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A spatial-temporal continuous 
dataset of the transpiration to 
evapotranspiration ratio in China 
from 1981–2015
Zhongen Niu1,2,3, Honglin He1,2,4 ✉, Gaofeng Zhu5, Xiaoli Ren1,2, Li Zhang1,2,4 & Kun Zhang6

The ratio of plant transpiration to total terrestrial evapotranspiration (T/ET) captures the role 
of vegetation in surface-atmosphere interactions. However, several studies have documented a 
large variability in T/ET. In this paper, we present a new T/ET dataset (also including transpiration, 
evapotranspiration data) for China from 1981 to 2015 with spatial and temporal resolutions of 0.05° 
and 8 days, respectively. The T/ET dataset is based on a model-data fusion method that integrates the 
Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model with multivariate observational datasets 
(transpiration and evapotranspiration). The dataset is driven by satellite-based leaf area index (LAI) 
data from GLASS and GLOBMAP, and climate data from the Chinese Ecosystem Research Network 
(CERN). Observational annual T/ET were used to validate the model, with R2 and RMSE values were 0.73 
and 0.07 (12.41%), respectively. The dataset provides significant insight into T/ET and its changes over 
the Chinese terrestrial ecosystem and will be beneficial for understanding the hydrological cycle and 
energy budgets between the land and the atmosphere.

Background & Summary
Evapotranspiration (ET) is a keystone climate variable that uniquely links the hydrological cycle, energy budget, 
and carbon cycle1,2. This process consists of physical evaporation (soil evaporation and canopy interception evap-
oration) and biological transpiration (T)3. Quantifying the ratio of transpiration to total evapotranspiration (T/
ET) is an important topic of research4, it is crucial for estimating the land water flux and providing insight into the 
interactions between the terrestrial ecosystem and atmosphere5,6. Furthermore, long-term time series of spatially 
and temporally continuous T/ET products can be used to generate relatively more accurate carbon cycle projec-
tions because the biological process impacts of transpiration also control carbon dioxide exchange between the 
land and atmosphere7. This can help improve our understanding of feedback mechanisms between environmental 
factors and hydrological components, especially within the context of climate change8,9.

Multiple approaches have been developed to estimate T/ET at global or regional scales in recent decades. 
However, their values are still subject to debate1,10–16. For example, one isotope-based method indicated that T/
ET was approximately 0.80–0.90 at the global scale1, which may be an overestimation17,18. Another study reported 
global T/ET values of approximately 0.64 ± 0.13 using the same method11. Moreover, the isotope-based method 
is restricted by the observation period; therefore, it is difficult to obtain long-term data series. Models provide an 
effective way of estimating T/ET on both temporal and spatial scales. However, due to the inaccurate representa-
tion of canopy light use, interception loss and root water uptake process in earth system models, the Coupled 
Model Intercomparison Project phase 5 (CMIP5) models underestimate T/ET, with a mean value of 0.41 ± 0.117. 
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Additionally, these models cannot capture the opposing trends of transpiration and soil evaporation under ter-
restrial ecosystem greening19, which has been widely monitored around the world, especially in China9. The large 
T/ET variability reported by previous studies suggests that accuracy continues to be a challenge20. Moreover, to 
the best of our knowledge, no spatial-temporal continuous and open access T/ET product exists for the entire 
Chinese terrestrial ecosystem.

Site measurements can provide accurate local information related to T/ET; however, their relative scarcity and 
inconsistent measurement periods hinder large-scale upscaling7. Fortunately, model-data fusion (MDF) methods 
are available to assist with data analysis and generate links to models21. By combining multisite observations with 
a model, MDF can be used to optimize the generic nature of model parameters within plant functional types. If a 
model with optimized parameters is proved to perform well in T/ET simulations according to the site measure-
ments within a plant functional type, one can assume that the model will accurately capture the T/ET spatial var-
iations of the plant function type under present or future climate conditions7,22. MDF methods are routinely used 
to optimize model parameters based on evapotranspiration observations alone23–25. These studies significantly 
improved the accuracy of evapotranspiration simulations but still involved large uncertainties in evapotranspi-
ration partitioning26,27. To improve the accuracy of evapotranspiration partitioning, Niu et al. (2019) applied a 
model-fusion approach that integrates PT-JPL model with multivariate observation datasets to the estimated T/
ET value of the Chinese terrestrial ecosystem.

