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SaVI, in silico generation of billions 
of easily synthesizable compounds 
through expert-system type rules
Hitesh Patel  1, Wolf-Dietrich Ihlenfeldt  2, Philip N. Judson  3, Yurii S. Moroz  4, 
Yuri Pevzner  1,5, Megan L. Peach  6, Victorien Delannée  1, Nadya I. tarasova  7 & 
Marc C. Nicklaus  1 ✉

We have made available a database of over 1 billion compounds predicted to be easily synthesizable, 
called Synthetically accessible Virtual Inventory (SaVI). they have been created by a set of 
transforms based on an adaptation and extension of the CHMtRN/PatRaN programming languages 
describing chemical synthesis expert knowledge, which originally stem from the LHaSa project. the 
chemoinformatics toolkit CACTVS was used to apply a total of 53 transforms to about 150,000 readily 
available building blocks (enamine.net). Only single-step, two-reactant syntheses were calculated 
for this database even though the technology can execute multi-step reactions. the possibility to 
incorporate scoring systems in CHMTRN allowed us to subdivide the database of 1.75 billion compounds 
in sets according to their predicted synthesizability, with the most-synthesizable class comprising 1.09 
billion synthetic products. Properties calculated for all SaVI products show that the database should 
be well-suited for drug discovery. It is being made publicly available for free download from https://doi.
org/10.35115/37n9-5738.

Background & Summary
In silico screening of large databases of existing screening samples for the purpose of computer-aided drug design 
has made significant strides in the recent past, both in terms of the methodologies available and the size and 
diversity of screening sample collections. Aggregated libraries on the order of 100 million on-the-shelf unique 
compounds are available in the commercial market1. Still, this represents only a microscopically small fraction 
of the drug-like small-molecule space, estimated to be on the order of 1021 to 1063 possible structures or even 
larger2–4.

Computational tools have been developed over the past four decades to help the synthetic chemists (and/or 
their CADD colleagues) find a viable synthetic route for a novel molecule. They can be broadly categorized into 
two classes: synthesizability estimation5–13; and synthetic route prediction (variously called computer assisted 
synthesis design (CASD), computer-assisted organic synthesis (CAOS), computer-assisted synthesis planning 
(CASP), or computer-assisted reaction design (CARD))14–32. These tools had their heyday during the 1980s and 
1990s but subsequently fell out of favor as an approach used in practice, and the entire field went essentially 
dormant for a good decade until the field experienced a revival of sorts in the 2010s.

Most importantly in our context, however, these approaches were all retrosynthetic in nature, i.e. trying to 
answer the question for a given molecule, “can it be synthesized?” or “how do I make it?” It seemed reasonable to 
turn this question on its head and instead ask: “what can we easily and cheaply synthesize?” and only then “go fish-
ing” (with all the modern CADD approaches) for bioactive compounds in such a large pool of easy-to-synthesize 
molecules. The forward-synthetic approach started up nearly as early with tools such as AHMOS, CAMEO, 
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AIPHOS etc.33–43. With this approach, one can for example a priori limit the number of reaction steps to just one, 
i.e. the simplest possible chemistry. The central point of SAVI is to avoid any synthetic heroics. Likewise, by giving 
the task of creating new molecules to the computer, one may reduce anthropogenic biases in chemical reaction 
choices44, thus hopefully covering chemical space better.

Three main components are required to make such an approach successful: (1) A set of highly predictive and 
richly annotated rules; (2) a significant-size database of reliably available and inexpensive starting materials; (3) a 
chemoinformatics engine capable of combining (1) and (2) to create a large number of molecules, each annotated 
with a proposed synthetic route description as well as with predicted properties seen as important in contempo-
rary cutting-edge drug design.

A set of rules was published by Hartenfeller et al.45, presenting robust organic synthesis reactions, encoded as 
SMIRKS patterns, that could be useful for in silico compound design. SMIRKS patterns, however, do not contain, 
and cannot easily be annotated with, any algorithmically usable chemistry knowledge for the reaction’s successful 
application in the laboratory. See below for more discussion of SMIRKS-based approaches. We therefore tapped 
into the source of synthetic transform knowledge with arguably the richest description of the chemical context 
for each reaction: the knowledgebase that underlies the computational embodiment of E.J. Corey’s seminal work 
on retrosynthetic analysis, the program LHASA (Logic and Heuristics Applied to Synthetic Analysis)14,46–50. A 
thorough review of knowledge-based expert systems in chemistry has been recently published51.

While LHASA is retrosynthetic, SAVI is strictly forward-synthetic. This implied the task to make LHASA trans-
forms, which are written for retrosynthetic application, work in a forward-synthetic context. (A forward-synthetic 
application of the LHASA rules, LCOLI, was reported in the early 2000s52 but does not seem to have progressed to 
any widely used tool.)

