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text-mined dataset of inorganic 
materials synthesis recipes
Olga Kononova  1, Haoyan Huo  1,2, tanjin He1,2, Ziqin Rong2, tiago Botari1,3,  
Wenhao Sun  2, Vahe tshitoyan2,4 & Gerbrand Ceder1,2

Materials discovery has become significantly facilitated and accelerated by high-throughput ab-initio 
computations. this ability to rapidly design interesting novel compounds has displaced the materials 
innovation bottleneck to the development of synthesis routes for the desired material. as there is no a 
fundamental theory for materials synthesis, one might attempt a data-driven approach for predicting 
inorganic materials synthesis, but this is impeded by the lack of a comprehensive database containing 
synthesis processes. To overcome this limitation, we have generated a dataset of “codified recipes” 
for solid-state synthesis automatically extracted from scientific publications. The dataset consists of 
19,488 synthesis entries retrieved from 53,538 solid-state synthesis paragraphs by using text mining 
and natural language processing approaches. Every entry contains information about target material, 
starting compounds, operations used and their conditions, as well as the balanced chemical equation 
of the synthesis reaction. the dataset is publicly available and can be used for data mining of various 
aspects of inorganic materials synthesis.

Background & Summary
The number of big-data-driven projects for materials discovery has been boosted significantly in the last decades 
due to Materials Genome Initiative efforts1 and growth of computational tools2–6. Building and maintaining of 
large-volume databases has become a crucial step to provide scientific data for mining and modeling. Widely used 
materials databases, such as the Inorganic Crystal Structure Database (ICSD)7,8, NIST Web-book9, the Pauling 
File and its subsets10,11, have been manually constructed and curated over decades and store experimentally 
obtained data for thousands of inorganic materials. Combining high-throughput computations with database 
infrastructure has led to the establishment of large-scale databases with ab initio-calculated materials structures 
and properties12–16.

At the same time, scientific publications have accumulated an enormous amount of information about 
materials, but the data is presented in unstructured and arbitrary form which significantly obstructs its use in 
data-driven research17. Early approaches to text-mining of materials data have been implemented by manual 
extraction from a limited amount of articles18, and lab notebooks19. Development of text mining and natural 
language processing (NLP) approaches have made it possible to implement various automated methodologies 
for converting scientific text into structured data collections20,21. Among the most widely used NLP toolkits for 
chemical text processing and information extraction are ChemDataExtractor22, OSCAR423, ChemicalTagger24 
and others17,25.

Most of the existing data extraction and mining developments have been applied to establish and predict 
structure-property-function relationships for materials26–29. Only recently effort has been spent to create collec-
tions of materials synthesis data and using them to predict materials synthesis routes19,30. Kim et al. created pub-
licly available dataset of inorganic synthesis parameters for 30 different oxides systems extracted from literature20. 
They used their data to provide guidelines for titania nanotubes synthesis30. AI-guided synthesis predictions for 
organic molecules have already been applied successfully31–33, as organic reaction data is more widely presented 
in well-structured and machine readable format34,35.

In this work, we provide fully auto-generated open-source dataset of 19,744 chemical reactions retrieved from 
53,538 solid-state synthesis paragraphs. The data are collected using an automated extraction pipeline (Fig. 1) 
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which converts unstructured scientific paragraphs describing inorganic materials synthesis into so-called “cod-
ified recipe” of synthesis. The pipeline utilizes a variety of text mining and NLP approaches to find information 
about target materials, starting compounds, synthesis steps and conditions in the text, and to process them into 
chemical equation. The dataset is publicly available in JSON format. Digitizing and systemizing the large corpus 
of existing solid-state chemistry literature enables us to make a first step toward development of data-driven 
approaches for understanding inorganic materials synthesis and synthesizability.

