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Prenatal hypoxia-induced 
epigenomic and transcriptomic 
reprogramming in rat fetal and 
adult offspring hearts
Xin Chen1,2, Lubo Zhang2,3* & Charles Wang  1,2*

the molecular mechanism of antenatal hypoxia impacting on fetal heart development and elevated 
risk of heart disease of adult offspring is poorly understood. We present a dataset integrating DNA 
methylome and transcriptome analyses of antenatal hypoxia affecting rat fetal and adult offspring 
hearts to understand hypoxia-mediated epigenomic reprogramming of the heart development. We 
showed that antenatal hypoxia not only induced DNA methylomic and transcriptomic changes in 
the fetal hearts, but also had a delayed and lasting effect on the adult offspring hearts. Of interest, 
antenatal hypoxia induced opposite changes in DNA methylation patterns in fetal and adult hearts, 
with a hypermethylation in the fetus and a hypomethylation in the adult. An extensive preprocessing, 
quality assessment, and downstream data analyses were performed on the genomic dataset so that the 
research community may take advantage of the public resource. These dataset could be exploited as a 
comprehensive resource for understanding fetal hypoxia-mediated epigenetic reprogramming in the 
heart development and further developmental programming of heart vulnerability to disease later in 
life.

Background & Summary
Heart disease is the leading cause of death in the United States, with ischemic heart disease, a major cause of 
morbidity and mortality. Yet the molecular mechanisms remain largely elusive. In addition to other risk factors, 
large epidemiological and animal studies have shown a clear association of adverse intrauterine environment with 
increased risk of ischemic heart disease in adulthood1–5. Hypoxia is a common form of intrauterine stress, and the 
fetus may experience prolonged hypoxic stress under a variety of conditions, including pregnancy at high altitude, 
pregnancy with anemia, placental insufficiency, cord compression, preeclampsia, heart, lung and kidney dis-
ease, or with hemoglobinopathy. Previous studies have suggested a possible link between antenatal hypoxia and 
increased risk of cardiovascular disease in offspring6–16. Studies in rats have demonstrated that maternal hypoxia 
results in heightened cardiac vulnerability to ischemia and reperfusion injury in offspring17–25. DNA methylation 
is a key mechanism associated with human diseases, altered gene expression and phenotype. Emerging evidence 
suggests that DNA methylation may play a crucial role in gestational hypoxia-induced developmental reprogram-
ming. Consistent with what we reported recently in animal model26, there were other studies also showing that 
a chronic hypoxia induced DNA methylation alteration and/or transcriptomic reprogramming in cardiomyo-
cytes27,28. Our previous studies showed that hypermethylation of single gene (e.g., PKC) was involved in antenatal 
hypoxia-induced developmental plasticity21,24. However, the impact of fetal hypoxia on the alteration of global 
methylation pattern and transcriptomic changes in the heart development remain unclear.

Recently, we presented an integration analysis to utilize reduced-representation bisulfite sequencing (RRBS) 
DNA methylome analysis coupled with RNA-seq to test the hypothesis that antenatal hypoxia causes a global 
epigenomic reprogramming and a corresponding transcriptomic alteration in developmental programming of 
hypoxic/ischaemic-sensitive phenotype in the heart26. The study showed that antenatal hypoxia not only induced 
a global DNA methylomic and transcriptomic changes in the fetal hearts, but also had a delayed and lasting effect 
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on the heart in adult offspring26. In summary, our DNA methylome analyses identified 2,828 (1,824 hyper- vs. 
1,004 hypo-) differentially methylated regions (DMRs) in fetal hearts and 2,193 (647 hyper- vs. 1,546 hypo-) 
DMRs in adult male hearts between hypoxia exposure and control. The differential methylation analysis showed 
an inverse hyper-hypo proportion relationship between fetal and adult male hearts. Consistent with the differen-
tial methylation analysis, an opposite global DNA methylation pattern caused by antenatal hypoxia was observed 
between fetal and adult hearts when examining the transcript starting site regions (TSS ± 3 k) and CpG islands 
(CGIs) in all genes, which displayed a hypermethylation in the fetal hearts and a hypomethylation in the adult 
hearts. Our transcriptome analysis identified a total of 323 differentially expressed genes (DEGs) in fetal hearts 
and 112 DEGs in adult male hearts between prenatal hypoxia exposure and control. More up-regulated DEGs 
were identified in fetal (62.2%), compared to adult male rats (37.5%). Our pathway analysis based on the DEGs 
showed a significant difference between fetal and adult male rats. In fetal hearts, developmental/stress response 
related pathways were enriched, whereas in adult male rat hearts, immune/inflammatory response related path-
ways were enriched. Our integration analysis on DNA methylome and transcriptome data revealed a strong neg-
ative correlation between TSS CpG methylation and gene expression using the pooled data from both fetal and 
adult hearts. Furthermore, there was a strong negative correlation between DNA methylation and gene expression 
level when DMRs were located in promoter or exon regions of genes. We would like to note that our dataset 
including both DNA methylome and RNAs-seq transcriptome in a rat model involving prenatal hypoxia exposure 
is very unique and rare in the community which will have a great value and reusability. The dataset is in a high 
quality. More biological insights can be derived with further data mining performed by different investigators. 
Particularly, our dataset has special value to the those studying the maternal exposure induced epigenomic and 
transcriptomic reprogramming in the fetus.