The active development of the LHASA knowledgebase essentially ceased in the late 1990s. Chemistries such 
as the Suzuki-Miyaura and Buchwald-Hartwig cross-coupling reactions that are widely used nowadays were thus 
not represented in the LHASA knowledgebase at the beginning of the SAVI project. We have therefore created 
novel transforms for such (more) modern chemistry.

After posting for free download an early alpha set (610,492 products) in 201553 and subsequently a beta set of 
the SAVI database comprising over 283 million structures in 2016, we are presenting here description and analy-
sis of a data set of over 1 billion SAVI products54. We point out that SAVI is an ongoing project, i.e. the approach 
and data described here are a snapshot of its current state.

Methods
transforms. Language pair CHMTRN/PATRAN for encoding transforms. The rules are written in the 
twin programming languages called CHMTRN and PATRAN originally developed in the LHASA project46,47,55. 
CHMTRN is probably best described as a hybrid of FORTRAN style programming with numerous buzz words 
providing a natural-language-like representation of detailed synthetic chemistry knowledge. It is used together 
with PATRAN, a chemical pattern description language. CHMTRN/PATRAN surpass other reaction transform 
descriptions such as SMIRKS in several respects: (1) Structural features that may be important for the reaction but 
are remote from the reaction center can be described and tested for (such as “a hydroxyl group within two atoms 
of one of the reaction center atoms”); (2) control and conditional functionality (such as “if… then.. else”, and 
“for each”) and subroutine usage are possible; (3) tests for structural elements other than atoms and bonds, e.g. 
physico-chemical properties (such as electrophilic localization energy) can be implemented; (4) scoring systems 
can be implemented.

The rules can employ a scoring system that is based on molecular structural features, which can either facilitate 
the reaction (e.g., increase the predicted yield), or impede it. The syntactic elements that increase the transform’s 
baseline score are the so-called ADD statements, and the SUBTRACT statements as their obvious counterpart. A 
third, related, syntactic element that is available if the author of a rule deems that structural features would make 
the reaction entirely unlikely to succeed is the KILL statement, whose meaning and effect is obvious. ADD and 
SUBTRACT values have traditionally been assigned in increments of five, and typically range from 5 to 30. In 
spite of their quantitative appearance, they are essentially qualitative human assessments.

We have adopted and extended the CHMTRN language for use in the SAVI project. CHMTRN/PATRAN, 
originally created for the design of retrosynthetic routes, have been re-implemented for the forward-synthetic 
SAVI project, but remain able to describe retro-, as well as forward, reactions. For any further explanations of 
these languages including their detailed syntax, we refer to a recent publication56.

Existing transform sets. The original LHASA knowledgebase in its entirety comprises about 2,300 transforms. 
We obtained all transforms from the two organizations that maintain it, the non-profit Lhasa Ltd in the UK 
(Leeds), and the small company LHASA LLC in the US (Cambridge, MA). The entire set is split roughly into 
1,000 basic rules for retrosynthesis planning maintained by the latter company, and 1,300 more-complex rules 
held, and recently made public57, by the former.

While a large number of transforms may give power to a retrosynthetic tool – which after all is intended to 
provide synthetic route suggestions for any molecule a user may submit – this is entirely unnecessary and was in 
fact undesirable at the inception of SAVI as we were looking for well-established chemistries that are easy, reliable, 
safe, high-yield etc. We therefore initially chose just over ten transforms from the knowledgebase with an empha-
sis on ring-forming reactions (Table 1), as well as to provide a test set for implementation of the CHMTRN/
PATRAN parser, development of the SAVI algorithms, and initial proof of principle of the feasibility of the entire 
approach. We used the internal quality annotations in the transforms (such as TYPICAL*YIELD, RELIABILITY, 
CONDITION*FLEXIBILITY etc.) to filter for overall “good” transforms.
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New transforms. Due to the age of the existing knowledgebase, it did not contain several named reactions 
that are widely used nowadays, such as Suzukia-Miyaura Cross-Coupling. We therefore created over fifty novel 
CHMTRN/PATRAN transforms (Table 2).

We focused on transforms that create novel molecules by making significant new bonds, some of which 
encode ring-forming reactions. In the SAVI production runs that created the data described here we did not use 
functional group interchange (FGI) transforms, including the newly written Balz-Schiemann Fluorination (ID 
6030) and Nitro Reduction to Primary Amine (ID 6040), which have significant expansion potential, being appli-
cable to 96,314,519 and 89,415,518 of the 1.75 billion SAVI products, respectively. They, and potentially other 
FGI transforms from the original LHASA transform set, may be used for future broadening of the SAVI database.

The general reaction scheme of SAVI in its current version is thus A + B → C (A, B: reactants; C: product) as 
we have limited the project to single-step application of transforms.