The objective of this study is to provide a long-term spatially and temporally consistent T/ET data source with 
spatiotemporal resolution (0.05°, 8-days and annual) and describe the accuracies of the dataset and method used. 
The procedure for producing and validating this dataset is shown schematically in Fig. 1 and described in detail 
in the Methods section. The proposed dataset will be valuable for addressing scientific questions associated with 
land-atmosphere interactions, global change, and ecological evolution, among others.
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Fig. 1  Procedure for producing a spatial-temporal continuous T/ET dataset based on the model-data fusion 
method. First, model forcing data and constraining data were prepared, respectively. Second, the sensitivity 
parameters of the PT-JPL model were optimized using the model-data fusion method. Third, the T/ET dataset 
is calculated using the PT-JPL model with optimization parameters. DEMC stands for Differential Evolution 
Markov Chain.
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Methods
Three main steps are followed to create the T/ET dataset of Chinese terrestrial ecosystems from 1981–2015:

1.	 Data preparation. An ensemble dataset with 0.05° spatial resolution and 8-day temporal resolution (includ-
ing leaf area index, net radiation, air temperature, relative humidity) and land cover data were prepared to 
facilitate the PT-JPL model. Meanwhile, 127 records of annual evapotranspiration for 39 sites, and 48 records 
of annual transpiration for 26 sites which were obtained from published literature and ChinaFLUX were 
used to calibrate the PT-JPL model. Annual T/ET for 18 sites collected from published literature and daily 
evapotranspiration acquired from 6 ChinaFLUX sites were used to validate the PT-JPL model with optimized 
parameters.

2.	 Implementation of MDF method. We optimized the sensitivity PT-JPL parameters using a model-data fu-
sion method. Firstly, the Sobol’ method was used to identify the sensitivity parameters of the PT-JPL model. 
Then, the Differential Evolution Markov Chain (DEMC) that integrated the PT-JPL model with multiple ob-
servational data (i.e., annual evapotranspiration and transpiration data) was used to optimize the sensitivity 
parameters.

3.	 T/ET simulation. The PT-JPL model with optimized parameters was used to simulate evapotranspiration 
and transpiration at the annual and daily scale, respectively. T/ET values were calculated as the quotient of 
simulated transpiration and evapotranspiration.

Each step is explained in more detail below.

Data Sets.  Forcing datasets.  We used multiple datasets as the input of the PT-JPL model. All datasets used 
are summarized in Table 1, and detailed processing methods are described below.

Leaf area index. LAI is a major input data for the PT-JPL model. Specifically, the arithmetic mean value of 
Long-term Global Mapping (GLOBMAP) LAI28 and Global Land Surface Satellite (GLASS) LAI29,30 were used to 
drive the model. To derive long-term LAI records back to 1981, the GLOBMAP LAI was generated by the quan-
titative fusion of MODIS and AVHRR data, with a spatial resolution of 0.08°, a half-monthly temporal resolution 
for the period ranging from 1981 to 2000, and an 8-day temporal resolution for the period ranging from 2001 
to 2015. Compared with field measurement data, the GLOBALMAOP LAI has an error of 0.81 LAI on average, 
with R2 value being 0.7128. The GLASS LAI was also constructed using AVHRR and MODIS data with a general 
regression neural network, the spatial and temporal resolution was 0.05° and 8 days, respectively. The GLASS 
LAI values were closer to the mean values of the high-resolution LAI maps, with the R2 and RMSE values being 
0.81 and 0.78, respectively30. We first resampled the LAI datasets to 8-day temporal resolution and 0.05° spatial 
resolution, respectively. Then, the arithmetic mean values of the LAI datasets were calculated as the input of the 
PT-JPL model.

