite the availability of the 0.25° precipitation data from Tropical Rainfall Measuring 
Mission (TRMM)1 available at various temporal resolutions, the TRMM Multisatellite Precipitation Analysis 
(TMPA)2 product is not fully useful for some basin scale and regional hydrometeorological applications. This 
issue is related to both its accuracy and spatial resolution3–6. This limitation is more severe in mountainous 
regions and transition regions between low and high altitude due to the orographic effect on rainfall rates7,8. 
Studies have shown that TMPA precipitation products can be less accurate over the high elevation and mountain-
ous terrain9–12. The inaccuracy of the satellite-based precipitation estimate over the mountainous terrain is due to 
the high spatial variability of precipitation combined with the low spatial resolution of retrievals from the TRMM 
multisatellite sensors, as well as systematic biases introduced by sensor technology, precipitation type, applied 
algorithm, and temporal sampling.

The native TMPA spatial resolution, 0.25° or ~27 km near the equator smooths precipitation peaks13 within 
the grid cell. Further, the passive microwave TRMM multisatellite sensors are not able to observe the orographic 
enhancement in the liquid phase over the mountainous region leading to underestimation of the actual rainfall, 
causing a bias in satellite observation14. At the watershed scale, data at a high spatial resolution, i.e., <0.1°, are 
necessary to capture the environmental variability that can be lost at lower resolutions15,16. When users choose 
monthly satellite-based precipitation data as an input in hydrological analyses, lower-resolution data result in a 
major discrepancy between the measured and simulated runoff17,18. Studies suggest that satellite-based products 
underestimate high rainfall, which is a key parameter for major flooding in a given watershed, introducing a large 
error in the calibration process of the hydrological model or assessment9,19,20. A significant relationship between 
the high mountainous terrain and precipitation bias from TMPA has been identified in a previous study in which 
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TMPA underestimates the ground-based precipitation measurement over the high elevations—greater than 1,500 
meters above mean sea level (amsl)—in the conterminous United States (CONUS)13. The same study noted that 
bias in the satellite data over the high elevation is mainly due to the frequent snow occurrences, particularly in the 
cold seasons. As the monthly TMPA (3B43) utilizes infrared-based estimates alongside a small number of high 
altitude gauge measurements to calibrate the precipitation rates, 3B43 tends to underestimate the true precipita-
tion. To offset the underestimated precipitation rates, a previous study developed a correction model for TMPA 
using the topographically corrected Parameter-elevation Regressions on Independent Slopes Model (PRISM) 
as a reference21,22. The correction model incorporates seasonality and topographically dependent corrections 
inherent in PRISM, such as coastal proximity, aspect, vertical layer, and topographic position, complemented 
by an external reference elevation model from USGS GTOPO3023. A digital elevation model is required under 
the assumption that remaining biases are dependent on elevation, and the model was subsequently aggregated 
to match the 0.25° TMPA-3B43 data to correct the satellite precipitation data. Although the results showed a 
substantial improvement on the 3B43 product13, the coarse resolution of 0.25° is not considered sufficient for 
applications at local and regional scales.

To improve the TMPA 3B43 product for broader hydrological applications, we present a very high-resolution 
(~1 km) bias-corrected satellite-based monthly precipitation data set that we name High Resolution Altitude 
Corrected Precipitation (HRAC-Precip). HRAC-Precip is free and publicly available via NASA’s Goddard Earth 
Science Data Information Services Center (GES-DISC) https://disc.gsfc.nasa.gov/datasets/HRAC_Precip_V1/
summary 24. This product demonstrates a proof-of-concept that orographic impacts to satellite precipitation can 
be corrected using simple linear scaling in relationship with season and elevation. In particular, from an applica-
tions perspective, we believe that water resources managers and agricultural land use applications mangers would 
benefit from the 1-km monthly data, aligning with high resolution land cover datasets. Future work on satellite 
precipitation correction includes expanding the data to global coverage and producing higher temporal resolu-
tion data. The HRAC-Precip monthly product covers the conterminous United States for 1998–2014. Sections 
2 and 3 of this of paper explain the data and methods used to produce the HRAC dataset. Validation of the data 
using 9,200 rain gauge stations is explored in section 4, followed by the conclusion and explanation of data usage 
in section 5.