All newly created transforms have however been coded such that they could directly be used in a retrosyn-
thetic way, i.e. should the LHASA program be reactivated, or a successor retrosynthetic tool be created.

Chemoinformatics parsing of CHMtRN/PatRaN rules and computation of reactions. While 
CHMTRN/PATRAN was not publicly documented at the beginning of the project, we received sufficient docu-
mentation material from the original providers of the transforms to be able to implement a parser and bytecode 
interpreter, augmented with additional, connected program logic in the chemoinformatics toolkit CACTVS58 
(Xemistry GmbH, Glashütten, Germany, https://www.xemistry.com/) for at least a subset of these rules. Details of 
this work will be published elsewhere. We have now provided a description of the CHMTRN language56.

An important aspect of design and implementation of the CHMTRN/PATRAN parser and the SAVI algorithm 
based on it is that, as already mentioned, the knowledgebase rules were all written for retrosynthetic application, 
whereas the SAVI project is forward-synthetic. Since we preserved compatibility of newly written transforms with 
the original retrosynthetic approach, this required a somewhat indirect traversal of the actual rule by first enu-
merating all possible reactant pairs (if dealing with a two-reactant transform), then testing in a first pass whether 
the “lhasa react” command in CACTVS produces a possible product, and only then subjecting this (tentative) 
product to the retrosynthetic analysis of the rule proper (including possibly encountering the above-mentioned 
ADD, SUBTRACT, or KILL clauses), executed by the “lhasa score” command. This workflow is shown in Fig. 1.

While CACTVS, in an initial transform compilation stage, parses the LHASA transforms written in 
CHMTRN/PATRAN, the algorithmic contents of the rules are then converted into internal, binary, data 
structures in CACTVS. The rules are therefore made available on the SAVI download page in both versions: 
human-readable source code (.src files), and compiled lhasa binary (.clb files).

Building Blocks (BBs). Enamine (Kyiv, Ukraine, enamine.net) provided structural details of 155,129 BBs 
that were in stock as of December 2019. These BBs were standardized to remove fragments and salts. Duplicates 
were removed via a stereo-sensitive and tautomer-sensitive unique CACTVS hashcode identifier calculated for 
each building block. Further filters were applied to remove BBs containing less abundant isotopically labelled 
atoms, metals, as well as structures that were too complex to yield reasonable screening compounds, with the 
complexity quantitatively defined according to a modified Bertz/Hendrickson algorithm59–61. This left us with 
152,532 structures. They were used to identify two sets of BBs matching one or the other of the two reactants A 
and B (see above) for each of the 53 transforms individually, yielding a total of 106 such BB sets. In each of these 
individual matching procedures, we removed any BB matching both reagent roles (A and B) to avoid forming 
polymers, as well as any BB matching either one reagent role multiple times at different locations, to avoid form-
ing product mixtures. These filtering steps are obviously specific for each transform and reagent role, since they 
depend on the required reactive functional groups.

ID Name Ring Forming

1031 Paal-Knorr Pyrrole Synthesis Yes

1039 Feist Synthesis of Pyrroles Yes

1171 Hantzsch Thiazole Synthesis Yes

1391 Allene 2 + 2 Cycloaddition Yes

1439 Pyrazoles from Beta Carbonyl Carboxylic Acid Derivatives Yes

2201 Fused Arylpyridines via o-Aminocarbonyls Yes

2218 Tetrazoles from Azide and Nitriles Yes

2230 Phthalazin-1-ones from 2-Acylbenzoic Acids Yes

2238 Fused Aryl(2,3-H/R)Pyridines (Pictet-Spengler) Yes

2267 Sonogashira Coupling No

2269 Kabbe Synthesis of 4-Chromanones Yes

2630 Benzazepin-2-ones by Pictet-Spengler Reaction Yes

2684 Benzo[b]furans from 2-Hydroxyphenyl Acetylenes Yes

Table 1. Transforms initially chosen from existing LHASA knowledgebase.
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Protecting groups. Handling protecting groups in the most meaningful way can be somewhat tricky. The 
issue is that while the planning of a synthetic approach should take protecting groups into account, i.e. present the 
chemist with a protected product if available, computations on the molecule as a ligand, such as docking, pharma-
cophore searching, or ADMET property calculations, generally require the unprotected version.