Methods
We have presented some these methods in our primary publication26. This section expanded our previous 
description to provide a comprehensive resource for reproducing both experimental and computational analysis.

experimental study design. The overall experimental study design was illustrated in Fig. 1. In total, we 
constructed 18 RRBS methylation libraries derived from 18 Sprague Dawley (SD) rat hearts and 26 RNA-seq 
libraries derived from 26 SD rat hearts in two development stages (fetus and adult). Pregnant rats were exposed 
to either normoxia (control group) or hypoxia (10.5% O2) for 6 days during gestational Days 15–21. The fetal 
hearts were collected at the Day 21 of gestation, and the adult offspring hearts were collected at 5 months old after 
birth26.

DNA and rNA extractions. The methods for DNA and RNA extractions were described previously26. 
Briefly, for genomic DNA (gDNA) extraction, heart tissues were minced and digested with 20 μL proteinase K 
(20 mg/mL) in digestion buffer (10 mM Tris-Hcl, pH 8.0 containing 0.5 M EDTA, 1% SDS, 10 m NaCl, and 5 mM 
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Fig. 1 Flowchart of experimental design and data analysis pipeline.
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CaCl2) for 3 h at 55 °C. The tissue lysate was twice phenol/chloroform/isoamyl: (25/24/1) alcohol extracted and 
the aqueous layer was treated with RNase A + T1 for 1 h at 37 °C. The lysate was again phenol/chloroform/isoamyl 
alcohol extracted and the gDNA was precipitated with equal volume of isopropanol in presence of 0.3 M sodium 
acetate at −20 °C overnight. The gDNA was finally centrifuged, washed with 70% ethanol, air dried and recon-
stituted in 10 mM Tris-HCl, pH 8.0. And then, gDNA was denatured with 2 N NaOH at 42 °C for 15 min, treated 
with sodium bisulfite at 55 °C for 16 h, and purified by EZ DNA Methylation-Gold KitTM (Zymo Research, 
Tustin, CA, USA)26.

Total RNA was isolated from heart tissues using TRIzol RNA Isolation reagent (Life Technologies, Carlsbad, 
CA, USA). Briefly, each solid tissue was homogenized in 1 mL TRIzol and the lysate was then extracted with 
chloroform and centrifuged at 14,000 rpm for 15 min at 4 °C. Finally, total RNA was precipitated and washed 
thoroughly with 70% ethanol, air dried and reconstituted in nuclease free water. RNA quality was assessed using 
the 2200 TapeStation (Agilent Technologies, Wilmington, DE USA). Heart samples had an average RIN number 
of 9.526.