Methods
Data sources. Satellite-based precipitation. TRMM is a collaboration between the National Aeronautics and 
Space Administration (NASA) and the Japan Aerospace Exploration (JAXA) Agency to estimate precipitation 
and lightning over the tropical and subtropical regions of the globe (latitudes 40° North to 40° South). TRMM 
was launched in November 1997 and ended its mission in April 2015. The TRMM platform carried five different 
sensors of which three sensors, precipitation radar, microwave imager, and visible infrared scanner, were used 
to estimate precipitation. TMPA1,2 is a merged satellite-gauge product that provides three-hourly precipitation 
dataset between latitude 50° North and 50° South and utilized the retrievals from satellite systems in the TRMM 
precipitation satellite constellation. The TMPA 3B43 data is a monthly research-oriented product that is an aggre-
gation of the 3-hourly product with gauge data where applicable. The gauge data used in TMPA data production 
is 1° gridded precipitation from the Global Precipitation Climatology Centre (GPCC)25,26. In this study, we used 
the TMPA 3B43 monthly precipitation product for the period January 1998 to December 2014.

Ground-based precipitation. Ground-based station data are required for validation of the proposed methodol-
ogy and were collected from the Global Historical Climatology Network (GHCN) Global Summary of the Month 
(GSOM)27, a database containing ~51,000 historical monthly precipitation stations in the United States with 
additional stations outside of the United States. The large database was filtered with the requirement that the data 
in the time period January 1998–December 2014 should contain at least 50% of the months within the studied 
time period, 102 out of 204. The data were further divided into categories where stations contained at least 60, 
70, 80, 90, and 100% monthly observations within the time period. Figure 1 shows the stations with at least 50% 
temporal coverage, totaling 9,243, while the 100% coverage category contains 1,574 stations.

Digital elevation model (DEM). As the goal of the study was to provide an elevation corrected high-resolution 
monthly precipitation product, the spatial resolution of the digital elevation model was chosen to be 1 km, 
providing the structure for the correction to produce a 1 km precipitation dataset. The Global 30 Arc-Second 
Elevation (GTOPO30)23 DEM dataset was selected for its high spatial resolution, affording the production of the 
high-resolution precipitation product. As the data are provided by the United States Geological Survey in a tiled 
format, several large tiles were initially merged into a single mosaic providing a complete DEM of the CONUS 
and neighboring regions, then clipped into a region representing only the CONUS. The data temporal availability 
and spatial resolution are summarized in Table 1.

The bar graph in Fig. 1 tallies station coverage at varying elevation bands summarizing the spatial distribution 
of the stations. The DEM was divided into five equal-area regions, with each elevation band covering ~20% of the 
contiguous region, and relating the station locations by area coverage and elevation simultaneously.

application of methodology. The goal of this study was to produce a high-resolution monthly satellite 
data based on the correction model proposed by Hashemi et al.13. The previous study developed a correction 
model that reduced the mean absolute error of the satellite bias at the elevations above 1,500 m amsl by 5.4% 
across all seasons. The correction is applied to elevations above 1,500 m amsl because biases are negligible below 
this elevation; lower elevations are not susceptible to orographic lifting and therefore underestimation by the 
microwave sensors. Thus, the primary assumption of the model is that the bias has a strong dependence on 
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elevation and topography. The correction model (Eq. 1) is a linear function and assumes the dependence of rela-
tive bias in the satellite data, at the pixel level, on elevations above 1,500 m amsl (Eq. 1).

α β= + +S S E( 1) (1)ic i i

where subscript i is the specific pixel, Sic is the corrected satellite data, Si is the original satellite estimate, Ei is the 
elevation, α and β are two constants and 1 is a normalizing factor derived from the relative bias equation, dis-
cussed in Hashemi et al.13. As elevation is considered to be the primary bias producing factor, model coefficients 
are computed by randomly selecting a subset of the precipitation data during the calibration procedure along 
with the elevation of the selected pixel. The calibration of the model and coefficient estimation are carried out at 
the pixel level using the Monte Carlo Cross Validation technique for each month. Computed coefficients are then 
validated against the topographically corrected Parameter-elevation Regressions on Independent Slopes Model 
(PRISM)21,28 estimates, ensuring that the corrected data correctly incorporates topographically dependent adjust-
ments inherent in PRISM, such as wind direction, aspect, topographic position, and others. For more detail on 
the algorithm used to produce the coefficients and original validation, refer to Hashemi et al.13.