It is possible that a BB set includes the protected version (R1-PG), the unprotected version (R1), or both. The 
CHMTRN/PATRAN logic considers the effect of exposed or protected functional groups and either rewards 
or penalizes the reaction accordingly. We therefore did not modify the BBs to computationally add or remove 
protecting groups. We did however generate modified products by removing protecting groups. Thus, whereas 
a standard reaction with reactants R1 and R2 yielding product P that does not involve any protecting group is 
executed to the scheme of:

R1 + R2 →(CHMTRN/PATRAN) P,

if R1 has a protecting group, which produced a product P-PG, we created a deprotected version P:

R1-PG + R2 →(CHMTRN/PATRAN) P-PG →(deprotection) P

ID Name Ring Forming

2875 Copper[I]-catalyzed azide-alkyne cycloaddition Yes

6003 Buchwald-Hartwig Ether Formation No

6004 Suzuki-Miyaura Cross-Coupling (Bromo) No

6005 Suzuki-Miyaura Cross-Coupling (Iodo) No

6006 Suzuki-Miyaura Cross-Coupling (Chloro) No

6008 Suzuki-Miyaura Cross-Coupling with Alkene No

6009 Suzuki-Miyaura Cross-Coupling of Alkenes No

6013 Hiyama Aryl-Alkenyl Cross-Coupling No

6014 Hiyama Non-Aromatic Cross-Coupling No

6015 Hiyama Allyl Cross-Coupling No

6016 Hiyama Carbonylative Cross-Coupling No

6017 Hiyama Cross-Coupling with Arylhydrazine No

6022 Liebeskind-Srogl Thioamide Coupling No

6024 Liebeskind-Srogl Nitrile Formation No

6025 Liebeskind-Srogl Heterocyclic Coupling No

6026 Sulfonamide Schotten-Baumann No

6027 Sulfonamide Schotten-Baumann from Sulfonate No

6028 Sulfonamide Schotten-Baumann from Thiol No

6029 Sulfonamide Schotten-Baumann from Aryl Bromide No

6031 Mitsunobu Reaction No

6032 Mitsunobu carbon-carbon bond formation No

6033 Mitsunobu SN2’ Reaction No

6034 Mitsunobu Imide Reaction No

6035 Mitsunobu Aryl Ether Formation No

6036 Mitsunobu Sulfonamide Reaction No

6038 Ester or Amide or Thiolester Formation No

6039 Williamson Ether Synthesis No

6041 Buchwald-Hartwig Reaction No

6043 Buchwald-Hartwig Reaction No

7005 Benzimidazoles from o-Phenylenediamines Yes

7009 Acylsulfonamide from Sulfonamide and Carboxylic Acid No

7013 Benzimidazoles from o-Phenylenediamines and Aldehydes Yes

7014 Benzimidazoles from o-Phenylenediamines and Aldehydes Yes

7015 Sulfonamide from sulfonic acid and amine No

7017 Sulfonamide alkylation with a cyclic ether No

7018 Sulfonamide acylation No

7019 Wittig Reaction No

7020 Wittig via Methoxy-Ylide No

7021 Horner-Wadsworth-Emmons Olefination No

7022 Chan-Lam coupling No

Table 2. Newly developed transforms.
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This deprotected version is saved in the product set, ready for CADD approaches. The original protected 
version of the product is added to the SAVI reaction details. In those cases where both a protected and an unpro-
tected version of a building block amenable to a given transform were present in the BB set, a duplicate depro-
tected product P may have been produced, but only if the unprotected version of the BB did not trigger a KILL 
statement removing that reaction altogether. Penalization of the reaction with the unprotected BB (if it was not 
KILLed) is quite likely. It is therefore probable that such reactions are sorted into the “negative” (i.e. penalized) 
subset of SAVI products (see below) via the classification by reaction scores that we apply.

We used the following structures for the handling of protecting groups:
Amino protecting groups: tert-Butoxy carbamate (Boc), fluorenylmethyloxycarbonyl (Fmoc), benzyloxy car-

bamate (CBz). Carboxyl protecting groups: tert-Butyl ester (t-Bu ester), benzyl ester (Bz ester). Hydroxyl protect-
ing groups: tert-Butyl ether (t-Bu ether), benzoate (Bz).

Predicted properties. Each SAVI product has been annotated with over 60 properties, including data about 
the BBs and proposed reaction (catalog numbers, reactants, general conditions, protection, predicted yield etc.), 
identifiers/representations of both the BBs and the product, as well as “drug design” properties such as “Rule of 
Five” (RO5)62 and “Rule of Three“62,63 violations, PAINS (pan assay interference compounds)64 filter matches, 
FSP3 (fraction of sp3 hybridized carbons), and log P. The complete list is available on the SAVI Download web 
page54 as well as in sections 1 and 2 of Supplementary Information 1. Section 3 of Supplementary Information 1 
shows the fields written in SD file format of a SAVI product file. We are also computing and will make available 
in the future about 100 different ADME/Tox properties using the program ADMET Predictor (Simulations Plus, 
Lancaster, CA).