Meteorological inputs. Meteorological forcing data such as net radiation, mean air temperature, and relative 
humidity were prepared using the meteorological raster dataset from the Chinese Ecosystem Research Network 
(CERN). The mean air temperature and relative humidity were generated from 1098 ground meteorological sta-
tions using the ANUSPLIN interpolation computer software31. The interpolated air temperature data was sat-
isfactory with the R2 value being 0.94, compared to seven flux monitoring towers in the Asian region31. In this 
study, we compared the interpolated relative humidity with sites measurement data from 6 ChinaFLUX sites 
(Supplementary Table S1), whereby R2 and RMSE values were 0.85 and 0.86 (12.72% compared to the average 
relative humidity), respectively (Supplementary Fig. S1). The net radiation data were calculated from the FAO 
Penman model based on site measurement data from the China Meteorological Data Service Center, including 53 
radiation sites, which were used to optimize parameters, and 699 weather sites, which were used to calculate the 
net radiation according to the optimized FAO Penman model and measurement data of these stations. Finally, the 
grid net radiation data were interpolated using ANUSPLIN software32,33. Compared with the data from observed 
sites, the simulated net radiation had a relatively high simulation accuracy with the R2 value being 0.72, and the 
mean relative error being 13%32. The original data had a temporal and spatial resolution of 8 days and 1 km, and 
they were resampled to a spatial resolution of 0.05° to match that of the LAI data.

Land cover. Land cover data of China obtained from the National Earth System Science Data Center, National 
Science & Technology Infrastructure of China, was constructed based on Landsat and GF-2. The classification 
and overall accuracies were ultimately evaluated through the confusion matrix. The comprehensive evaluation 
accuracy of the first level of land use was >93% and that of the second level was >90%34,35. The vegetation was 
divided into four types: forest, shrubland, grassland, and cropland. The original spatial resolution was 1 km, which 
was resampled to 0.05° to match that of LAI data.

Dataset Model input
Spatial 
resolution Temporal resolution Reference URL

GLASS Leaf area index 0.05° 8-day http://www.glass.umd.edu/index.html

GLOBMAP Leaf area index 0.08° Half-monthly and 8-day http://www.modis.cn/

CERN Meteorological inputs 1 km 8-day http://www.cnern.org.cn/index.jsp

NESSD Land cover 1 km Annual http://www.geodata.cn/

Table 1.  Input datasets for the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model.
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Calibration and validation datasets.  Site measured annual evapotranspiration and transpiration were used 
to determine the PT-JPL model, and literature collection annual T/ET data and daily evapotranspiration from 
ChinaFLUX were used to validate the model across different ecosystems (Table 2). The measured sites have a 
broad spatial distribution and cover all major ecosystem types in China (Supplementary Fig. S2).

Annual evapotranspiration observations. By synthesizing eddy-covariance water flux data in China from both 
ChinaFLUX observations and published literature, we constructed the dataset of the actual annual evapotranspi-
ration of typical terrestrial ecosystems across China. The dataset contained 127 records of actual annual evapo-
transpiration for 39 ecosystems, covering 18 forests, 3 shrublands, 8 grasslands, and 10 croplands (Supplementary 
Table S2)32,36–59. The following methods were adopted in the screening of these data: (1) evapotranspiration data 
were uniformly measured by the eddy-covariance method, (2) only sites with at least one year of continuous flux 
measurements were included, (3) only one site was selected when there are multiple sites with in a remote-sensing 
pixels.

Daily evapotranspiration observations. We obtained the complete time series of 30 min evapotranspiration 
data from 6 sites, covering 3 forests, 1 shrubland, 1 grassland, and 1 cropland. Supplementary Table S1 shows 
information on these sites. The routine processing procedures recommend by ChinaFLUX were applied to pro-
cess the evapotranspiration data, including coordinate rotation, Webb-Pearman-Leuning (WPL) correction, stor-
age term calculation, outlier filter, and gap filling60. Finally, the 30 min evapotranspiration data were collected to 
obtain 8-day evapotranspiration data for a given ecosystem.

