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Neural microarchitecture is heterogeneous, varying both across and within brain regions. the 
consistent identification of regions of interest is one of the most critical aspects in examining 
neurocircuitry, as these structures serve as the vital landmarks with which to map brain pathways. 
access to continuous, three-dimensional volumes that span multiple brain areas not only provides 
richer context for identifying such landmarks, but also enables a deeper probing of the microstructures 
within. Here, we describe a three-dimensional X-ray microtomography imaging dataset of a well-known 
and validated thalamocortical sample, encompassing a range of cortical and subcortical structures from 
the mouse brain . In doing so, we provide the field with access to a micron-scale anatomical imaging 
dataset ideal for studying heterogeneity of neural structure.

Background & Summary
Whether focusing on a large swath of cortex or a single subcortical nucleus, consistent and reliable visualization 
of brain microarchitecture is critical for the creation of reference points which demarcate the brain’s landscape1. 
This is true not only for the identification of landmarks (or regions of interest), but also the study of local circuits 
therein. Thus, detailed views into the brain’s microarchitecture can be used to study disease, experimentally target 
circuits, and to advance the field’s understanding and integration of each of these overarching neural systems.

With advances in the reconstruction and analysis of significantly larger brain volumes, neuroscientists are 
now able to visualize patterns of microarchitecture that arise at a scale previously inaccessible using traditional 
methods2–4. Examples such as CLARITY5, expansion microscopy6, serial two photon tomography7–9, multi-beam 
scanning electron microscopy10, and X-ray microtomography11–15, now provide access to several regions of inter-
est within a volume of tissue simultaneously, providing rich context to study both local circuitry and long-range 
projections. With many of these new techniques, it is possible to image and analyze large intact anatomical sam-
ples that preserve the connectivity between multiple regions of interest16,17, thus providing a lens into the hetero-
geneity of neural structure within and across different brain areas.

Here, we introduce a three-dimensional neuroanatomical dataset extracted from a validated, in-vitro mouse 
thalamocortical sample spanning six anatomically distinct regions of interest (somatosensory cortex, two tha-
lamic nuclei, zona incerta, striatum and hypothalamus)16. This dataset was reconstructed using X-ray microto-
mography to reveal a diverse composition of microstructures (e.g., myelinated axons, cell bodies, and vasculature) 
within each region at isotropic, micron-scale resolution. For a selected number of regions, we also provide vali-
dated annotations performed at the area level (which identifies regions of interest several hundreds of microns in 
size) and at the pixel level (which identifies microstructures at a micron scale). To technically validate the dataset, 
human annotators assessed two series of extracted images. We found that both annotators were able to classify 
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images from these datasets reliably and accurately, likely in part due to the heterogeneity of the microstructures 
throughout each regions of interest. This dataset and multi-scale annotations are available for visualization and 
download from an online, interactive atlas (http://bossdb.org/project/prasad2020).

Ultimately we envision this heterogeneous, 3D brain volume dataset as a resource not only for neuroscien-
tists interested in exploring structures within this thalamocortical pathway, but also machine learning scientists 
seeking data diverse enough to test computer vision methods for brain area prediction and segmentation. We 
further believe the provision of this dataset will prompt collaborative opportunities for both experimentalists and 
theorists interested in exploring neural circuitry at the micron-level and beyond.