One of the annotations merits a brief elaboration. In addition to the widely used though increasingly contro-
versial65 PAINS filter64 matches, we have annotated all SAVI products with a score based on 275 rules for iden-
tifying potentially reactive or promiscuous compounds that might interfere with biological assays. We believe 
that these rules, described by Bruns and Watson66 as being based on years of assaying experience at Eli Lilly, have 
more relevance and greater discriminatory and predictive power than the PAINS filters. All 275 rules have been 
implemented in CACTVS specifically in the context of the SAVI project (with help from Ian Watson), to produce 
an overall score called “Bruns and Watson demerit” (the lower the value the better).

Hardware and database. The runs that generated the data presented here were performed in December 
2019 – January 2020 on the NIH Biowulf system, a Linux cluster of several tens of thousands of cores (https://hpc.
nih.gov/systems/). Due to the “embarrassingly parallel” nature of the SAVI product generation runs (each reac-
tant pair can be processed independently of all others), the entire job was split into nearly 69,000 subjobs, with 
4,000 run simultaneously at any time (which was the per-user limit of jobs on Biowulf). The output of the jobs, 
both the structure data and the annotations, was first written to text files (CSV), then loaded into a PostgreSQL 
database, which can be queried and analyzed, and whence other formats such as SDF and SMILES lists can be 
written. A total of about 2,084,000 CPU hours on Biowulf were used to generate this 2020 version of the SAVI 
database.

Data Records
Building blocks used. Out of the total 152,532 accepted Enamine building blocks, application of the pat-
tern-matching part of the 53 productive transforms found 143,365 BBs that fit one or several transforms as a 
possible reactant (see Online-only Table 1).

Fig. 1 SAVI workflow describing adaptation of retrosynthetic transforms for forward synthesis.
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Reactions and unique products generated. A total of 3.59 billion reactant pairs were created 
(Online-only Table 1) and then subjected to the reaction logic of the 53 productive transforms. This yielded 
1,748,464,003 reactions saved (Table 3)54. Thus, the loss rate caused by encountering KILL statements was about 
51%. We re-emphasize that this is a good result: the reduction of the “haystack.” Fig. 2 shows the success rate for 
each productive transform. The total number of saved reactions per transform is the product of the reaction pair 
count (Table 3, column 3) with the reaction rate. One can see that the reaction success rates span a range from 
practically 0% to 100%. It is difficult to decide at this point if these reaction rates are a realistic representation of 
what actual synthesis would yield for the BBs amenable to each transform or if this indicates that the transforms 
could still be improved.

Table 3 shows the numbers of the saved reactions binned into the different scoring classes (“Plus” or “Negn” 
with n equaling at least 0, 10, 20, or 30). We observe that the majority of products (62.6%) are in the Plus class. 
At the same time, the highest occupancy among the Neg classes is in the highest (i.e. worst) Neg class. This sug-
gests that it may indeed be advisable, especially for the highly productive transforms, to limit oneself to the Plus 
subsets. The “Scoring Class Distribution” sheet in Supplementary Information 2 shows the scoring class distri-
butions for each individual transform. Two of the transforms, Kabbe Synthesis of 4-Chromanones (ID 2296) and 
Benzazepin-2-ones by Pictet-Spengler Reaction (ID 2630) generated 10,000 or more products, but none in the 
Plus class.

As already mentioned, it is entirely possible, and in no way undesirable, that the same molecule is produced 
by two different reactions, be it from the same building blocks but different procedures, or from different BBs and 
either the same or different transforms. Counting the unique products out of the 1,748,464,003 saved reactions 
yielded 1,526,316,392 molecules.

Success rates and implicit SaR series. If we take the total number of accepted BBs, 152,532, observe that 
every one of the 53 used reactions essentially follows the pattern A + B → C, we can calculate the theoretically 
possible maximum number of products as a ½ * 153,5322 * 53 ~ 617 billion. (We ignore, for simplicity’s sake, the 
possibility that in some cases, when multiple reactive groups are present in a BB, one could have A + B → C and 
B + A → C’. We remove such cases anyway during the reactant pair generation.) Our actually generated product 
set being 1.75 billion, our success rate in this sense is about 1/350. This reduction is caused by both (a) the fact 
that most pairs R1 and R2 do not match the PATRAN patterns of any of our transforms, and (b) the 51% loss rate 
encountered by KILL statements in the CHMTRN reaction logic.