Annual transpiration observations. Transpiration data were collected from published literature, representing 
20 forest, 2 shrub, 3 cropland, and 1 grassland sites (Supplementary Table S3)61–86. The following steps were used 
to screen these data. First, only transpiration data measured by the sap flow method were selected. However, the 
sap flow method was not applicable for the grassland site; therefore, the transpiration data obtained from the 
Hydrus-1D model and site measurement data was used in this study. Second, only sites with at least one year of 
continuous flux measurements were included.

Annual T/ET observations. Field observations of T/ET across 18 sites, including 7 forest, 6 grassland, 2 shrub-
land, and 3 cropland sites (Supplementary Table S4)51,85,87–94 were collected from previous research studies. These 
studies experimentally measured at least three out of the four relevant variables, that is, evapotranspiration, tran-
spiration, soil evaporation, and interception loss. We only retained site observations that were complete for at 
least a year or growing season.

PT-JPL model description.  The Priestley-Taylor (PT) equation95 is a simplified but successful model for 
estimating the potential evapotranspiration from a wet surface95. In the PT-JPL model, the total evapotranspira-
tion is partitioned into canopy transpiration (T), interception evaporation (EI), and soil evaporation (ES), which 
are expressed as follows:
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where α is the PT coefficient of 1.26 for a water body (unitless); Δ is the slope of the saturation-to-vapor pressure 
curve (kPa °C−1); γ is the psychrometric constant (0.066 kPa °C−1); G is the ground heat flux (W m−2); Rnc is the 
net radiation to the canopy (W m−2), defined as Rnc = Rn − Rns, where Rn is the net radiation (W m−2); and Rns is 
the net radiation to the soil (W m−2). Rns can be calculated as = −R R ens n

k LAIRn , where kRn is the extinction coeffi-
cient (unitless).

PT-JPL effectively accomplishes its partitioning using a canopy extinction equation to estimate the radiation 
penetrating through the canopy96. This canopy extinction equation partition net radiation between the canopy 
and soil through utilizing the LAI in conjunction with the Beer-Lambert Law of light attenuation. Canopy tran-
spiration are determined by the radiation intercepted according to the Beer-Lambert equation, and transpiration 
is constrained using four physiological parameters (i.e., fwet, fg,fT, and fM). Soil evaporation is determined using the 

Type
Calibration/
Validation

Number of sites

Forest shrubland grassland Cropland ALL

Annual T Calibration 20 2 3 1 26

Annual ET Calibration 18 3 8 10 39

Daily ET Validation 3 1 1 1 6

Annual T/ET Validation 7 2 6 3 18

Table 2.  Site measurement data used to calculate and validate the PT-JPL model.
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residual radiation penetrating the canopy, and that are constrained by surface wetness parameter (fwet) and the 
available soil moisture (fsm). The restricted parameters are described in Table 3.

Model-data fusion method.  Global sensitivity analysis.  The Sobol’ method98,99, a globally popular sen-
sitivity analysis technique based on variance decomposition, was integrated with multiple observational data 
(transpiration and evapotranspiration) to determine the sensitivity of parameters in the PT-JPL model. The Sobol’ 
method can quantify the sensitivity indices of each parameter based on the partial variance and total variances:
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where Vm is the partial variance with a first-order index of ϑm on the model output, Vmn is the partial variance 
with a second-order index of the mth and nth parameter interactions, and V is the total model variance. Sm is a 
measure ratio from the main effect of the individual parameter ϑm to the total model variance V, Smn defines the 
sensitivity that results from the interactions between ϑm and ϑn, and STm represents the main effects of ϑm and its 
interactions with the other parameters and can be calculated using the variance V~m, which is the variation of all 
parameters except ϑm

25. Niu et al. (2019) offer a detailed description of the implemented computational process.

Parameter optimization.  To acquire more accurate model simulation results and reduce uncertainties, the 
DEMC based on Bayes theorem was used to optimize the selected sensitive parameters based on multi-source 
observed data. This method has been successful at reducing the prior uncertainties of sensitive parameters and 
improving the accuracy of the model across different biomes25. The likelihood function for multivariate data sets 
p(O|ϑ) used for parameter estimation is expressed as the product of the individual p(Oi(∙)|ϑ):
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where I is the number of datasets, Ti is the total length of observations of the ith data set, ∆ t( )i  is the model-data 
mismatch, and σi (i = 1,2) is the standard deviation of the model error of the ith dataset100. The detailed disequi-
librium method is found in the study by Niu et al. (2019). Table 4 shows the optimized parameters for each biome.

