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a global-scale data set of mining 
areas
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The area used for mineral extraction is a key indicator for understanding and mitigating the 
environmental impacts caused by the extractive sector. To date, worldwide data products on mineral 
extraction do not report the area used by mining activities. In this paper, we contribute to filling this gap 
by presenting a new data set of mining extents derived by visual interpretation of satellite images. We 
delineated mining areas within a 10 km buffer from the approximate geographical coordinates of more 
than six thousand active mining sites across the globe. The result is a global-scale data set consisting of 
21,060 polygons that add up to 57,277 km2. The polygons cover all mining above-ground features that 
could be identified from the satellite images, including open cuts, tailings dams, waste rock dumps, 
water ponds, and processing infrastructure. The data set is available for download from https://doi.
org/10.1594/PANGAEA.910894 and visualization at www.fineprint.global/viewer.

Background & Summary
Global extraction of minerals grew at an unprecedented pace in the past decades, causing a wide range of social 
and environmental impacts around the world1–3. Growing demand for essential minerals and declining quality 
of ores4–6 lead to larger volumes of unused material extracted and disposed7, increasing appropriation of land8,9. 
The direct land used by mining is a crucial indicator of environmental pressure, which is closely associated with a 
range of negative impacts, including fragmentation and degradation of ecosystems and biodiversity loss10–14. Such 
an indicator supports the implementation and monitoring of several Sustainable Development Goals (SDGs), as 
mining impacts on biodiversity and ecosystem services can be reduced by limiting mining areas15. Data on land 
use of mining is also important to further develop land footprint indicators that inform about land required along 
global supply chains to satisfy final consumption of products16,17. Yet, to date information about mining areas 
worldwide is not available.

Databases on the global mining sector are regularly updated by national geological services, mining indus-
tries, associations, and information services18,19. These databases, however, focus on commodities production, not 
on land use or other environmental aspects. They include, for example, commodity classifications, produced vol-
umes, and approximate location of the sites, but not their geographic extents. These data sources alone are there-
fore not sufficient for a comprehensive assessment of the impacts related to the direct land use of global mining.

Satellite images are an important source of information on mining extents complementing surveys and statis-
tics. Visual interpretation of satellite images9, for example, has been applied to map the 295 most relevant mining 
sites in terms of commodities production across the world20,21. This approach is effective and precise but can be 
costly and time-intensive, therefore, posing challenges to producing comprehensive accounts of global mining 
areas. Alternatively, automated classification algorithms to monitor land-use changes have rapidly advanced due 
to the increasing availability of satellite images and computational infrastructure22–26. These developments have 
helped to map mining extents in many regions27–31. However, scaling automated classification is difficult, as cur-
rent state-of-the-art algorithms require a large amount of labeled examples32, which are usually not available.

In this work, we contribute to filling this knowledge gap by presenting a new data set of mining extents derived 
by visual interpretation of satellite images. Our data set covers more than six thousand mining sites distributed 
across the entire globe. These mining sites have reported mineral extraction or activities between the years 2000 
and 2017, according to the SNL Metals and Mining database19. Within these regions, we delineated the mining 
areas (i.e., drew polygons) by visual interpretation of several satellite data sources, including Google Satellite, 
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Microsoft Bing Imagery and Sentinel-2 cloudless33. As a result, we derived a set of 21,060 polygons globally, cov-
ering a total area of 57,277 km2. The overall accuracy, calculated from 1,000 stratified random points is 88.4% (for 
details see the section on Technical Validation).

This novel data set can help improving environmental impact assessments of the global mining sector, for 
example, regarding mining-induced deforestation or fragmentation and degradation of ecosystems. It can also 
serve as a benchmark for further monitoring the temporal evolution of mining sites around the world and 
as training and validation data to support automated classification of mines using satellite images.