The totality of potential products defined from NBB building blocks and nt transforms as NBB
2 * nt can be seen 

as a large, triangular, three-dimensional matrix. Even though this matrix is very sparse, it contains for each filled 
cell (i.e. saved product) a large set of neighbors with R1 being constant and R2 varying, and vice versa. These sets 
can be seen as SAR series of sorts, which is a built-in feature of the approach. Due to the variety of chemistries 
presented in our transforms, the diversity within these series however is likely higher than in typical large-scale 
combinatorial libraries. Detailed diversity analysis of SAVI will therefore be needed to determine how close these 
compound series are to SAR series typically used in medicinal chemistry. For each accepted SAVI product, we can 
estimate the average size of the SAR series as follows. Remembering that the duplication across product space is 
about 15%, i.e. 85% of the products occur only once across all transforms, we can without too much error project 
all products onto the flattened two-dimensional matrix sized 143,365 × 143,365, which has 20.6 billion cells. If 
all cells were filled in a triangular occupation, each generated molecule would have ½ * 143,365 SAR neighbors 
within each row, and the same number within each column, i.e. a total of about 143,000 SAR neighbors. A SAR 
neighbor is defined here as a molecule having the same BB R1 but any other R2, and equivalently for R2. However, 
we have only about 17% of the (triangular) matrix elements filled with truly generated products. This yields an 
average of about 24,800 SAR neighbors for each SAVI product.

Protected and unprotected SaVI products. Nearly 10% of the products (153,001,115 products) were 
generated from at least one protected building block. Protecting groups were removed before writing these prod-
ucts to the SAVI database. A suffix was added to the SAVI ID of a product: UN (UNprotected) if the product was 
generated from unprotected BBs; DP (DeProtected) if the product was generated from protected BBs but depro-
tected before writing it to the SAVI database.

Class
SAVI 
products

Unique within 
the class

Percentage of total 
SAVI products

Plus 1,094,782,440 976,051,945 62.61%

Neg0 609,262 579,532 0.03%

Neg10 54,775,204 48,036,148 3.13%

Neg20 82,180,372 80,366,188 4.7%

Neg30 516,116,725 457,508,945 29.52%

All combined 1,748,464,003 1,526,316,392(a) 100%

Table 3. Percentage of total SAVI products and unique molecules saved per scoring class. (a)The unique-
structure numbers for the individual classes do not add up to the unique structures for all classes combined 
since some products are present in more than one class.
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technical Validation
Overlap with other databases. We calculated the overlap of SAVI with three large databases (Table 4): the 
REAL (REadily AccesibLe) database from Enamine67, the iResearch Library (iRL) from ChemNavigator/Sigma 
Aldrich1, and PubChem68. For PubChem, we measured an overlap rate of 0.3%, i.e. >99% of the SAVI products 
are not in PubChem. Still, this small percentage corresponds to more than 5 million molecules that are in both 
databases. Among those are structures that have biological assay data (186,291 compounds). Overlap analysis 

Fig. 2 Reaction success rate (percentage of saved reactions out of tested reactant pairs). (Counts were adjusted 
for duplication in products due to alkene reactivity at both ends of the bond (ID 6009) or tautomerism (IDs 
7005, 7013, 7014)).
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with DrugBank V.5.1.569 showed that 547 SAVI compounds are in fact drugs. These compounds show that SAVI 
does generate “real” molecules.

Based on the fact that both the SAVI database and the REAL database use Enamine BBs, it is of interest to 
know the overlap between those very large databases. We see that on the order of 10% of either database is also 
present in the other. This is reassuring both in the sense that reasonable chemistry is being created by SAVI and 
that each of these Enamine-BB-based databases provides its own richness of unique structures.

We also notice that we in fact “re-synthesize” 34,241 of the building blocks themselves. The most likely expla-
nation is that the Enamine BBs contains series of BBs that were synthetically based on each other. This again 
shows that calling a molecule a building block is mostly a matter of definition and practical considerations, not 
an invariant chemical property.

Ring system analysis. As mentioned above, one goal in the creation of the SAVI versions so far has been 
to build novel molecules, not just modify existing molecules with new or interchanged functional groups. We 
aimed for this by emphasizing coupling and ring-building transforms. Sixteen of the 53 transforms are exclusively 
ring-forming (see Tables 1 and 2, third column), which yielded 8,227,198 products with newly formed rings. We 
note that intra-molecular application of coupling transforms can also lead to the formation of rings. However, 
this may also lead to polymer formation and was therefore generally excluded in this version of SAVI. Extra infor-
mation may be added in the future into the transforms themselves to better handle intra-molecular cyclization.

Novel ring systems, i.e. ring systems never before seen in any known compound, have most likely also been 
generated by SAVI. Conducting a stringent analysis would require a reference body of molecules. Arguably, 
this would be the Chemical Abstracts Service (CAS) REGISTRY, which is however not readily available in bulk. 
Manual checking in SciFinder of several hundred cases and extrapolation to the entire database indicate that 
more than 1,000 novel ring systems may have been created by SAVI.

A count of ring systems, both aromatic and aliphatic, yielded 39,036 unique ring systems in SAVI products. 
Rings that were already present in the building blocks were also counted. We compared the SAVI ring system 
count with the ring systems found in three large databases (Table 5).