Simulation of T/ET dataset.  The PT-JPL model with optimized parameters was used to directly simulate 
daily transpiration and evapotranspiration at each grid. For an 8-day temporal scale, T/ET values were calculated 
as the quotient of simulated transpiration and evapotranspiration. Annual T/ET values were calculated from the 

Parameter Description Equation

fwet Relative surface wetness fwet = RH4

fg Green canopy fraction fg = fAPAR/fIPAR

fT Plant temperature constraint =





−















−
f expT

Ta Topt
Topt

( ) 2

fSM Soil moisture constraint fSM = RHVPD/β

fM Plant moisture constraint fM = fAPAR/fAPARMAX

fAPAR Fraction of PAR absorbed by the canopy f b e(1 )APAR
k LAI

1
1= − − ×

fIPAR Fraction of PAR intercepted by the canopy = − − ×f b e(1 )IPAR
k LAI

2
2

Table 3.  Parameters and equations of the PT-JPL model8,97. RH = relative humidity (%); VPD = saturation 
vapor pressure deficit (kPa); Ta = air temperature (°C); Topt = optimum temperature for plant growth (°C); 
β = sensitivity of the soil moisture constraint to VPD (kPa); fAPARmax = maximum fAPAR; b1, b2, k1, and 
k2 = parameters (unitless). Seven parameters need to be estimated: b1, b2, k1, k2, Topt, β, and kRn

8.
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annual cumulative transpiration and evapotranspiration. All data within the span of a year were used to calculate 
the annual cumulative transpiration and evapotranspiration, and data gaps (i.e., the pixels without data) were set 
as zero.

Data Records
The dataset includes not only the T/ET, but also the transpiration and evapotranspiration data, which are directly 
used to calculate T/ET. Two temporal resolutions (daily and annual) are available, with a spatial resolution of 
0.05° × 0.05° (Online-only Table 1). T/ET values are unitless for both annual and daily scales, whereas transpira-
tion and evapotranspiration feature units of mm m−2 day−1 and mm−2 m−2 a−1 for daily and annual scales, respec-
tively. For the annual and daily scale, T/ET values ranged from 0 to 1, and transpiration and evapotranspiration 
values were greater than zero. Considerable changes among the evapotranspiration components occur during the 
year, vegetation transpiration was nearly zero due to the cold temperature and low leaf area in northern China in 
winter. Therefore, T/ET values were also nearly zero or had no value within the same temporal and spatial range. 
Those pixels were expressed as −9999. Similarly, pixels of desert and construction land were also expressed as 
−9999.

All data were stored in the Network Common Data Form (NetCDF) files. Data files with different temporal 
resolution were stored in separate directories, i.e., Annual and Daily (Online-only Table 1). The naming conven-
tion for each type of data file was similar. For the annual scale, the naming convention is in accordance with the 
template Annual_VVVV.nc (e.g. Annual T_ET.nc), where VVVV represents the variable name. Each file contains 
35 layers, which represent the annual variable for the period ranging from 1981 to 2015. For the daily scale, the 
naming convention follows the template Daily_VVVV_TTTT.nc (e.g. Daily_T_ET_1981.nc), where VVVV and 
TTTT represent the variable name and four-digit year. Each file contains 46 layers, and each layer represents the 
8-day average evapotranspiration, transpiration, or T/ET. We stated the starting and ending time of each aver-
aging period in the daily NetCDF files. All datasets101 are accessible on Open Science Framework (https://doi.
org/10.17605/OSF.IO/MERZN).