We applied the correction model (Eq. 1) to the resampled high-resolution satellite data at the pixel level for 
each month corresponding to the appropriate monthly coefficients (Table 2). While the coefficients are uniform 
for each month across all pixels, variations in the elevation from the DEM along with the coefficients produce 
new precipitation values.

Fig. 1 Study area and rain gauge network showing different temporal and spatial coverage. The study area 
contains approximately 9,200-gauge stations spanning the period 1998–2014. The maps show the stations that 
cover 50% and 100% of the time series. The bar graphs illustrate the numbers of gauges with different coverages 
of the time period for five different ranges of elevation (elevations given in m).

Source Product Grid size Time span

Surface gauge-based dataset GHCN Point measurement 1998–2014

Satellite-based dataset TMPA 3B43 0.25° 1998–2014

DEM dataset GTOPO30 0.01° —

New satellite-based dataset HRAC-Precip24 0.01° 1998–2014

Table 1. Summary of the precipitation and elevation datasets used in this study.

Month Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

a (×10−3) 0.7316 0.8422 0.6415 0.4654 0.2078 0.1372 0.2642 0.2458 0.2344 0.3299 0.6928 0.7785

β −1.3202 −1.4827 −1.0475 −0.7371 −0.2777 −0.2639 −0.4941 −0.4266 −0.3592 −0.4655 −1.1823 −1.3022

Table 2. Monthly correction model coefficients. As computed by Hashemi et al.13, model coefficients were 
derived by using a Monte Carlo Cross Validation approach with input from four randomly selected years for the 
elevations above 1,500 m amsl.

https://doi.org/10.1038/s41597-020-0411-0
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By applying Eq. 1 to 3B43, Hashemi et al.13 were able to significantly reduce the bias in the high mountainous 
terrain of the CONUS relative to the ground-based estimate.

While the previous study corrected the TMPA product using the native 0.25° spatial resolution with an aggre-
gated DEM, this study disaggregates the TMPA data, allowing the DEM to retain its original spatial resolution and 
providing increased level of detail in the corrected precipitation. As the precipitation bias is sensitive to elevation, 
aggregated elevations have the potential to skew orographic precipitation estimates, since elevation may be higher 
or lower contributing to local changes in cloud uplift. Here, we chose a DEM with a horizontal grid spacing of 30 
arc-second (~1 km, or 0.0083°). The methodology is illustrated in Fig. 2 and explained in the following sections.

Interpolation/resampling and spatial resolution. To produce the High Resolution Altitude-Corrected 
Precipitation (HRAC-Precip), the original 3B43 product was resampled into the GTOPO30 DEM grid size 
(~1 km). This was done using nearest neighbor resampling to preserve all of the original values from 3B43. Each 
0.25° pixel was subdivided into approximately 900 smaller 0.0083° (30 arc-second) pixels, each containing the 
original 0.25°-pixel value, representing the original spatial average for the region. This provides a precipitation 
dataset on the DEM spatial grid.

Bias calculation and correction. To measure the differences between the satellite and gauge before and after 
the correction, we calculated the relative bias (δbi) between the high-resolution satellite data and the rain gauge 
measurement, pixel to point, for the entire country using Eq. 2:

δ =
−

+ +
bi S R

e S R
2

( ) (2)
i i

i i

where Ri is the rain gauge measurement and the denominator, e, contains a small value (15 mm/month, or 
0.5 mm/day) to normalize low precipitation amounts and reduce large relative bias from low-precipitation events.