We note that the REAL database, while of similar size to SAVI, and based on essentially the same building 
block set, contain less than a tenth of the number of ring systems found in SAVI. This is likely due to the fact that 
the chemistries involved in creating SAVI contained more ring-forming transforms than those used for REAL. 
PubChem, a very diverse database aggregated from hundreds of sources70 with very different types of compounds, 
shows a much larger number of different ring systems. Yet, the iRL, also combining hundreds of sources (but only 
of screening samples), only slightly surpasses SAVI. Perhaps most interestingly, the ring overlap subsets of SAVI 
(Table 5) comprised only a few thousand cases for each of the three databases (PubChem: 3,295; REAL: 2,145; 
iRL: 2,883) while the ring systems present only in SAVI added up to 35,623.

Distribution of properties relevant for drug design. Figure 3 depicts a selection of property distri-
butions of SAVI that are generally seen as important for drug design. The plots shown here are for the Plus 
subset of SAVI; values for the Negn” sets (plots are provided in sections 5, 6, 7 and 8 of the Supplementary 
Information 1) show similar distributions. These together with the additional properties provided in section 4 of 
the Supplementary Information 1 show that the SAVI product set is well suited for drug development. We note 
that the distribution of QED (quantitative estimate of drug-likeness) values is more drug-like than any of the 
databases analyzed in the original QED publication71. Similarly, the Bruns & Watson demerits66 are within the 
strict limit of <100 used at Eli Lilly in 41% of the Plus SAVI compounds, and within the looser Eli Lilly limit of 
<160 in 65% of the cases.

Similarities and differences to other compound generation and synthesis prediction sys-
tems. Virtual libraries can significantly enlarge the part of chemistry space amenable to in silico screening. 
Prominent examples of very large libraries of enumerated compounds are the GDB databases, in particular 

Database Access date
Database 
size

Overlap with 
SAVI

REAL67 February-2020 ~1.2 B 142,806,769

iRL 2017Q495 December-2017 ~132 M 10,777,739

PubChem68 February-2020 ~102 M 5,390,125

SAVI BBs December-2019 ~152 K 34,241

Table 4. Overlap of SAVI with other large databases.

Database Access date
Database 
size

No. of unique 
ring systems

Overlap with 
SAVI

REAL67 February-2020 ~1.2 B 3,389 2,145

iRL 2017Q495 December-2017 ~132 M 56,144 2,883

PubChem68 February-2020 ~102 M 521,946 3,295

Table 5. Ring systems overlap of SAVI with other large databases.
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GDB-17 of 166 billion enumerated organic small molecules of up to 17 heavy atoms of C, N, O, S, and halogens72. 
However, such automatically enumerated databases – as well as in principle any purely de novo designed molecule 
– suffer from the significant drawback that no practical synthetic route is a priori attached to these structures, and 
that therefore, in general, (a) manual – and thus expensive – investigation of possible synthetic routes is necessary, 

Fig. 3 Distributions of drug-design relevant properties calculated for the Plus subset of SAVI (a) Molecular 
weight. (b) XlogP294. (c) Total Polar Surface Area (Å2). (d) Fraction of sp3 hybridized carbons. (e) Number of 
rotatable bonds. (f) QED (Quantitative Estimate of Druglikeness) score71. (g) PAINS (Pan Assay Interference 
Compounds) counts. (h) Bruns & Watson demerits for Identifying Potentially Reactive or Promiscuous 
Compounds66.
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(b) resulting routes may be complicated, multi-step syntheses, and (c) synthesis of the molecule may in the end 
prove altogether unsuccessful (or untenably expensive) even after significant effort.

Pharmaceutical companies have recognized since about 2010 the need for, and benefits of, generating 
large virtual libraries of easily synthesizable compounds such as Pfizer’s Global Virtual Library73, Boehringer 
Ingleheim’s BI CLAIM74, and Eli Lilly’s Proximal Lilly Collection (PLC)75, the last probably being closest concep-
tually to SAVI. Still, there are several, and important, differences between these and SAVI, not least the fact that 
the resulting virtual libraries are proprietary and thus not available to the public.

The Hartenfeller publication45 and its subsequent companion paper analyzing to what degree products gener-
ated with these chemistries would cover the bioactivity-relevant chemical space76, sparked a number of projects 
that based large virtual libraries on these SMIRKS-encoded “Hartenfeller reactions”77–79. Numerous other pro-
jects involving virtual and tangible chemistry spaces and reaction prediction tools have emerged in the recent 
past80,81 and have been reviewed in the literature82, as have projects of using such ultra-large libraries for virtual 
screening83,84

The majority of rule-based approaches use SMIRKS to encode the transforms needed to cover the desired 
chemical space85,86. The SMIRKS used by these tools can number in the thousands, especially if retrosynthetic 
prediction is the goal (“predict the synthesis of a given molecule in any possible way”). SMIRKS, however, do not 
allow one to directly encode the synthetic chemists’ accumulated knowledge about constraints and limitations 
of the reactions as a function of the structural details of the reactants. For example, does the SMIRKS for the 
Sonogashira coupling45,

�= − .[#6;$(C C [#6]) , $(c:c) :1] [Br,I] [CH1;$(C#CC):2] [#6:1] [C:2]

really describe decades of experience of thousands of chemists about when this reaction works, how well, with 
what yields, and when it might not work at all? On the last point, there is no way to incorporate into a (single) 
SMIRKS a condition for rejecting the reaction altogether.