Methods
Sample preparation. All animal experiments were approved by the Institutional Animal Care and Use 
Committee (IACUC) at the University of Chicago. The thalamocortical sample for this dataset was obtained from 
an 8 week old, C57BL/6J female mouse. The animal was deeply anesthetized using Euthasol (60mg/kg), then 
transcardially perfused. Vasculature was first flushed with 0.1M cacodylate buffer, followed by primary fixatives 
paraformaldehyde (2%) and glutaraldehyde (2.5%) in 0.1M cacodylate buffer. The brain was dissected from the 
skull and then post-fixed for 48 hours. Following multiple rinses in 0.1M cacodylate buffer, the brain was sliced on 
a vibratome at a thickness of 450 um until the thalamocortical slice was obtained16. At this point, a 1.7 by 6.5 mm 
strip of tissue which preserves the pathway from somatosensory cortex to the ventral posterior thalamic nucleus 
was dissected (see Fig. 1a–c)16. Prior to imaging, the total estimated volume of this sample was 5 mm3. The sample 
was further post-fixed in paraformaldehyde (2%) and glutaraldehyde (2.5%) for 2 hours at room temperature, 
rinsed three times with 0.1M cacodylate buffer, and stored overnight in 0.1M cacodylate buffer at 4° Celsius. 
The tissue was then embedded with heavy metals as described by18. The sample was initially stained with (2%) 
buffered osmium tetroxide for 1.5 hours at room temperature followed by (2.5%) potassium ferrocyanide for 1.5 
hours at room temperature. After rinsing with water, tissue was incubated in (1%) filtered thiocarbohydrazide 
at 40 degrees Celsius for 45 minutes. Following rinsing with water, the tissue was stained with another round of 
(2%) unbuffered osmium tetroxide for 1.5 hours at room temperature. After another thorough rinse with water, 
the sample was stained with (1%) aqueous uranyl acetate overnight at 4 degrees Celsius and at 50 degrees Celsius 
for 2 hours. Following the final water rinse, tissue was stained with lead aspartate for 2 hours at 50 degrees Celsius. 
This was followed by dehydration through a series of graded ethanols and propylene oxide, and a gradual infil-
tration of the tissue with epon resin. The infiltrated sample was incubated in 100% epon resin overnight, before 
being placed in 1.5 mm cylindrical tubing with fresh 100% resin. The preparation was then cured in an oven at 
60° Celsius for 48–72 hours.

imaging and reconstruction. Synchrotron X-ray tomography was performed on the embedded sample 
on the 32-ID beamline at the Advanced Photon Source in Argonne National Laboratory as described by Vescovi 
and colleagues19. X-ray radiographs were recorded with a detection system consisting of a LuAG:Ce scintillator 
converting X-rays into visible light that were magnified with a 5X objective lens onto a CCD detector with 1920 
x 1200 pixels (5.86 μm; Flir Grasshopper 3, Model #GS3-U3-23S6M-C). To improve the spatial resolution, the 
detector was built with a large NA (0.21) long working distance Mitutoyo 5X objective lens with a resolving power 
of 1.3 μm and 14 μm depth of focus. To maintain its resolving power, the lens is coupled with a 13 μm thick, thin 
film scintillator matching its depth of focus20. With a 5X magnification, the pixel size of each projection image 
was 1.17 μm. Exposure for a single projection image took approximately 30ms, thus the total imaging acquisition 
time for the collection of 3000 projections was approximately 1.5 min in total (see Figure 1d for an illustration of 
the imaging process).

Each single reconstructed dataset corresponded to a region of 1920 × 1920 × 1200 voxels. These volumes were 
then stitched together using Tomosaic software19. The entire volume was trimmed down to 720 × 1420 × 5805 
voxels3 which corresponded to 0.842 × 1.661 × 6.792 mm3. Acquired data was stored in HDF5 files with Dxchange 
format (see21). To make subsequent analysis and labeling more aligned with an anatomical frame of reference, we 
virtually resliced the data to produce 720 images (each 1420 × 5805 pixels), where each image spans all cortical 
layers and traversed all sub-cortical regions of interest as well. This resulted in an image volume of 5.9 Gigavoxels 
total, including pixels outside of the sample. These images were chunked into 14 independent stacks comprised of 
50 .tiff files, spanning the entire length of the sample. These datasets were converted to 8 bits from 32 bit precision 
after histogram normalization.