To validate the corrected high-resolution satellite data, we compared the new product with rain gauge meas-
urements across the CONUS during 1998–2014 using the GHCN precipitation station dataset27. We assumed 
that each of the ~9,200 gauges represent an area equivalent to the 1 km pixel size. Based on the elevation clas-
sification (Fig. 1), only about 20% of the area of the CONUS is occupied by the high elevations (>1,500 m) for 
which we applied the correction model. As in the previous study, we did not apply any correction to the lower 
elevation bins, as the biases observed in TMPA-3B43 below 1,500 m amsl were very small. We compared each 
HRAC-Precip pixel with a corresponding gauge across the CONUS, with gauges overlapping of 50, 60, 70, 80, 90, 
and 100% of the time with the HRAC product. The comparison of the relative bias with the point elevations are 
shown in Fig. 3, demonstrating the topographic elevation dependent bias.

Data Records
Data used in the production of the new HRAC-Precip product are described in the Methods: Data Sources sec-
tion of this manuscript. The final HRAC-Precip product24 is available via GES DISC (https://disc.gsfc.nasa.gov/
datasets/HRAC_Precip_1). R programming language and Matlab scripts29 are used to produce (Eq. 1) and val-
idate (Eq. 2) this data as well as the Monte Carlo coefficient analysis and are publicly available through GitHub: 
https://github.com/JVFayne/HRAC-Precip_v1. Due to the simplicity of the correction formula, the scripts can be 
easily translated to other programming languages.

Fig. 2 Flowchart summarizing the methodology implemented in this study. 1.) 30 arc-second digital elevation 
model, 2.) TMPA-3B43 resampled into the DEM data (~1 km), and 3.) the correction model was applied to the 
downscaled TMPA-3B43 to produce high-resolution altitude-corrected TMPA 3B43 (High Resolution Altitude-
Corrected Precipitation HRAC-Precip).
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Fig. 3 Scatter plots depicting the relationship between measurement bias and elevation. The top two rows (a) 
show the average relative bias of the Decembers in 1998–2014 between the satellite product and the rain gauges 
matching 50-100% of the satellite period. The bottom two rows (b) show the relative bias between the elevation-
corrected satellite product and rain gauges matching 50-100% of the satellite period (1998–2014). A horizontal 
line is drawn at zero bias, with a vertical line drawn at 1,500 m amsl. All black dots shown in the graph represent 
stations, and the scatterplot is smoothed where the plotted points are densely clustered. A local polynomial 
regression line is shown in red, highlighting the relative bias trend with elevation.
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technical Validation
We calculated the relative bias (Eq. 2) between the HRAC-Precip and the rain gauge measurements across CONUS. 
Figure 3a depicts the average relative bias for all Decembers during 1998–2014 between the uncorrected 3B43 and 
rain gauge measurements against elevation in CONUS. To include as many as gauges as possible in the analysis, 
we calculated the relative bias including the gauges in which they had 50 to 100% temporal overlap (Fig. 1) with 
the satellite data period. The number of gauges at the highest elevation bin decreases from over 1,500 to about 500 
gauges for 50 to 100% temporal coverage, respectively (Fig. 1). As can be seen in Fig. 3a, the high-resolution satel-
lite product underestimated the ground-based measurements in the high elevations of the CONUS. Local polyno-
mial regression lines are used to summarize the relationship between the relative bias and the elevation. The local 
regression method “pulls” the regression line to where points are the densest, allowing for a more detailed view of 
the relationship between the relative bias and the elevation, particularly if the relationship is not perfectly linear30. 
The local regression lines for the relative bias in the temporal coverage (50–100%) shows a very small bias for ele-
vations below 1,500 m amsl, while the error increases sharply at higher elevations, mainly above 2,500 m amsl, in 
all temporal overlaps. It is important to note that since 3B43 applies a wind-induced under-catch correction to the 
GPCC surface gauge analysis, the average precipitation estimate by the satellite-gauge combination is expected to 
be higher than the rain gauge measurements for elevations below 1,500 m amsl.

In all cases, the calculated bias showed a linear dependence on the elevation where the negative bias increased 
with the elevation above 1,500 m amsl. However, the negative bias for the 100% match is noticeable at elevations 
lower than 1,500 m amsl, which is due to fewer gauges in the elevation bin 1,000–2,000 m, skewing the local 
regression line below zero bias at the elevation around 1,000 m.