Methods
Content acquisition. Scientific publications used in this work are journal articles published by Springer, 
Wiley, Elsevier, the Royal Society of Chemistry, the Electrochemical Society, and the American Chemical Society, 
from which we received permissions to download large amounts of web-content. For each publisher, we manually 
identified all materials science related journals available for download. A web-scraping engine was built using the 
scrapy (https://scrapy.org/) toolkit. Since the full-text articles published before 2000’s are mostly in PDF format, 
which complicates their parsing, we chose to process only papers in HTML/XML format published after the year 
2000. The downloaded content includes the text of the article as well as its metadata such as journal name, article 
title, article abstract, authors, etc. All data was stored in a document-oriented database implemented using a 
MongoDB (www.mongodb.com) database instance. Because downloaded articles contain irrelevant markups, we 
developed a customized library for parsing article markup strings into text paragraphs while keeping the structure 
of paper and section headings.

Paragraphs classification. To find paragraphs on solid-state synthesis, we used a two-step paragraph 
classification approach described elsewhere36 which consists of an unsupervised algorithm to cluster common 
keywords in experimental paragraphs into “topics” and generate a probabilistic topic assignment for each para-
graph, followed by a random forest (RF) classifier trained on annotated paragraphs. The outsome of the RF is a 
classification of the synthesis methodology in a paragraph as either solid-state synthesis, hydrothermal synthesis, 
sol-gel precursor synthesis, or “none of the above”. The annotation set consisted of 1,000 paragraphs for each label.

Synthesis recipe extraction. A typical synthesis procedure in the solid-state chemistry literature con-
tains information about precursor and target materials, synthesis operations and operation conditions. These 
items comprise a materials synthesis “recipe” and were extracted from a synthesis paragraph as shown in Fig. 1. 
Our extraction pipeline consists of several algorithms which analyze a paragraph and identify information about 
materials (final products and starting precursors), synthesis steps performed, and conditions associated with 
those steps. Finally, target and starting materials as well as synthesis conditions are used to balance a chemical 
equation representing the synthesis reaction. The next sections provide details on each step of the pipeline.

Material entities recognition (MER). To identify starting materials and final products mentioned in a synthesis 
paragraph, we implemented a bi-directional long-short term memory neural network with a conditional random 

Fig. 1 Schematic representation of synthesis “recipes” extraction pipeline. Top panel: The pipeline starts with 
retrieval of HTML content from major publishers which is then parsed into a raw text. Next, paragraphs 
describing synthesis are identified and classified according to synthesis type. Every paragraph is then processed 
to extract synthesis “recipe”, i.e. materials, operations and conditions. The output is stored in a database for 
further data mining. Bottom panel: Example of processing a synthesis paragraph into a “recipe”. The key 
component of “recipe”, such as target and starting materials, synthesis steps and their conditions are found and 
extracted from the paragraph by different text mining algorithms (see Methods).
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field layer on top of it (BiLSTM-CRF)37,38 which is able to recognize the meaning of a word based on both the 
word itself and its context. Extraction was performed in two steps each executed by a different neural network: 
first we identified all materials entities presented in the paragraph; next we replaced each material with a key-
word “<MAT>” and classified them as TARGET, PRECURSOR or OTHER material. Each word input for the 
BiLSTM-CRF was represented as the combination of a word-level embedding from a Word2Vec model39 trained 
on ∼33,000 solid-state synthesis paragraphs, and a character-level embedding from a character lookup table. The 
table was randomly initialized and then optimized during the training of the BiLSTM-CRF. As an additional fea-
ture in the word representation for the second neural network, we also included chemical information about each 
material, i.e. number of metal/metalloid elements and a flag indicating whether the material contains C, H and O 
elements only. This assisted in the differentiation of precursors and targets, as they tend to have different number 
of metal/metalloid elements and are generally not organic compounds in our dataset. We manually annotated 834 
solid-state synthesis paragraphs from 750 papers by assigning each word token with the following tags: “material”, 
“target”, “precursor”, and “outside” (not a material entity). The annotated dataset was randomly split into training/
validation/test sets with 500/100/150 papers in each set. The model parameters were iteratively optimized on the 
training set using early stopping regularization40 to minimize overfitting, and the model with best performance 
on the validation set was chosen.