rrBs and rNA-seq library constructions. The methods for RRBS and RNA-seq library constructions 
were described previously26. Briefly, high-quality gDNA was used for generation of RRBS libraries at the Center 
for Genomics, Loma Linda University (Loma Linda, CA, USA) following standard protocols of the Ovation® 
Ultralow Methyl-Seq Library Systems (NuGEN Technologies, Inc. USA). Briefly, 100 ng gDNA was restriction 
digested at 37 °C for 1 hour using the methyl-insensitive restriction enzyme Mspl, which cuts the DNA at CCGG 
sites. The fragments were directly subject to end blunting and phosphorylation. A single nucleotide (A) was then 
added to the 3′ ends of the fragments in preparation for ligation to a methylated adapter with a single-base T over-
hang. The ligation products were final repaired in a thermal cycler under the program (60 °C – 10 min, 70 °C – 
10 min, hold at 4 °C). The product of the final repair reaction can be input directly into the bisulfite conversion kit 
(QIAGEN EpiTect Fast DNA Bisulfite Kit) according to Qiagen’s protocol. Eluted the purified, bisulfite-converted 
DNA in 23 μL of EB and performed PCR-amplification to enrich for fragments with adapters on both ends fol-
lowing by Agencourt RNAClean XP Beads purification. The final libraries were quantified using Qubit 3.0 (Life 
Technologies, Carlsbad, CA, USA) and the average size was determined on an Agilent TapeStation 2200 (Agilent 
Technologies, Wilmington, DE, USA). The final library was diluted to 5 nM and further quantitated to ensure 
high accuracy quantification for consistent pooling of barcoded libraries before sequencing26.

RNA-seq libraries were constructed using the Ovation Universal RNAseq System (NuGEN, San Carlos, USA). 
All RNA samples (except non-template control) were spiked with 1:500 ERCC RNA spike-in control mix (Life 
Technologies). Before cDNA generation, samples were treated with a second round of DNase for more thorough 
removal of gDNA following NuGEN’s integrated DNase treatment protocol. Double-stranded cDNA was gener-
ated using ~100 ng of total RNA per sample. cDNA was sheared using the Covaris S220 sonication system. Each 
sample was sheared according to the manufacturer’s settings of 130 µL sample with a target (peak) of 200 bp. The 
settings were as follows: 10% duty factor and 200 cycles/burst at 7 °C for 180 seconds. End repair was then per-
formed to generate blunt ends for adaptor ligation. Unique barcodes were used for each sample for multiplexing. 
Targeted rRNA-depletion was performed before final library construction. cDNA libraries were amplified using 
15 cycles (Artik thermal cycler from Thermo Scientific) and purified using RNAClean XP beads (Agencourt, 
Brea, USA). The size distribution of the libraries was checked using 2200 TapeStation. The peak size for all sam-
ples was around 300 bp (including a 122 bp adaptor). All libraries were quantified using the Qubit 3.0 Fluorometer 
(Life Technologies) and stored at −20 °C in non-sticky Eppendorf tubes (Life Technologies, Carlsbad, USA). 
RNA-seq libraries were sequenced on Illumina NextSeq550 with 76 bpx2, PE, approximately 25 M reads/each, at 
the Center for Genomics, Loma Linda University26.

sequencing, processing, and alignment of rrBs and rNA-seq libraries. RRBS libraries were 
sequenced using Illumina Nextseq550 platform. The libraries were single-end (SE) and read length was 76 bp. 
Base-calling was performed by Illumina RealTime Analyzer (RTA) software. Binary base call files (bcl) were 
demultiplexed by bcl2fastq v2.17.1.14 to generate raw fastq data per sample. Quality of the raw fastq data for 
each sample was assessed using the FastQC v0.11.429. Based on the quality, adaptor sequences were removed 
from the reads using trim_galore v0.3.730 with option ‘–rrbs’ disabled due to special design of NuGEN Ovation 
RRBS system. After adaptor trimming, NuGEN’s diversity trimming was performed to remove diversity adaptors. 
The trimmed reads were aligned to rat genome NCBI Rnor6.0, downloaded from Illumina iGenome, by using 
Bismark v0.16.3 with all default parameter settings. The methylation call files including the location of each CpG 
sites and the methylation percentage (beta value) were generated using bismark_methylation_extractor. SAMstat 
v 1.5.131 was used to assess the quality of aligned reads per sample. The detailed statistics summary of RRBS pro-
cessing and alignment can be referred to Supplementary Table 1.