Methods
We produced the global-scale data set on mining areas by visual interpretation of satellite images. This remote 
sensing technique is precise but also costly and time-intensive. To make the visual interpretation viable on a 
global scale, we defined regions of interest (ROI) based on the SNL Metals and Mining database19. This was 
important to reduce the time spent inspecting the satellite images and delineating the mining extents. Automated 
post-processing was also applied to check and correct possible invalid polygon geometries34, for instance poly-
gons with self-intersections.

region of interest. We defined our ROI as a buffer around the geographical coordinates (georeferenced 
points) of active mines reported in the SNL Metals and Mining database19. The SNL database provides production 
information on more than 35,000 mines across the globe. Among many other variables, SNL reports the approx-
imate geographic coordinates of the extraction sites, from which we selected all mines reporting activity (i.e., 
actual production or active status) at any time between the years 2000 and 2017. This subset added up to 6,021 
mining locations extracting 76 different commodities, with a focus on coal, metal ores and industrial minerals. 
Note that many mines, particularly regarding metal ore extraction, report more than one commodity in the SNL 
database (see full list in Table 1).

The buffer around the selected SNL mines was necessary to increase the efficiency and systematize the inter-
pretation of the satellite images. The radius of the buffer should be as small as possible and cover all mining 
ground features, including open cuts, tailings dams, waste rock piles, water ponds, and processing infrastructure. 
Besides, the size of the buffer should consider that the geographical coordinates reported in the SNL database can 
differ between 1 km and 3 km from the mines identified in satellite images10,14.

After inspecting a random selection of mines we found that a 10 km radius was adequate for our propose, i.e., 
covering all ground features related to the mines while minimizing the time spent on the visual interpretation of 
the images. The 10 km buffer was sufficient to cover most of the mining complexes spreading over several kilome-
ters, including the largest mines in the world, which have an open cut extending over 4 km diameter.

Commodity name (Number of mines reporting the commodity)

Coal (3119) Zircon (30) Yttrium (4)

Gold (1500) Vanadium (29) Barite (3)

Silver (1002) Heavy Mineral Sands (28) Beryllium (3)

Copper (837) Lanthanides (28) Caesium (3)

Zinc (524) Rutile (28) Ferrotungsten (3)

Iron Ore (474) Iridium (27) Garnet (3)

Lead (450) Ruthenium (25) Iron Sand (3)

Nickel (197) Titanium (24) Mercury (3)

Cobalt (160) Tantalum (21) Osmium (3)

Molybdenum (131) Niobium (16) Rubidium (3)

Diamonds (129) Leucoxene (13) Scandium (3)

U3O8 (109) Spodumene (13) Selenium (3)

Platinum (90) Magnesium (12) Gallium (2)

Bauxite (85) Arsenic (9) Germanium (2)

Chromite (85) Bismuth (9) Kaolin (2)

Palladium (82) Cadmium (9) Lanthanum (2)

Manganese (78) Rhenium (9) Limestone (2)

Magnetite (62) Chromium (7) Beryl (1)

Phosphate (54) Graphite (6) Hematite (1)

Rhodium (53) Tellurium (6) Potassium Oxide (1)

Tungsten (51) Ferrochrome (5) Potassium Sulfate (1)

Tin (44) Ferronickel (5) Rare Earth Elements (1)

Potash (41) Ferrovanadium (5) Silica (1)

Antimony (38) Cerium (4) Strontium (1)

Ilmenite (34) Indium (4)

Lithium (30) Thorium (4)

Table 1. List of commodities from active mines reported in the SNL database19.
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Delineation of mines. The polygons were delineated by two trained experts using an open-source web 
application35 developed for this specific purpose. The web interface systematically displays buffers and markers 
with information about the mines. As background, the app offers three options of satellite layers: Google Satellite, 
Microsoft Bing Imagery, and Sentinel-2 cloudless33. Google Satellite and Microsoft Bing provide images with a 
spatial resolution finer than 5 m for many regions of the world. These images allow identifying ground features 
related to mines with high confidence9. However, these data sources do not cover the whole globe with the same 
spatial resolution and contain out-of-date images for some regions36. To fill this gap, we used the Sentinel-2 cloud-
less data product with a 10 m spatial resolution provided by EOX33. The Sentinel-2 cloudless provides a mosaic 
built from Sentinel-2 images taken during the years 2017 and 2018. Combining these data layers, the experts 
identified and delineated the ground features related to mining.

All three satellite data sources were visually inspected before delineating the polygons. The majority of the 
inspected locations had at least two sources of clear images (e.g., no cloud cover) and sufficient spatial resolution 
to identify mining features. Only very few locations lacked images with sufficient quality to draw the polygons, 
for example, due to cloud cover or low spatial resolution.