Synthesis operations. We implemented an algorithm which combines neural network and sentence depend-
ency tree analysis to identify key steps of solid-state synthesis given in the paragraph. The neural network was 
used to classify sentence tokens into 6 categories: NOT OPERATION, MIXING, HEATING, DRYING, 
SHAPING, QUENCHING, which are the main operations in solid-state synthesis. To create tokens features, we 
trained a Word2Vec model39 on ∼20,000 synthesis paragraphs using the Gensim library41. For the Word2Vec 
model training, the sentences of paragraphs were lemmatized, all the quantity tokens were replaced with a key-
word <NUM>, and all the chemical formulas were replaced with keyword <CHEM>. We also used the SpaCy 
library42 to grammatically parse each sentence and obtain linguistic features of token such as token’s part of 
speech and its dependency to a root token. The annotated set consisted of 100 solid-state synthesis paragraphs 
(664 sentences) with manually assigned tokens labels. For training, validation and testing, the annotated set was 
split into a 70/10/20 fraction, respectively. Next, we used the dependency tree to assign MIXING operations as 
a SOLUTION MIXING if its lemma belongs to any solvent-based process (e.g ‘disperse’, ‘dilute’, ‘dissolve’, etc) 
or has a solution environment (e.g. ‘ethanol’, ‘water’, ‘alcohol’, etc.) in its sub-tree. This was differentiated from a 
MIXING operation which consists of grinding or milling in liquid environment, which was assigned the LIQUID 
GRINDING label.

Mixing and heating conditions. For every HEATING operation, we extracted the values or range of values for 
time, temperature, atmosphere corresponding to the operation, if they are mentioned in the same sentence. We 
applied a regular expression approach to find the values of temperature and time, and a keyword-search to find 
atmosphere. For any operation of type MIXING, we extracted corresponding mixing media and type of mix-
ing device, if they are mentioned in the same sentence. For this, we used the list of materials labeled by MER 
as OTHER materials, as well as keyword-matching, to find potential device or media substances. The extracted 
attributes were assigned to both the heating and mixing by using dependency sub-tree analysis. Throughout the 
text, these attributes are referred as “conditions” of synthesis or operations.

Balancing equations. Every material entry was processed with a Material Parser, which converts the string rep-
resenting the material into a chemical formula and splits it into elements and stoichiometries. Balanced reactions 
were obtained from parsed precursors and target materials by solving a system of linear equations. Variables 
of the linear equations represent molar amounts of materials involved in a reaction, and each equation asserts 
the conservation of a certain chemical element in the reaction. Besides precursor and target materials, we also 
included a set of “open” compounds (i.e. the compounds that can be released or absorbed during solid-state syn-
thesis, such as O2, CO2, N2, etc.) which were inferred based on the compositions of precursor and target materials. 
Whenever a target material was synthesized with a “modifier”, i.e. doping, stabilizing, substituting elements, a 
note is assigned to the reaction: “target <target_name> with additives <element> via <precursor>”. To solve 
symbolic equations for materials with variable amounts of chemical elements, we used the Gaussian elimination 
routines in SymPy43.

Dataset generation. We scraped a total of 4,204,170 papers, which contained 6,218,136 paragraphs in the 
experimental sections. The experimental sections were identified by using case-insensitive keyword matching in 
section headings (i.e. “experiment”, “synthesis”, “preparation” and their morphological derivations). Plain text par-
agraphs were segmented into sentences and tokenized into words using the ChemDataExtractor tokenizer22. After 
classification, 188,198 paragraphs were found to describe inorganic synthesis, such as solid-state, hydrothermal, 
sol-gel, co-precipitation syntheses, with 53,538 corresponding to solid-state synthesis. These 53,538 paragraphs 
and their corresponding abstracts were processed to extract materials, operations, conditions and balance chem-
ical equation as described above.