The result is in agreement with the previous study conducted by Hashemi et al.13 with regards to the linear 
dependence of the bias on elevation using the native 0.25° TRMM 3B43 pixel size. To correct for this bias, we 
applied the same correction model and calculated monthly coefficients as suggested by Hashemi et al.13 to the 

Season

TMPA (3B43) HRAC-Precip

RMSE MAE RMSE MAE

Spring 37.2 28.49 33.8 25.25

Summer 23.07 16.52 21.67 15.63

Fall 56.19 47.51 48.4 40.13

Winter 52.49 42.1 43.72 33.84

Table 3. Root Mean Square Error and Mean Absolute Error statistics. Statistics are calculated only using the 
stations that cover the entire study period (1998–2014).

Fig. 4 Average seasonal precipitation from TMPA and HRAC-Precip. Precipitation estimates from TMPA (first 
row), the HRAC-Precip (second row), and their difference as [HRAC-Precip – TMPA] (third row).

https://doi.org/10.1038/s41597-020-0411-0
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resampled 1 km 3B43 data. We only applied the correction model to the pixels covering the elevation above 
1,500 m amsl, hence the low elevation precipitation pixels remained unchanged due to the negligible bias rel-
ative to the gauge measurements. Figure 3b depicts the scatter plots of the average relative bias between the 
HRAC-Precip and rain gauge measurements against the elevation for the same month as Fig. 3a. Figure 3b 
demonstrates the improvement of the relative bias from almost 100% to less than 20% across all temporal cover-
age between satellite and rain gauges. The results confirm that the suggested correction model is quite robust and 
the bias in the satellite is primarily dependent on elevation.

Using the stations covering 100% of the study period, the Root Mean Square Error (RMSE) and the Mean 
Absolute Error (MAE) was summarized by season and elevation above 1,500 m before and after correction 
(Table 3). These results demonstrate that the corrective method notably improved error estimates by an average 
RMSE of 11.44% and an average MAE of 12.98% across all seasons, indicating a substantial improvement over the 
original method in Hashemi et al.13, where MAE improvement averaged 5.4% across all months. The improve-
ment between studies may be due to the increased precision of the point-based gauge stations over the ~25 km 
gridded gauges and producing the higher spatial resolution HRAC-Precip product.

Figure 4 depicts the average seasonal precipitation estimated by 3B43 for fall and winter seasons during 1998–
2014 in comparison with the HRAC-Precip product. It is evident that HRAC captured more precipitation detail in 
the high mountainous terrain of the western CONUS relative to the original 3B43. As the bias correction increases 
with elevation, higher elevations will have the highest amount of correction. The amount of the correction 
applied to the satellite data varied between a few millimeters to about 75 mm, as can be seen in the Sierra Nevada 
Mountains in California and the Rocky Mountain in Colorado, due to the linear elevation-dependent formula.

To illustrate the differences between the original TMPA 3B43 and the HRAC-Precip, Fig. 5 shows the precip-
itation amount for the winter composite over a small region in the Sierra Nevada Mountains in California. We 
picked a mountainous area within a 5,625 km2 region, representing nine TMPA 3B43 pixels (0.25°; Fig. 5a,c) and 
compared with that of the HRAC-Precip (Fig. 5b,e). As Fig. 5 shows, the new product provided a higher level of 
detail in the mountainous region of the west relative to the original 3B43. For the selected region, TMPA 3B43 
produced nine pixels (Fig. 5c) with different precipitation values while the new product delivered ~8,100 pre-
cipitation values (Fig. 5e), providing more information about the precipitation over the same mountainous area. 
Where the altitude is lower than 1,500 m amsl (Fig. 5d), the original 3B43 values are present.