RNA-seq libraries were sequenced on Illumina Nextseq550 with paired-end, 76 bpx2 run. FastQC and 
ShortRead32 (R/Bioconductor package) were used to assess the quality of the raw fastq data per sample. Based on 
the quality, hard trimming and adaptor trimming were performed by Trimmomatic v0.3533. The trimmed reads 
were aligned to the rat reference genome NCBI Rnor6.0 with TopHat v2.1.134 with default parameter settings. The 
aligned bam files were then processed using Cufflinks v 2.2.135 for gene quantification. Reads that were unable to 
align to the rat genome were converted to fastq format using SamToFastq function in Picard v1.114, and further 
mapped and quantified to ERCC transcripts by TopHat and Cufflinks, respectively. The detailed statistics sum-
mary of RNA-seq processing and alignment can be referred to Supplementary Table 2.

Differential analysis of rrBs and rNA-seq data. The methylation call files were used as the input 
for differential methylation analysis using MethylKit36 and DMAP37. In our original paper, we first used DMAP 
to process the methylation call files for fetal and adult male rat samples, respectively, to generate CpG region 
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profiles26. MethylKit was then used to perform differential methylation CpG (DMC) analysis and differential 
methylation region (DMR) identification. In DMC analysis, CpGs with a minimum of 10 reads in all samples 
were considered for the follow-up analysis, whereas in DMR analysis, CpG regions with a minimum of 20 reads 
in all samples were considered. The criteria to define DMCs or DMRs were based on the false discovery rate 
(FDR) < 0.05 and the methylation percentage change between control and hypoxia groups were >10%. The prin-
cipal component analysis (PCA) was performed on DMCs of all fetal and adult male rat samples, showing a sepa-
ration between control and hypoxia groups in both fetal and adult male rat samples (Fig. 2a).

The gene expression profiles (Fragments Per Kilo base per Million or FPKM) were used as the input for dif-
ferential expression gene (DEG) analysis using Cuffdiff. Genes with FPKM ≥ 1 in fetal or adult rat samples were 
used for DEG analysis. In our original paper, the criteria to define DEGs were based on FDR < 0.3 and fold change 
(FC) > 1.226. The PCA showed a separation between control and hypoxia groups in fetal, adult male, and adult 
female samples (Fig. 2b–d).

Data Records
The raw fastq data and processed FPKM gene expression profile of rat RNA-seq data38 consist of 6 fetal samples, 
10 adult male samples, and 10 adult female samples. The raw fastq data and processed DNA methylation coverage 
files of rat RRBS data39 consists of 6 fetal samples and 12 adult male samples.

technical Validation
Quality metrics for raw and mapped reads of rrBs and rNA-seq data. To measure the quality of 
raw fastq data, FastQC and ShortRead packages were used to generate QC report for each sample and a general 
overview for all samples. Figure 3a showed the distribution of median per base quality score for each position 
across samples in four different data sets, respectively. Usually, the quality scores between 41 and 28 indicate very 

Fig. 2 Principle component analysis (PCA) of differential methylation and gene expression profiling. (a) Differentially 
methylated CpGs between control and hypoxia groups in fetal and adult rat hearts. (b–d) Differentially expressed 
genes between control and hypoxia groups in fetal, adult male, and adult female rat hearts.
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good quality. In general, the quality scores of RRBS and RNA-seq data in both fetal and adult groups were of rea-
sonable to very good quality. In fact, they showed almost the same patterns across all 76 bases.

Read alignment percentages were summarized in Fig. 3b. Overall, RRBS and RNA-seq data showed very con-
sistent alignment percentages across all samples. On average, the alignment percentages for RRBS and RNA-seq 
were 64–72% and 89–95%, respectively.

Read mapping quality was measured by analyzing mapping quality scores of the alignments in each sample. 
Figure 3c presented the distributions of the percentages for aligned reads across different mapping quality ranges. 
In all of our four data sets, the reads were aligned with high accuracy in all samples, and more than 75% of aligned 
reads had a MAPQ ≥ 30.