We used the source showing the largest mining extent for the delineation of the areas. This premise was taken 
because the largest extent of a mine is usually stable for several years as a long lifespan is intended due to eco-
nomic reasons. Besides, mining areas generally increase and could only reduce through ecological restoration, 
which can take a long time37. These conjectures do not ensure the temporal consistency of all delineated extents 
but helped to capture the largest and most up-to-date extent of the mines according to the available satellite 
images within our ROI.

In some cases, the mining polygons can also extend beyond the ROI. Mining features intersecting the buffer 
borders were delineated to account for their full extent, even if they extend beyond the buffer limits. Moreover, 
the mining polygons can contain isolated patches with forest or other land covers, which do not necessarily rep-
resent any mining feature on the ground. These patches were included because we aim at accounting for the total 
area used by mining, including isolated spare areas that most probably cannot have other uses. The delineated 
polygons do not distinguish the different ground features within the mines, i.e., each polygon can cover several 
mining features (open cuts, tailings dams, waste rock dumps, etc). As a final product from the delineation we 
obtained a set of polygons covering the total land used by mining within the ROI.

Fig. 1 An example polygon delineated over a coal mine in Mackenzie River, Queensland, Australia. (a) Shows 
the delineated polygon in purple and (b) shows the Sentinel-2 cloudless mosaic composed by images from the 
year 201833 used to delineate the mining extent. (c) Shows a Microsoft Bing image from July 2011 and (d) a 
Google Satellite image from December 2007.
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Geoprocessing of data records. We applied geospatial and geometric operations to check and correct the 
raw data collection. This geoprocessing was performed to avoid double counting of mining areas, correct invalid 
geometries, and add attributes (variables) to the polygons. To avoid double-counting, we dissolved polygons that 
possibly overlapped or shared a common boundary, i.e., we merged them to form a single polygon. After that, we 
removed sliver polygons (unwanted small polygons) and invalid polygon geometries, producing a consistent set 
of polygons.

From this set of preprocessed polygons, we calculated the area of each feature and added information on the 
country where each polygon is located. We calculated the area in square kilometers by projecting each polygon to 
its respective Universal Transverse Mercator (UTM) zone. After that, a spatial join query acquired country name 
and ISO 3166-1 alpha-3 code from country’s administrative units geometries available from EUROSTAT38. The 
final set of polygons thus includes the geometries (polygons) covering the mining areas, their respective areas in 
square kilometers, country name, and ISO 3166-1 alpha-3 code of the corresponding country.

From the mining polygons we derived global grid data sets with the mining area at 30 arcsecond, 5 arcminute 
and 30 arcminute spatial resolution (approximately 1 × 1 km, 10 × 10 km and 50 × 50 km at the equator). This is 
useful because many modeling applications require standardized grid data39. The 30 arcsecond grid was derived 
from the percentage of area of the geometric intersection between each cell and the geometries of the mining 
polygons. These percentages were rounded to zero decimal digits to reduce the size of the data set. Therefore, 
the percentage of the cell covered by mine should be greater than 0.5% to be considered, i.e., approximately 0.5 
ha at the equator. To obtain the gridded mining area, we estimated the area of each cell in square kilometers and 
multiplied with the percentage of mining cover per cell, resulting in a 30 arcsecond global grid indicating the 
mining area within each cell. The 5 arcminute and 30 arcminute grid resolutions were downsampled form the 
30 arcsecond grid. All scripts used in the geoprocessing of data records are available with our open-source web 
application tool35.

Data records
Our data records provide spatially explicit information on the direct land use of mining activities. The main 
data set consists of 21,060 mining polygons covering the extents of mining sites worldwide40. Grid data derived 
from the polygons is available at 30 arcsecond, 5 arcminute, and 30 arcminute spatial resolution, providing a 
ready-to-use data set for modeling purposes with the mining area in square kilometers per grid cell. All data 
records are available for download from PANGAEA (Data Publisher for Earth & Environmental Science) at 
https://doi.org/10.1594/PANGAEA.910894 and for visualization at https://www.fineprint.global/viewer.