SAVI, in contrast, is an expert system approach with a detailed reaction logic that can be incorporated in the 
CHMTRN/PATRAN files. One such rule can therefore correspond to a large number of SMIRKS (some of which 
might be quite complicated); and CHMTRN/PATRAN can include features that cannot be expressed in SMIRKS 
at all (such as computed electron density).

A number of recent approaches are based on statistical evaluation of existing large bodies of reaction 
data87–90 by unleashing modern machine learning methods on these data sets. Molecular structure representa-
tion is often done by SMILES. While impressive results have been achieved by these approaches whose central 
machine-learning algorithms may or may not be aware of chemistry at all, we see several advantages of SAVI 
compared to these approaches. Learning from existing data sets will always learn what is known, and preferen-
tially learn what is widely used, i.e. strongly represented in the learning set. CHMTRN/PATRAN transforms can, 
in contrast, be used to add brand-new or unpublished chemistry into SAVI without having to wait for reaction 
databases to fill up with examples of such reactions. This has not been used much for SAVI up until now because 
we first wanted to populate the SAVI transform set with reliable, well-known chemistry that would be readily 
accepted by chemists. However, we have added new transforms in the recent past (not used for creation of the 
data presented here) as new synthetic approaches are being published. The latest examples include sulfonimid-
amide synthesis91 and modular click chemistry. With accelerating advances in synthetic organic chemistry we 
expect rapid growth of SAVI92.

The usage of sophisticated transforms that incorporate a scoring system makes it possible to use negative 
outcomes of the reaction logic (KILLed reactions, reactions with SUBTRACT demerits) to create large sets of 
(computationally) failed reactions, which may be useful for, e.g., machine learning approaches. Such efforts are 
currently being investigated.

Multi-step reactions. Multi-step reactions are trivial to conceive in SAVI but daunting in their pro-
spective sizes. For example, taking just the output of the click chemistry transform (transform ID 2875, 
Copper[I]-catalyzed azide-alkyne cycloaddition), which produced 1 million molecules, as input for a second step 
(i.e. combining them with the standard BB compounds), yielded more than 50 billion reactant pairs. Taking the 
entire 1 billion current SAVI output set instead as new BBs can be estimated to yield 1 trillion actually accepted 
reactions. Techniques such as targeted growing into this huge space of 3-reactant, 2-step, SAVI syntheses will be 
needed, which will be the topic of future reports.

applications. The SAVI database is being used in a number of drug discovery projects at the National Cancer 
Institute and with collaborators world-wide, including against SARS-CoV-2 targets. Reports on these projects 
will be published separately.

Usage Notes
In the context of the SAVI project, we employ a chemoinformatics usage of terms, which may differ from syn-
thetic chemists’ conventions. The (typically: named) chemistries used in SAVI are described by “transforms” (also 
called “rules”), whereas the application of a transform to a specific set of starting materials yields a “reaction.” For 
example, there is one Sonogashira coupling transform/rule, but its application to all possible starting materials 
may yield tens of millions of Sonogashira reactions, each with a specific reaction product. The starting materi-
als are taken from a set of possible reactants, which are also called building blocks (BB(s)). Some of the newly 
added named reactions were encoded in several different transforms expressing variants of reaction mechanisms, 
which we call “chemistries.” For example, the Suzuki-Miyaura chemistry is encoded in six different transforms: 
Suzuki-Miyaura Cross-Coupling (Bromo), Suzuki-Miyaura Cross-Coupling (Iodo), etc. (see Table 2).
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Code availability
The academic version of the chemoinformatics toolkit CACTVS is available for free download from https://
www.xemistry.com/academic/ for evaluation and for use in research and education (a paid license is required for 
commercial use). The transforms used in the generation of the SAVI database are freely available from https://
cactus.nci.nih.gov/download/savi_download/. The source code of the “lhasa” command in CACTVS that was 
developed for the SAVI project can be obtained from W.-D. Ihlenfeldt (info@xemistry.com, +49 6174 201455) 
upon request. Development of a different, more public, way of using CHMTRN/PATRAN transforms for SAVI-
type product generation based on open-source code has begun but is in its early stages93.
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