Ground truthing and annotation for brain areas (regions of interest). 6 regions of interest were 
annotated by an experienced neuroanatomist using a macroscale view of the entire thalamocortical sample (from 
somatosensory cortex to hypothalamus). 9 of the above 14 stacks were used for annotations, performed using the 
3D segmentation software ITK-Snap22. Nine images (slices in Z) distributed uniformly throughout the volume  
(z = z1, z2, ...) were annotated at the pixel level for each region of interest, approximately 50 images apart. The regions 
annotated included: somatosensory cortex (CTX), striatum (STR), the thalamic reticular nucleus (TRN), the ventral 
posterior (VP) nucleus of thalamus, zona incerta (ZI), the hypothalamus (HYP), and white matter (WM), which 
includes the internal capsule and corpus callosum. Each region’s annotation was therefore spaced 50 slices (58.5 μm) 
apart throughout most of the volume (z = 109, 159, 209, 259, 309, 359, 409, 459), with the exception of the HYP 
which was only present for the first four stacks within the dataset. The span of the volume considered was bounded 
by slices 109 to 459, as regions beyond these slices were insufficiently visualized to provide complete annotations. It 
took approximately 2 hours to complete annotations for all regions of interest across the 14 stacks .

Pixel-level annotations of selected regions of interest. We manually created ground truth pixel-level 
annotations of 4 major brain areas within the dataset: CTX, ZI, STR, and TRN. These regions were selected as they 
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spanned the full extent of the sample, beyond simply cortical and thalamic regions of interest (i.e., through the 
inclusion of STR and ZI), making them well suited to studying architectural uniqueness within and across brain 
regions. To standardize the ground truth segmentations, we extracted 4 volumes of size (x:y:z) = (257:257:361), 1 
for each of the 4 brain areas. The coordinates of each of these volumes are as follows, formatted as (xstart_xend__
ystart_yend__zstart_zend): CTX (4600_4857__900_1157__110_471), ZI (1543_1800__650_907__110_471), 
STR (3700_3957__500_757__110_471), TRN (3063_3320__850_1107__110_471). Within each of these 
(257:257:361) brain area volumes, we densely annotated (starting at index z = 0) slice z = 30, 60, 90, 120, 150, 
180, 210, 240, 270, 300, 330. This results in 11 densely annotated images per region and 44 images in total across 
the four areas, which took a total of 44 hours to complete .
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Fig. 1 Overview of the thalamocortical sample microarchitecture and 3D reconstruction. Data from the 
Allen Reference Atlas (ARA) (http://mouse.brain-map.org/static/atlas) provides a schematic overview of the 
dataset regions of interest (a), along with cytoarchitectural differences as identified by NeuN staining (b)8. (c) 
The photomicrograph to the right shows the thalamocortical slice prior to dissection, with the final sample 
volume outlined in red. CTX = somatosensory cortex; VP = ventral posterior nucleus (d) Visualization of 
the synchrotron X-ray microtomographic data acquisition process. X-ray projections were acquired and 
reconstructed into a 3D image volume with micron-scale isotropic resolution (1.17 μm pixel size).
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Data Records
The X-ray imaged dataset and associated annotations were deposited in figshare23–25 and in bossDB (http://
bossdb.org/project/prasad2020). bossDB is a spatial database that is optimized for access and visualization of 
three-dimensional neuroimaging data, allowing users to efficiently and dynamically access different sub-volumes 
of the data26. This database connects seamlessly to Neuroglancer27 which enables interactive visualization of 
large-scale, volumetric images, annotations, and analytics results from a web browser. Within this web por-
tal, users can view and navigate the data in three dimensions using public access credentials (no account cre-
ation required). In addition to these web-based tools, we provide example Jupyter notebooks to demonstrate 
approaches for downloading raw data and annotations, and applying simple analysis algorithms to subvolumes of 
data (http://nerdslab.github.io/xray-thc). These tools directly address the needs of both novice and expert users 
and are easily adapted to additional use-cases.