Mining polygons. Figure 1 illustrates how the satellite images were used to delineate the mining extent. In 
this example, the area is used for coal mining in Mackenzie River, Queensland, Australia. The polygon in Fig. 1a 
was derived from the Sentinel-2 cloudless mosaic (Fig. 1b), which shows the largest extent of the mine among 
all three images sources. The Sentinel-2 cloudless mosaic is composed by images from the years 2017 and 201833 
while Microsoft Bing (Fig. 1c) and Google Satellite (Fig. 1d) only offered out-of-date images for that location, 
respectively taken in July 2011 and December 2007. Nevertheless, all three data sources contributed to providing 
pieces of evidence of mining in the mapped area.

Fig. 2 Mine on the Salar de Atacama salt flat, Chile. The purple polygon on the left side was derived from the 
Sentinel-2 images shown in the background. The polygon covers all infrastructure spread over the salt flat, 
including water pipelines, wells, and the actual mining plants. The zoom boxes on the right side show Google 
Satellite images with a detailed view of water pipelines and wells over the salt flat as well as one of the mining 
plants.
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The delineated polygons cover all infrastructure and land cover types directly related to mining activities. This 
can produce large polygons, such as in the case of the Salar de Atacama, Chile. In that area, we delineated a poly-
gon of approximately 1,354 km2, covering almost the whole nucleus of the salt flat, which extends over 1,360 km2 
and is used as a source to extract lithium, boron, potassium, iodine, sodium chloride, and bischofite41. Figure 2 
shows the delineated polygon extent and a detailed view of one of the mining plants. Some pipelines and wells are 
more than 10 km away from the core infrastructure of the mine. We decided to map the whole area because the 
mining plants, in fact, have brine pumping and monitoring wells spreading over the entire salt flat far beyond the 
actual evaporation ponds41. Alternative assumptions mapping only the evaporation ponds estimated an area of 
only 80.53 km2 in 201742. However, it is important to note that the case of Salar de Atacama was rather isolated; 
in most cases, no features such as pipelines and wells outside the main mining sites could be identified from the 
available satellite images.

Fig. 3 Examples of mapped mining polygons with Google Satellite images background. (a) Carajás iron ore 
mine in Brazil, (b) Batu Hijau copper-gold mine in Indonesia, and (c) Super Pit gold mine in Australia.
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In many cases, mines are located following the structure of mineral deposits, making it easy to map them from 
satellite images. We selected three mines to illustrate these large-scale concentrated activities (Fig. 3). The first 
example (Fig. 3a) shows the main open cut of the Carajás iron ore mine complex in the Brazilian Amazon, which 
is among the world’s largest iron ore mining operations43. Figure 3b shows the Batu Hijau copper-gold mine. 
Despite its large open cut, this mine does not use much area for unused material, as its tailings disposal takes place 
in the ocean44. The third example is the Super Pit gold mine in Australia, Fig. 3c. This mine is located in one of 
the largest gold producing regions in the world. In the case of these large mines, coordinates reported in the SNL 
database were accurate.

Contrasting to the above examples, in other regions the reported coordinates were of lower accuracy. Figure 4, 
for example, shows a large area with widely spread coal mining activities in East Kalimantan, Indonesia. The SNL 
database reports some mining locations in this region, however, they do not always spatially intersect the mining 
areas mapped from the satellite images. In these cases the predefined ROI (10 km buffer around the coordinates) 
was crucial to systematically map the extents of the mines.

overview of global mapped mining area. Figure 5 shows an overview of the geographical distribution 
of our mapped mining area across the globe. The map in the figure is projected to equal area Interrupted Goode 
Homolosine and resampled to a 50 × 50 km grid to facilitate visualization. From this figure we can see concen-
trations of mining areas in many regions, for example, in northern Chile mainly due to copper extraction and 
northeastern Australia and East Kalimantan in Indonesia because of coal mining.

A summary of our data aggregated by country shows that 51% of the mapped mining area is concentrated 
in only five countries: China, Australia, the United States, Russia, and Chile. Another ten countries account for 
30%, and the remaining countries add up to 19% of the total mapped mining area (Fig. 6). These results show that 
mining areas are highly concentrated in only a few countries. However, it is worth mentioning that our polygons 
could be biased by the activities reported in the SNL database and could mask countries and commodities that 
are poorly reported. For instance, SNL data underestimates the quantities extracted in China for most metals and 
minerals compared to national accounts according to UNEP’s Global Material Flows Database2. For most African 
countries, however, SNL extraction of metals compares well to the national aggregates. One of the few exceptions 
is gold from the DR Congo, where SNL data sums up to less than 6 mt in the year 2017, while UNEP reports more 
than 10 mt of gold ore extraction.