Data Records
The complete dataset of 19,488 solid-state synthesis reactions is provided as a single JSON file, and it is pub-
licly available at https://doi.org/10.6084/m9.figshare.9722159.v3 44. Each record corresponds to a single chemical 
reaction built from a paragraph describing inorganic material synthesis, and is represented as a JSON object in a 
top-level list. If a paragraph reports synthesis of several materials or a material with variable substituted elements, 
the corresponding reactions are split into separate data records. Aside from a balanced chemical equation, the 
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metadata for each reaction include: DOI of the paper from which the reaction is extracted and a snippet of the 
corresponding synthesis paragraph (50 first and 50 last characters to facilitate its lookup), chemical information 
about target and precursor materials used in the reaction, operations and conditions for heating and mixing steps 
to synthesize the target material. The details of the data format are given in Table 1.

The chemical equation for the reaction is stored as a string as well as a list of pairs: chemical substance (mate-
rial) and stoichiometric coefficient (amount). The reactants and products are listed in the left_side and 
right_side, respectively. If in the original paper the target compound was synthesized with variable substi-
tuted elements, the element used in the particular reaction is given in element_substitution.

The metadata for target and precursors used to construct and balance the chemical equation are represented 
by a data structure with the following properties:

•	 material_string: string of material as given in the original paragraph before being parsed into chemical 
composition.

•	 material_formula: chemical formula associated with the material (given originally or constructed 
empirically by parser).

•	 composition: chemical composition of the material derived from its formula. Aside from single com-
pound materials, we found that a large portion of the materials (predominantly target materials) are compos-
ites, mixtures, solid solutions or alloys, written as sequence of ratio-compound pairs. Therefore, a chemical 
composition entity is represented by a list of dictionaries where each item is associated with a compound 
found in the materials formula. The ratio of each compound in the material is given in amount, its chemical 
composition (i.e. element and its fraction) is given in elements. If a material is one compound, the list has 
only one item and amount = 1.0. If a material is hydrate, the water is added into the composition list with 
the amount corresponding to the amount of water molecules (if specified).

•	 additives: list of additive elements (i.e. elements used for doping, stabilization, substitution) resolved 
from material string.

•	 elements_vars: lists all variable elements and their corresponding values found in the materials.
•	 amounts_vars: lists all variable elements ratios and their corresponding values found in the material for-

mula. The values of each variable are given as a structure with values listing specific variable’s values, and 
max_value/min_value values if range is given in the paragraph.

YellowGreen Data description Data Key Label Data Type

DOI of the original paper doi string

Snippet of the raw text paragraph_string string

Chemical equation reaction

Object (dict):

- element_substitution:

- left_side: list of Objectsa

- right_side: list of Objectsa

Chemical equation in string format reaction_string string

Target material data target

Object (dict):

- material_string: string,

- material_formula: string,

- composition: list of Objectsb,

- additives: list of strings

- elements_vars: {var: list of strings}

- amounts_vars: {var: list of Objectsc}

- oxygen_deficiency: boolean

- mp_id: string

List of target formulas obtained after variables substitution targets_string list of strings

Precursor materials data precursors list of Objects (See target)

Sequence of synthesis steps and corresponding conditions operations

list of Objects (dict):

- token: string,

- type: string

- conditions: Object

–heating_temperature: list of Objectsd

–heating_time: list of Objectsd,

–heating_atmosphere: list of strings

–mixing_device: list of strings

–mixing_media: list of strings

Table 1. Format of each data record: description, key label, data type. a{amount: float, material: string}. 
b{formula: string, elements: {element: amount of element}, amount: string}. c{max_value: float, 
min_value: float, values: list of floats}. d{max_value: float, min_value: float, values: list of floats, 
units: string}.

https://doi.org/10.1038/s41597-019-0224-1
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•	 oxygen_deficiency: yes/no attribute which reflects if material was synthesized with unspecified oxygen 
stoichiometry.