The stored data and annotations consist of the following three sets of images and annotations:

•	 Original Image Data23: The raw images are rescaled from 32-bits and stored in 8-bit format. We computed the 
average number of bits of information in each pixel of the original image, confirming that an 8-bit depth was 
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Fig. 2 Validation of neuroanatomical heterogeneity within the dataset. In (a), an example of a reconstructed 
image from the dataset following X-ray acquisition, highlighting the regions of interest in the sample. From 
top to bottom: somatosensory cortex (CTX); striatum (STR); the thalamic reticular nucleus (TRN) and the 
ventral posterior nucleus (VP) of thalamus; zona incerta (ZI); and hypothalamus (HYP). (b) Examples of the 
microstructures identified manually within the different ROIS, including cells, axons and blood vessels. These 
examples each span a roughly 300 × 300 micron field-of-view and highlight the architectural diversity within 
and across regions of interest. (c) The distribution of pixel intensities across four selected regions of interest 
within the dataset (CTX, STR, TRN, ZI). (d) The distribution of pixels divided by underlying microstructure 
class (cell, blood vessel, axon) within each region of interest. In (e,f), we show the KL-divergence between: the 
pixel intensity distributions across the selected regions (e), and the microstructural composition of selected 
regions as measured with dense manual annotations (f).

https://doi.org/10.1038/s41597-020-00692-y
http://bossdb.org/project/prasad2020
http://bossdb.org/project/prasad2020
http://nerdslab.github.io/xray-thc


5Scientific Data |           (2020) 7:358  | https://doi.org/10.1038/s41597-020-00692-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

sufficient to capture the information in the CT stack. These images were then stacked into an image volume of 
size 5805 × 1420 × 720 (x,y,z). The pixel size is 1.17 μm isotropic. Valid labels span the entire X, Y, and Z axis 
of the volume. Slices spanning from z = 15 to z = 670 contain brain specimen, and outside of this range, the 
epon block the sample is embedded in is visible. In bossDB, these annotations are stored in a channel called 
images.

•	 Region-of-interest (ROI) Annotations24: Manually labeled pixel-level annotation of brain regions of interest. 
Valid labels span the entire X and Y axis of the volume. Valid z slices are 109, 159, 209, 259, 309, 359, 409, 
459. The labels are 0-> no label; 1-> cortex; 2-> striatum; 3-> trn; 4-> vp; 5-> zona incerta; 6-> internal 
capsule; 7-> hypothalamus; 8-> corpus callosum. In bossDB, these annotations are stored in a channel called 
region_of _interest.

•	 Pixel-level Microstructure Annotations25: Manually labeled pixel-level annotation of neural microstructure. 
Four volumes of size 361x257x257 are annotated. The first volume, from cortex, spans z from 110 to 471, y 
from 900 to 1157, and x from 4600 to 4857. The second volume, from striatum, spans z from 110 to 471, y 
from 500 to 757, and x from 3700 to 3957. The third volume, from vp, spans z from 110 to 471, y from 850 to 
1107, and x from 3063 to 3320. The fourth volume, from zona incerta, spans z from 110 to 471, y from 650 to 
907, and x from 1543 to 1800. The labels are 0-> no label (background); 1-> vasculature; 2-> cell body; 3-> 
myelinated axon. In bossDB, these annotations are stored in a channel called pixel_annotation.

technical Validation
Examination of pixel-level features across regions of interest. As one of the defining features of this 
thalamocortical dataset is it’s diverse collection of brain regions, we sought to assess the extent of tissue heteroge-
neity by examining four major brain areas at a microstructural level (CTX, ZI, STR, TRN). Specifically, the inten-
sities of pixels within each region and the anatomical composition (cells, blood vessels, and axons) were measured 
(see Fig. 2c,d). We determined the composition of features for each region (assessing the percentage of blood 
vessels, cells and myelinated axons within each), based on manual annotations over 128 images (32/class, 150 μm 
by 150 μm in size). While relatively similar numbers of cells and vasculature were identified within each region of 
interest, the fraction of axons annotated within each region varied dramatically, with far fewer axons identified in 
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Fig. 3 Brain area prediction performance. (a) An annotated image from the dataset with each region of 
interest overlaid as a distinct color (left) and 150 × 150 micron snapshots from within (right), highlighting 
microstructural heterogeneity within each region. (b) The performance (f1-score) and inter-rater reliability of 
two annotators classifying image patches similar to those visualized in (a). Both annotators classified images 
into one of six different brain areas; each test set consisted of 180 images (30/class) for a total of 360 images 
classified. (c) Summary of significance in annotators’ ability to accurately predict a region of interest relative to 
others. Asterisks denote prediction measures that are significantly different, where * is used to denote p < 0.05, 
** denotes p < 0.01, and *** denotes p < 0.001).