Countries have different profiles regarding the spatial distribution of the mines. For example, China and 
Australia have similar figures on the mapped mining area, 6,567 km2, and 6,470 km2. However, they vary with 
respect to the number of identified polygons, 5,557 and 1,797, respectively. This discrepancy in the number of 
mining locations can be related to the high importance of the small-scale mining industry in China45,46, while 
Australia is characterized by fewer, large-scale mines19.

Figure 7 displays the relationship between the mapped area and the number of polygons on a country 
level. Most of the variation in mining area can be explained by a linear relationship to the number of polygons. 
Excluding China from the data set, a simple linear regression model reaches r2 = 0.90 (dashed line in Fig. 7). 

Fig. 4 Coal mining polygons in East Kalimantan, Indonesia, overplayed with the Sentinel-2 Cloudless images 
form the year 2019 provided by EOX33.

https://doi.org/10.1038/s41597-020-00624-w


7Scientific Data |           (2020) 7:289  | https://doi.org/10.1038/s41597-020-00624-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

However, r2 drops to = 0.71 for the full data set including China (solid line in Fig. 7). A complete summary of the 
mining area mapped per county is shown in Table 2 and available from download with our data records40.

Our mining data set accounts for all land cover types related to mining that could be identified from the satel-
lite images. However, it does not distinguish the different features within the polygons. For example, we could not 
separate mining from quarry, because this would require additional information other than the satellite images. 
Although our data set does not cover all existing mines, to date, it is the most comprehensive database on mining 
extents openly available. The data set can help filling existing gaps for spatially explicit mineral extraction assess-
ments on a global scale. It opens up opportunities to improve environmental pressure and impact indicators of 
the mining sector and can support the development of automated systems to monitor mining sites worldwide.

technical Validation
The mapped mining extents presented in this work can be subject to many sources of error, ranging from experts’ 
interpretation to the temporal availability and precision of the satellite images. The precision of the delineated 
mining borders can vary according to the satellite data source and the location. In general, the satellite sources 
used in this work provide sufficient spatial resolution and georeferencing accuracy to map mining areas9. Images 
available from Google Earth, for instance, have an overall positional root mean squared error (RMSE) of 39.7 m 
related to the reality on the ground47. Sentinel-2, on the other hand, has a RMSE below its pixel size (10 × 10 m)48. 
These errors are acceptable for global scale environmental assessments.

The visual interpretation of satellite images depends on the previous knowledge of the perceiving person. The 
ground features related to mining are not always easy to identify in the satellite images and can be subject to the 
judgment of the person that delineates a particular mine. For that reason, we obtained a second independent clas-
sification for a set of random points. We drew a set of 1,000 random points stratified49 between the area mapped as 
mine and those not mapped as mine (no-mine) within the region of interest (10 km buffer from the geographical 

Fig. 5 Mining area aggregated to 50 km grid cells projected to Interrupted Goode Homolosine. The map at the 
top shows the global distribution of the mapped mining area. The maps at the bottom are zoomed to South 
America, Australia, and parts of South-East Asia.
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coordinates). These validation points were inspected independently by experts that did not participate in the 
delineation of the mines. They classified these validation points as mine or no-mine based on the three satellite 
data sources without information whether or not the points were originally mapped as part of a mining areas. The 
validation points are also part of our data records40.

The overall agreement between the mapped areas and the validation points was 88.4%. Assuming that the 
validation points consist of a reference data set, we derived User’s (commission errors) and Producer’s (omission 
errors) accuracy (see Table 3). The User’s accuracy tells how well the classes in the map represent the reality on the 
ground; the Producer’s accuracy points how well a class has been mapped50. In our case the mapped mining areas 
have 97.5% User’s accuracy and 78.8% Producer’s accuracy, meaning that the mapped areas are highly reliable 
(less than 3% was incorrectly mapped as mining), but we missed some mining areas (the omission of mines was 
around 21.2%). The omission of mines also reflects a lower User’s accuracy of the no-mine class (82.2%).