•	 mp_id: ID of the lowest-energy polymorph entry in Materials Project database (materialsproject.org) if it is 
presented there.

To facilitate querying of the dataset, the targets_string field contains all target material formulas 
obtained by substituting amounts_vars in the material_formula.

The sequence of synthesis steps for the reaction (if specified in the paragraph) is listed as a data structure with 
the following fields: original token from the text (token), its type (type) as assigned by classification algorithm 
(see Methods) and conditions used at this step (conditions). If the synthesis step has type HEATING then 
temperature, time and atmosphere conditions are provided in the conditions attribute. Temperature and time 
are given as values if discrete values are given, or max_value/min_value if a range is given. If the synthesis 
step is of the MIXING type then the mixing device and mixing media are specified in the conditions attribute.

technical Validation
Extraction accuracy. The overall extraction yield of the pipeline is 28%, meaning that out of 53,538 sol-
id-state paragraphs, only 15,144 of them produce a balanced chemical reaction. As a test of the full extraction 
pipeline, we randomly pulled 100 paragraphs from the set of paragraphs classified as solid-state synthesis, and 
checked them against completeness of the extracted data. Out of the 100 paragraphs, we found 30 that did not 
contain a complete set of starting materials and final products, meaning that a human expert would not be able 
to reconstruct a reaction from these paragraphs. The remaining 70 paragraphs could potentially contribute to 
the dataset as they provide all information about starting materials and final products. Inspections of those 70 
paragraphs showed that 42 potential reactions were not reconstructed due to an incomplete or overcomplete set 
of extracted precursor/target materials, or a failure to parse chemical composition, which makes it impossible to 
balance the reaction. The former loss originates from the lower re-call of the MER algorithm which we traded in 
for higher precision, while the parsing problem occurs due to complicated notation used for a materials entity.

Evaluation of the dataset records accuracy was performed by randomly pulling 100 entries and manually check-
ing each extracted field against the original paragraph. The calculated precision, recall and F1-score for every attrib-
ute of the data entry is given in Table 2. Overall, we achieved a high accuracy in extraction of targets (precision 
97%), precursors (F1-score 99%), operations (F1-score 90%) and balancing reactions (precision 95%). The lower 
accuracy of the heating conditions (F1-score < 90%) is mostly caused by the cases where the heating step is missed 
by the operations extraction algorithm. The retrieval of the mixing conditions show relatively poor accuracy with 
F1-score 65%. This is largely due to misidentification by MER of the device material or media substance used for 
mixing, as well as because those conditions are often not mentioned in same sentence as the mixing procedure.

This analysis leads us to a conclusion that at the chemistry level (correct precursors, targets, reactions), the 
accuracy of the dataset is 93%. When including all operations and their conditions, the accuracy of having all 
recipe items (chemistry, operations and attributes of the operations) extracted and assigned correctly is 51%, 
which is low due to low performance in extraction the mixing attributes. For many solid-state recipes, specifics 
of mixing the precursors is of less importance, so this extraction failure is less critical. When considering only 
correctness of the recipe without conditions for heating and mixing (i.e. chemistry, operations and reactions), the 
accuracy rises to 64%.

It is worth noting that for this dataset we aimed to achieve higher precision of the data extraction in expense 
of lower recall (i.e. better miss the data record, rather than provide the wrong one), therefore the extraction rate 
is low. Yet, constructing the balanced chemical equation sets up additional constraints on targets and precursors, 
and helps to reduce potential errors that may have been caused by composition parsing. This results in a skew of 
the metrics toward higher accuracy for identification of targets and precursors, as compared to operations.