https://doi.org/10.1038/s41597-020-00692-y


6Scientific Data |           (2020) 7:358  | https://doi.org/10.1038/s41597-020-00692-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

the CTX and ZI relative to a high proportion of axons in the STR and TRN (Fig. 2d). The KL divergence between 
pixel intensity distributions (Fig. 2e) revealed that CTX is most dissimilar from TRN, which is evident given the 
vast differences in microstructure between these two regions of interest. Manual annotations further confirmed 
TRN and CTX were highly dissimilar in their microstructural composition, whereas the TRN and STR were 
highly similar as measured by the KullbackLeibler (KL) divergence (Fig. 2f). One unexpected finding was, in spite 
of the difference in their microstructural composition, STR and CTX were highly similar in their pixel intensity 
distributions. The 3D reconstruction of our thalamocortical dataset with microCT thus provided richer details 
that are unobservable upon examining stained, thinly sliced tissue using traditional light microscopy methods.

Region of interest prediction from local views of the microarchitecture. This dataset is comprised 
of a range of brain regions which can be visualized and annotated by any user interested in exploring macro-level 
or local characteristics. To validate the use of this dataset with annotators, we assessed whether humans can accu-
rately predict regions of interest within the sample using only a small field-of-view (150x150 microns); see Fig. 3a. 
For simplicity, TRN and VP were combined into a single region of interest (VP). The internal capsule and corpus 
callosum fiber tracts were included in this study, and categorized as WM. We then provided a training set of 48 
images (8 per region of interest) for 2 annotators to examine, which took approximately less than 10 minutes for 
the annotators to get acquainted. After studying these examples, each annotator was provided with a test set of 
180 novel images (30 per region of interest) to sort into one of six region of interest categories. This sorting proce-
dure took both annotators less than 2 hours to complete. These annotators had previously studied example images 
from each region of interest prior to classifying these images, without extensive training. Interestingly, both anno-
tators classified images within the CTX, STR and WM to a high degree of accuracy (>80%), whereas images from 
HYP, VP and ZI proved more challenging to classify (see Fig. 3b). Generally, CTX images were classified to the 
same degree of accuracy as WM images relative to other regions of interest (see Fig. 3c). We also noted that the 
annotators themselves varied in their classification performance; while Annotator 2 was slightly more accurate at 
classifying images from CTX relative to Annotator 1, they both had significantly more difficulty with identifying 
images from the HYP (*p < 0.05). It was also evident that the images from HYP were most challenging to classify, 
regardless of annotator and relative to those from CTX and STR (which had highly distinguishing microstruc-
tures, and therefore more likely to be correctly classified). Collectively, these findings support this heterogeneous 
3D imaging dataset serving as a generalizable and useful resource for the field, given that human annotators can 
use it to a high degree of success for image classification.

Code availability
Code for downloading the data and annotations in bossDB can be found in the ‘data_access_notebooks’ folder 
here: https://github.com/nerdslab/xray-thc. A Jupyter notebook for generating the results in Figs. 2, 3 can be 
found in the ‘analysis_notebooks’ folder in the same repo. Annotations, images, and analysis notebooks used 
for the inter-rater reliability study, are also provided through figshare to facilitate reproducibility28. All of these 
examples are written in Python 3 and executed using Jupyter notebooks, a cross platform Python solution.
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