This study provides a continuous spatial-temporal T/ET dataset. T/ET values for the Chinese terrestrial eco-
system for 1981–2015 range from 0.52–0.59 with a mean value of 0.56. The highest annual T/ET value typically 
occurs in the east monsoon area, whereas values in the temperate-continental and high-cold Tibetan Plateau 
areas are relatively low (Fig. 2a). The maximum daily T/ET show similar spatial patterns, but the magnitude is 
higher than that of the annual mean T/ET values (Fig. 2b). Both the annual T/ET and maximum daily T/ET show 
spatial patterns that are similar to the leaf area index (Fig. 2c).

Technical Validation
Validation using in-site measurements.  The accuracy of the simulated T/ET dataset depends on the 
accuracy of the estimated transpiration and evapotranspiration data8. Therefore, the transpiration and evapo-
transpiration data were first calculated using annual in-situ measurements of the Chinese terrestrial ecosystem 
(Online-only Table 1 and supplementary Fig. S3). With respect to evapotranspiration, upon comparing all sites, 
forest sites, and non-forest sites with observed data, the R2 values were 0.71, 0.68, and 0.64, respectively, and the 
RMSE values were 153.57 (26.21% compared to the multiyear average value, and similarly hereinafter), 147.27 
(25.14%), and 116.12 (19.83%), respectively. Meanwhile, the R2 and RMSE values of regressions between simu-
lated transpiration and observed transpiration were 0.63 and 68.12 (36.80%), respectively. Additionally, the R2 
values were 0.65 and 0.69 for forest sites and non-forest sites, respectively. A complete list of sites used to calibrate 
evapotranspiration and transpiration are presented in Supplementary Tables S2 and S3, respectively. Compared 
with other studies, Niu et al. (2019) found that the PT-JPL model with optimized parameters was comparable to 
the performance achieved using models driven by climatic and remote sensing data.

To further validate the model performance, we compared the simulated annual T/ET to the availa-
ble filed observation T/ET data in China. A complete list of sites used, and T/ET comparison is presented in 
Supplementary Table S4. The overall accuracy of the T/ET dataset is relatively high with an R2 of 0.73 and a low 
RMSE of 0.07 (12.41%). The T/ET dataset also showed relatively high R2 and low RMSE for forest and non-forest 
sites (Online-only Table 1 and Fig. 3a).

We attempted to validate the seasonal dynamic of the simulated database. However, as we were limited by the 
observational data, only the seasonal fluctuations of evapotranspiration were validated. The R2 and RMSE values 
for all sites were 0.75 and 0.62 (35.29%), respectively (Online-only Table 1 and Supplementary Fig. S4). Both the 
simulated and observed evapotranspiration demonstrated distance seasonal cycles and matched well at different 
ecosystems (Supplementary Fig. S5). The ET values were high during the plant growing season, and almost zero 
in the winter due to the limitation of low temperature and plant growth. For the individual ecosystem, the R2 were 
all statistically significant at P < 0.01 and varied from 0.66 at the evergreen broadleaf forest to 0.91 at the mixed 
forest, and the RMSE values varied from 26.39% at mixed forests to 44.25% at grasslands.

Ecosystem type k1 k2 Topt β

Forest 0.57 0.81

Temperature when 
× ×{ }LAI TAVG fmax apar

1.28

Shrub 0.56 0.91 1.17

Crop 0.59 0.84 1.43

Grassland 0.59 0.80 0.80

Table 4.  Look-up table of key model parameters for different ecosystem types in China8.
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Comparison of T/ET magnitude with previous studies.  We compared the simulated T/ET magni-
tude with that reported by previous studies (Fig. 3). Simulated annual T/ET values (0.56 ± 0.05) were within the 
approximate range of those calculated by process- and remote sensing-based models (0.51 ± 0.08 and 0.56 ± 0.19, 
respectively). However, the T/ET value was lower than that obtained using the isotope method and from site 
measurements. The isotope method is constrained by hydrologic decoupling and may have overestimated T/ET10. 
The average T/ET derived from site measurements was 0.60, which was slightly higher than that obtained by this 
study. Canopy interception evaporation was not included in the majority of data; hence, relatively higher T/ET 
values were obtained when soil evaporation and transpiration were observed separately20.