Validation of NuGeN diversity trimming. Due to the special design of NuGEN Ovation® Ultralow 
Methyl-Seq Library Systems, the raw fastq data did not show the typical RRBS signature in the first three bases 
(at the 5′ end) of the reads (CGG or TGG sequences due to MspI digestion, see Fig. 3d). In the trimming process, 
we disabled option ‘-rrbs’ in trim_galore and further applied NuGEN diversity trimming to remove the diversity 
adaptors. After the trimming process, we re-ran FastQC, thus the typical RRBS signature in the first three bases 
can be observed in our QC report for all RRBS samples. (Fig. 3e).

performance of ercc spike-in control. To access the quality of RNA-seq expression profiles across 
samples, Mix1 containing 92 synthetic ERCC control sequences was spiked into each RNA sample. Figure 4a–c 
showed scatterplots of ERCC log2(FPKM) vs. log2(spike-in concentrations) in fetal, adult male and adult female 
groups, suggesting a good linear relationship between RNA-seq ERCC detected and true concentrations of the 
ERCC spike-in control. As expected, we observed smaller variability in ERCC with higher concentrations, as 
compared to ERCC at lower abundances.

Biological replicates and reproducibility of rrBs and rNA-seq data. Using methylation call files 
and gene expression profiles, we performed PCA to test the reproducibility of RRBS and RNA-seq data, respec-
tively. The resulting within-group and between-group Pearson correlations were calculated as well (Fig. 5a,b). We 
observed a clear separation between fetal and adult groups in both PCA and Pearson correlations. Although the 
clear separation between hypoxia and control groups was not identified in all fetal and adult groups, which may 
be due to mild hypoxia effect, the biological replicates of fetal RNA-seq data between hypoxia and control groups 
shared similar variances in PCA (Fig. 5c). Furthermore, we examined the methylation regions located in the gene 
promoter regions (transcription start site/TSS ± 500 bp) and we found that there were similar variances across 
samples within either hypoxia or control groups in adult male rat hearts (Fig. 5d).

Fig. 3 Quality metrics of raw and aligned reads. (a) The distribution of median phred quality score per base 
across all samples in fetal RNA-seq, adult RNA-seq, fetal RRBS, and adult RRBS data sets. (b) Number of reads 
before and after alignment of all samples in four data sets. (c) Distribution of percentages of aligned reads across 
different mapping quality ranges in four data sets. (d–e) An example of percentage of sequence content per base 
before and after NuGEN diversity trimming in two RRBS data sets (sample: C1_6).
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Fig. 4 Quality assessment of external RNA spike-in controls (ERCC). (a–c) Satterplot of linear relationship 
between log2 transformed true spike-in concentrations and estimated FPKMs (Mean ± s.e.) in fetal, adult male, 
and adult female RNA-seq data sets.

Fig. 5 Reproducibility of biological replicates in RRBS and RNA-seq data sets. (a,b) Pearson correlation and 
hierarchical clustering of DNA methylation profiles (union CpGs across whole genome) and gene expression 
profiles. FC, FH, AMC, AMH, AFC, and AFH represent fetal control, fetal hypoxia, adult male control, adult 
male hypoxia, adult female control and adult female hypoxia. PCA of gene expression profiles in fetal rat heart 
(c,d) DNA methylation profiles in promoter region across all genes in adult male rat heart.
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Usage Notes
Although DNA methylation plays a critical role in antenatal hypoxia-induced heart developmental programming, 
much less is known about the global epigenetic variation and molecular mechanisms of this process. Our data 
sets will allow further analysis to gain a better understanding on the mechanism of hypoxia-induced epigenomic 
and transcriptomic reprograming and the corresponding impact in the heart development in a sex-dependent 
manner. Detailed understanding of antenatal hypoxia effect on heart development is of critical importance from 
both basic and clinical science points of view. The identification of hypoxia-mediated DNA methylation and gene 
expression biomarkers may provide new insights into potential therapeutic interventions to prevent and treat 
heart disease associated with fetal stress.

In our original paper, we used classic tuxedo pipeline to process the RNA-seq data26. However, the analysis is 
interchangeable with many other currently available tools. We have re-run the RNA-seq analysis using kallisto40 
and DESeq241, and we obtained very similar results.

code availability
All tools used in this study were properly cited in the sections above. The settings and parameters were clearly 
described as well.
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