Usage Notes
High-resolution gridded precipitation product provide a valuable basis for hydrometeorology applications in 
the mountainous regions. However, their accuracies need to be validated31. Precipitation products from the 
TMPA have made a significant contribution to the field of hydrometeorological studies in the past two decades. 
Nevertheless, the use of TMPA in the local and regional studies has been challenging due to the spatial resolution 

Fig. 5 A mapped comparison of TMPA and HRAC-Precip focusing on the Sierra Nevada Mountains. The 
TMPA precipitation (a) for the winter composite (as in Fig. 4) in comparison with the new high resolution 
HRAC-Precip (b). The small region of the Sierra Nevada Mountains enclosed by the red box in (a) and (b) is 
enlarged to show nine pixels of the original 3B43 (c), the 30 arc-second DEM (d), and the HRAC-Precip (e).

https://doi.org/10.1038/s41597-020-0411-0


8Scientific Data |            (2020) 7:74  | https://doi.org/10.1038/s41597-020-0411-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

and accuracy in the mountainous regions. Toward this end, motivated by previous work by Hashemi et al.13, we 
built a simple methodology to simultaneously improve the accuracy and spatial resolution of monthly TMPA 
version 3B43, over the CONUS for the years 1998–2014. This new HRAC-Precip data product is available via GES 
DISC (https://disc.gsfc.nasa.gov/datasets/HRAC_Precip_1) in the NetCDF-4 format.

Using the Hashemi et al.13 result that the satellite underestimation in the high mountainous region of western 
CONUS is related to the elevation, the correction model assumes a linear relationship between bias and elevation, 
and substantially reduces bias in the satellite data in the elevation above 1,500 m amsl. Since elevation datasets 
are available at various resolutions, we resampled the TMPA-3B43 into the 1 km grid matching the reference ele-
vation dataset from GTOPO30 and applied the correction model to the new high-resolution interpolated 3B43, 
thereby producing HRAC-Precip. We compared the original satellite data as well as the new corrected product 
to the monthly precipitation measured at ~9,200 rain gauges across the country. The results showed a significant 
improvement in both accuracy and spatial resolution of the satellite data.

As high elevation areas are targeted for positive correction, there are some instances of positive biases becom-
ing more positive. However, the comparison of the mean absolute error (Table 3 Winter MAE: 42.1 → 33.84) 
demonstrates that the positive biases are not increasing at the same rate that the negative biases are being reduced, 
and that the correction method notably decreased the MAE, rather than merely shifting values into a positive 
bias. We believe that this methodology can be used across the high mountainous regions of the CONUS, where 
the gauge measurements are scarce, to improve the satellite precipitation data for hydrometeorology applications 
by providing very high-resolution gridded precipitation data at no cost and with high accuracy.

The entire dataset has been resampled to a higher spatial resolution to facilitate the correction in higher ele-
vations with complex topography. The areas that have been modified are limited to the western United States, as 
seen in Fig. 4, meaning the data in lower elevations that are dominant in the mid-west and the east will not differ 
from the original TMPA dataset. Thus, it is likely that studies using this dataset will focus in the western conti-
nental United States. Because the dataset is made at a higher spatial resolution, users are encouraged to apply it 
to regional analysis as they would using the original TMPA. Furthermore, finer basin-scale hydrological assess-
ments32 are made possible by the higher spatial resolution. In particular, we expect that this data will be used for 
water resources analysis and will be integrated with other high-resolution datasets such as remotely senses land 
cover and soil moisture data. In addition to HRAC, other gridded precipitation products over the United States 
are also available for the same period, such as PRISM used in this study to produce HRAC-Precip, GPCC used 
to produce TMPA, as well as CMORPH, PERSIANN, and many other gridded precipitation produced reanalysis 
methods. Each of these datasets are unique in how they were produced, with inherent biases. Scientific users are 
strongly encouraged to assess which of the many data products available are most appropriate for their study 
region and use case.

Code availability
R programming language and Matlab scripts29 used to produce (Eq. 1) and validate (Eq. 2) this data as well as 
the Monte Carlo coefficient analysis are publicly available with a public access license through GitHub: https://
github.com/JVFayne/HRAC-Precip_v1. Due to the simplicity of the correction formula, the scripts can be easily 
translated to other programming languages; the free to use open source packages ‘raster’, ‘rgdal’, and ‘rgeos’ are 
required to use the R scripts, although the code functions of these packages that are used in the scripts (such 
as reading and writing geospatial files) do not change over the course of version updates, and many other 
programming languages such as Matlab and Python use similar packages to read and write raster files. Additional 
software packages are not required to produce these data.
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