For Chinese terrestrial ecosystems, the T/ET values simulated by the dataset were close to those derived 
using measurement data with the S-W model102,103. Specifically, the T/ET values estimated for temperate mixed, 
evergreen coniferous, and evergreen broadleaf forests (0.65, 0.67, and 0.66, respectively) were similar to those 
reported by Zhu et al. (2015) for the same forest types (0.66, 0.67, and 0.67, respectively). Hu et al.102 reported 
a range of the annual ratio of evaporation to evapotranspiration of 0.51–0.67 across four grassland ecosystems. 
Therefore, T/ET should lie between 0.33 and 0.49; these limits fall within the T/ET range of our data (0.41 ± 0.09).

Comparison of T/ET trends with other products.  We also compared our T/ET dataset with other 
products, namely GLEAM V3.312,104, FLDAS V1105, GLDAS (both V1.0 and V2.1)106, and MsTMIP V1107 
(Supplementary Table S5 shows information on these products). The annual trends of T/ET over China for the 
period ranging from 1981 to 2015 were analyzed using the Mann-Kendall test and Sen’s Method108, as shown in 
Fig. 4. Out dataset showed a significant increasing trend of annual T/ET over this period at a rate of 0.0022 a−1 
(P < 0.01) for the entire study area (Fig. 4a). Greening can directly explain 57.89% of this T/ET trend8. This is 
consistent with the results at the global scale, i.e., that more than half of the global ET increase since the 1980s 
can be attributed to greening19,109, which is explained by increased transpiration and reduced soil evaporation9. 
Compared with other T/ET products, GLEAM and FLDAS also showed a significant upward trend between the 
1980s and 2010s, while their slope values, which were 0.0007 a−1 (P < 0.01) and 0.0005 a−1 (P < 0.01), respectively 
(Fig. 4b and 4c), were lower than those of our simulated results. Meanwhile, the GLDAS 1.0 and MsTMIP prod-
ucts do not reflect the increasing T/ET trend (Fig. 4d, f). The serious discontinuity issues in GLDAS 1.0 forcing 
data, with large precipitation error in 1996 and temperature errors for the period ranging from 2000 to 2005110, 
may cause the GLDAS 1.0 product failure to reflect the long-term trend of T/ET. Different models of MsTMIP 
exhibited large differences in the simulated T/ET trends (Supplementary Fig. S6), T/ET acquired from the ISAM 
model showed a remarkable decreasing trend, with a value of -0.0003 a−1, while T/ET from other models all 
showed remarkable increasing trends, with values between 0.0001 of DLEM and 0.0016 Biome-BGC. After 2000, 
T/ET from GLDEM 2.1 showed a significant increasing trend, with values of 0.0031 a−1 (P < 0.01) (Fig. 4e), which 
was similar to that for our dataset.

We also compared the spatial patterns of the T/ET trend for different products (Supplementary Fig. S7). Our 
simulated T/ET exhibited finer spatial heterogeneity, compared to the other products. In the vegetation covered 
area, our simulated T/ET managed to better reflect regional differences; while in the desert area of northwest 
China, where vegetation cover was scarce, our simulated results correctly showed the relative lower or nearly zero 
T/ET, while some other products exhibited abnormally high T/ET values.

Figure 4g shows a comparison of the seasonal variation of simulated T/ET with other products. Overall, most 
of the products exhibited a similar monthly variation, with maximum values being yielded from June to August, 
and minimum values in March. We further conducted statistical analysis of the correlations between PT-JPL 
model simulated T/ET and other products at the seasonal scale, the R2 values exceeded 0.61, and RMSE values 
were below 38.36% (Supplementary Fig. S8).

Uncertainties.  Model-data fusion is a powerful framework for the generation of improved simulation results 
via the combination of models with various data streams21,111. Observation data, model structure, and model 
parameters were the three main sources of the uncertainties111.