An alternative way to visualize the accuracy of our data set is the Receiver Operating Characteristic (ROC 
probability curve). The graph in Fig. 8 displays the classification performance in terms of true positive and false 
positive. A discrete classifier (mine/no-mine) produces a point in the ROC curve. For our classification, the point 

Fig. 6 Percentage of mining area mapped per country. The colors represent groups of countries covering 51%, 
30%, and 19% of the mapped area.

Fig. 7 Relationship between the mapped mining area and the number of features (polygons) on a country level. 
The solid line summarizes the relationship between area and number of features for the complete data set, the 
dashed line excludes China.
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is near the upper-left corner of the ROC curve, meaning that the classification performs well (a perfect classifier 
would reach the point 0, 1). Besides, the area under the curve (AUC) in Fig. 8 shows that our classification has 
89.9% probability of correctly distinguishing between mine and no-mine.

Looking at the spatial distribution of the validation points, we found that half of the points with disagreement 
(i.e., 58 points) are located less than 50 m from the borders of the delineated polygons. On the other hand, of the 
points with an agreement (i.e., 884 points) only 16% are located closer than 50 m to the polygons’ borders. This 
shows that higher uncertainty lies on the borders of the delineated extents as it can be expected due to the use of 
several satellite data sources with different precision. These results also indicate that we have high confidence in 
the existence of mines within the mapped polygons.

Usage Notes
The global mining data set described here is available from PANGAEA under the license Creative Commons 
Attribution-ShareAlike 4.0 International (CC-BY-SA). The data records include the mining polygons, validation 
points, mining area grid, and a summary of the mining area per country.

Country km2 n Country km2 n Country km2 n

CHN 6,567.15 5,557 GIN 146.56 67 ITA 13.70 43

AUS 6,470.29 1,797 BOL 142.04 36 TJK 13.42 12

USA 6,427.74 2,252 THA 130.72 13 PAK 12.94 17

RUS 6,053.14 1,665 SRB 130.10 41 OMN 12.85 46

CHL 3,759.66 227 GBR 120.09 95 FRA 12.83 7

IDN 3,681.40 957 SWE 114.00 46 MDG 12.33 9

ZAF 3,145.97 915 FIN 104.24 77 LBR 11.65 18

CAN 2,099.07 734 TZA 98.57 19 LSO 11.65 8

IND 1,884.96 781 NZL 89.74 102 PAN 11.43 7

KAZ 1,640.33 368 ESP 88.77 69 MNE 10.88 13

BRA 1,493.36 459 MRT 85.75 25 ERI 10.15 4

PER 809.75 277 BFA 81.82 30 SVK 10.07 28

UKR 792.49 634 SLE 76.39 63 GTM 9.72 13

SUR 791.42 57 MOZ 75.57 21 NIC 9.48 9

VEN 658.93 50 CUB 71.10 25 AUT 9.36 7

GHA 657.50 273 MAR 68.33 26 URY 9.20 4

MEX 617.60 350 MYS 63.38 53 IRQ 8.84 4

ARG 564.58 86 PNG 62.98 17 TUN 8.54 4

COL 507.70 56 HUN 62.20 75 PRT 8.30 13

DEU 496.04 96 ESH 61.73 1 ETH 7.22 5

ZMB 432.56 75 KGZ 61.53 23 ALB 7.20 21

MNG 384.15 119 EGY 49.21 10 HND 7.15 7

TUR 378.74 191 SAU 47.65 50 AZE 7.11 12

COD 367.38 139 NER 46.63 10 IRL 6.76 8

NAM 331.05 63 GAB 46.07 7 ECU 6.61 20

IRN 321.34 60 LAO 45.66 10 KEN 5.24 5

UZB 290.02 25 ISR 44.17 9 SLB 5.05 1

JOR 263.40 45 MMR 40.45 9 JPN 4.84 12

POL 256.69 105 CIV 37.21 9 CYP 4.24 2

NCL 238.03 124 ARM 30.07 36 ARE 4.21 6

GUY 237.14 132 NOR 28.68 16 MWI 3.89 4

BWA 225.15 29 DOM 28.62 15 SVN 1.75 4

PHL 217.94 124 BIH 24.90 7 BGD 1.27 2

GRC 194.99 56 SEN 23.93 7 FJI 1.24 7

BGR 188.19 40 JAM 22.37 35 RWA 1.24 7

ZWE 182.41 167 PRK 20.94 17 CRI 1.04 2

AGO 179.22 75 DZA 19.89 75 SJM 1.04 3

VNM 160.37 70 MKD 18.17 12 UGA 0.22 2

MLI 157.03 30 KOR 17.67 18 GNB 0.06 2

CZE 156.30 48 SDN 14.72 15

ROU 154.87 56 GEO 14.37 7

Table 2. Mining area in km2 and number of polygons (n) mapped per country. Total Area: 57,277.73 km2; Total 
number of features: 21,060.
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1. The mining polygons and validation points are encoded in GeoPackage geographic data structures51, such as:

(a) the mining_polygons layer has five attributes:

•	 ISO3_CODE: A string with the country’s ISO 3166-1 alpha-3 code
•	 COUNTRY_NAME: A string with the country name in English
•	 AREA: A number with the area of the feature in square kilometers
•	 geom: A polygon geometry in geographical coordinates WGS84
•	 fid: An integer with feature ID

(b) the validation_points layer has four attributes:

•	 MAPPED: A string with the class derived from the mining polygons (“mine” or “no-mine”)
•	 REFERENCE: A string with the validation class (“mine” or “no-mine”)
•	 geom: A point geometry in geographical coordinates WGS84
•	 fid: An integer with feature ID

2. The mining grids include a single layer (one band raster) encoded in Geographic Tagged Image File Format 
(GeoTIFF)52. Each grid cell over land has a float number (data type Float32) greater than or equal to zero repre-
senting the mining area in square kilometers; grid cells over water have no-data values. The grid is available in 
three spatial resolutions, 30 arcsecond, 5 arcminute, and 30 arcminute, extending from the longitude −180 to 180 
degrees and from the latitude −90 to 90 degrees in the geographical reference system WGS84.
3. The summary of the mapped mining area per country derived from the mining polygons is available in 
Comma-separated values (CSV)53 format, including four attributes:

•	 COUNTRY_NAME: A string with the country name in English
•	 ISO3_CODE: A string with the country ISO3 code
•	 AREA: A number with the area of the feature in square kilometers
•	 N_FEATURES: An integer with the number of features per country

Mapped

Reference

User’s acc. (%)Mine No-mine Total

Mine 394 106 500 97.5

No-mine 10 490 500 82.2

Total 404 596 1000

Producer’s acc. (%) 78.8 98.0

Table 3. Error matrix and accuracy statistics derived from 1,000 random points equally allocated between the 
mapped classes mine and no-mine. Overall acc.: 88.4%; Kappa: 0.77; F1 Score: 0.87.

Fig. 8 Receiver Operating Characteristic (ROC) derived from 1,000 random points equally allocated between 
the mapped classes mine and no-mine. The point in the ROC curve shows the performance of our binary 
(mine/non-mine) classification and the shade shows the area under the ROC curve (AUC).
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Our spatially explicit data records can be combined with other geographical data to perform further statistical 
analysis, for example, to test spatially stratified heterogeneity54 and non-stationarity of variables55,56. For that, users 
can open the data records using software that support Geographic Information System (GIS), including, QGIS57, 
R58, and Python59. Besides, we also provide a tool for visual analysis of the geographical data records at www.fine-
print.global/viewer and a Web Map Service (WMS)60 accessible from www.fineprint.global/geoserver/wms.

code availability
All the code and geoprocessing scripts used to produce the results of this paper are distributed under the GNU 
General Public License v3.0 (GPL-v3)61 from the repository www.github.com/fineprint-global/app-mining-area-
polygonization35. The processing scripts were written in R58, Python59, and GDAL (Geospatial Data Abstraction 
Library62). The web application to delineate the polygons was written in R Shiny63 using a PostgreSQL64 database 
with PostGIS65 extension for storage. The full app setup uses Docker65 containers to facilitate management, 
portability, and reproducibility.

The web application supports the delineation of areas from the satellite images layers. It systematically displays 
the regions of interest (e.g., buffer around the mines) and several background options of satellite images, which 
the users can take into account to draw and edit polygons. Note that mining coordinates are not part of the web 
application and must be fed into the database by the user. To learn more about the application setup see www.
github.com/fineprint-global/app-mining-area-polygonization. The current version of app provides image layers 
from Sentinel-2 Cloudless33, Google Satellite, and Microsoft Bing Imagery. Further sources of satellite images can 
be added to the application via WMS.
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