The challenge of acquiring independent observations that represent the scale of measurement is one of the 
inherent limitations in satellite-based model evaluation38. Therefore, we have to acknowledge that the spatial and 
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Fig. 2  Spatial pattern of annual T/ET, maximum daily T/ET, and annual LAI values in mainland China for 
1981–2015. (a) Average annual T/ET values, (b) maximum daily T/ET values, and (c) average annual LAI values 
(m2 m−2). The annual T/ET values were obtained from the study by Niu et al., (2019).
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temporal scale of the observation data used in this study is not the ideal dataset for assessing the performance of 
PT-JPL model. However, there are only a few alternatives for the calculation and validation of the components of 
ET (or T/ET). Eddy covariance observations are significantly better for the evaluation of remote-sensing-based 
evapotranspiration outputs, but they do not provide individual components of evapotranspiration. The sap flow 
method, which directly reflects the transpiration of single plants, was likely to be smaller in spatial scale than the 
satellite simulated, however, that method still offers insight into how evapotranspiration should by partitioned. 
Moreover, the observation data also contained errors stemming from the methodology used, but the field data 
represented the best available means for the calculation and validation of the remote-sensing-based simulation 
results112.

The PT-JPL model is widely used to simulate evapotranspiration and its individual components based on 
multiplicative evaporative stress factors97, and the model formulation bore similarities with other remote-sensing 
based evapotranspiration models (e.g., PM-MOD113 and GLEAM12,104). The simulated evapotranspiration of 
PT-JPL model was heavily dependent on the accuracy of net radiation97, while net radiation had negligible impact 
on T/ET8 because of the linear variation of the evapotranspiration components with net radiation. The simulated 
evapotranspiration components were generally sensitive to relative humidity and vegetation index112. Due to the 
non-linear relationships between relative humidity and evapotranspiration components (i.e., the model param-
eter fwet was calculated as a function of relative humidity raised to the fourth power), the simulated transpiration 
components were more sensitive at high relative humidity values than at lower ones. The evapotranspiration 
partitioning was particularly sensitive to extreme relative humidity112. Moreover, bias in PT-JPL due to uncertain-
ties in the vegetation index are consistent with errors found when comparing model estimates to field estimates, 
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meaning that the partitioning of PT-JPL was significantly affected by uncertainty in the vegetation index112. 
Overall, obtaining higher precision forcing data can help improve T/ET simulation results.

Four parameters (k1, k2, β, and Topt) were the most sensitive to the model across different biomes8. Parameter 
β was more sensitive at low vegetative cover and low precipitation regions, and Topt yielded the highest first-order 
sensitivity indices in the forest and cropland ecosystems. Niu et al. (2019) provide further details. In this study, 
observational data from multiple sites and multiple sources were used to calibrate the parameters of a given 
ecosystem type, that could better reflect ecological and biophysical properties within an ecosystem. Moreover, 
compared to the traditional Markov chain Monte Carlo approach, the DEMC algorithm, which was used in this 
study, is more suitable for drawing inference on high-dimensional models25,114.

Overall, despite the uncertainties, the simulated T/ET is consistent with the site observational data. The annual 
and daily T/ET estimation is close to that of previous studies using a different approach, and the trend of annual 
T/ET increases are also in line with certain products. Our simulated T/ET showed fine spatial heterogeneity and 
could accurately reflect the effects of greening on the hydrological cycle.

Usage Notes
Spatial average T/ET should be calculated as the ratio of regional mean transpiration and regional mean evap-
otranspiration, instead of directly using the regional or national average values of T/ET. The latter method only 
reflects the arithmetic mean of T/ET for each pixel, that will strengthen the influence of pixels with lower absolute 
values of evapotranspiration and transpiration, while weakening the effect of pixels with high transpiration and 
evapotranspiration.
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Code availability
The codes for Sobol’ sensitivity analysis, DEMC parameter optimization, PT-JPL model and LAI preparation 
are available at https://doi.org/10.17605/OSF.IO/MERZN. The codes require MATLAB version 2014a or higher.
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