Dataset mining. In order to test the diversity of the entries representing the dataset, we first obtained a list of 
unique materials (targets and precursors) and reactions. The dataset contains 13,009 unique targets, 1,845 unique 

Data attribute Precision Recall F1 score

Materials

- targets 0.97 / /

- precursors 0.99 0.99 0.99

Operations 0.86 0.95 0.90

Heating conditions

- temperature 0.85 0.87 0.86

- time 0.90 0.88 0.89

- atmosphere 0.89 0.86 0.87

Mixing conditions

- mixing media 0.62 0.66 0.64

- mixing device 0.82 0.55 0.66

Balanced reactions 0.95 / /

Table 2. Performance of data extraction for dataset entries.

https://doi.org/10.1038/s41597-019-0224-1
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precursors and 16,290 unique reactions. The almost 10-fold lower variety of precursors compared to targets can 
be explained by the fact that in general researchers operate with a set of common well-established precursors. 
Table 3 represents the ten most frequent targets, precursors and reactions in the dataset. The target compounds 
neatly capture the types of materials most often studied in the last two decades via solid-state synthesis. These are 
lithium ion battery cathode materials (LiFePO4, LiMn2O4 and LiNi0.5Mn1.5O4), as well as perovskites for multifer-
rorics, LEDs and CMOS applications (BaTiO3, BiFeO3, SrTiO3, Y3Al5O12). It is possible that this “top-ten” materi-
als list is biased by the set of publishers that gave us permission to access their scientific corpus. For example, The 
American Physical Society was not included and may have brought other compounds to the list.

Next, we evaluate the chemical space covered by the dataset. For each chemical element, we computed the 
amount of the reactions which include the given element in the target. The results are mapped in Fig. 2 in the 
yellow-to-green gradient frame at the top of each element box. The database is dominated by target materials 
containing Ti, Sr, Ba, La, Fe - >3,000 reactions include these targets with these elements. This is also reflected in 
the list of the ten most frequent target materials appearing in the dataset (Table 3). The next-most prevalent targets 
are materials with Li, Ca, Nb, Mn, Bi - 2,000–3,000 reactions with these elements in targets. The least common ele-
ments are Au, Pt, Os, Be - <13 reactions in the dataset contain these elements. The rare and radioactive elements 
such as francium, radium, technetium or promethium are not presented in the target materials of the dataset.

We also examined the co-occurrence of chemical elements and the most typical counter-ions in precursor 
materials, and determined the average firing temperature used with each of these precursors. Here, we operation-
ally define the firing temperature as the temperature used during the last heating step in the sequence of synthesis 
operations. The results are shown in Fig. 2 as bar-graphs for each element. The color of the bar correspond to a 
specific counter-ion. The pure element as precursor is shown in magenta. The length of the bar denotes the aver-
age firing temperature.

With this representation, we observe that the dataset accurately depicts known aspects of solid-state chemis-
try. For example, alkali and transition metal cations are often introduced into a reaction via a variety of precur-
sors, including binary oxides, nitrides, sulfides, etc; or simple salts such as carbonates, phosphates, and nitrates. 
At the same time, some of the cations in precursor compounds can be found only in the form of oxides or pure 
elements (e.g. Be, Sc, Hf, Ru, Os, Rh, Pb, Nb, Pt, Au, …).

In solid-state synthesis, the counter-ion governs the melting or decomposition temperature of the precursor 
and may determine when the precursor becomes active during synthesis. The distribution of firing temperatures 
in Fig. 2 agrees very well with this statement and illustrates how different precursors are used in different temper-
ature regimes during solid-state synthesis. For example, the blue bars have in general larger length (high average 
temperature) than red ones, because transition metal borides, carbides and nitrides often have higher reaction 
temperatures than their corresponding oxides, due to the refractory nature of their precursors. On the other 
hand, the green bars are relatively shorter (lower average firing temperature) than red ones, because, compared to 
oxides and complex oxide anions (carbonates, phosphates, etc), synthesis with hydroxides, oxalates, and acetates 
facilitate lower temperature reactions as they are often homogeneously mixed by precipitation from solution. 
This data-driven temperature analysis is based on precursor, and we acknowledge that reaction temperatures 
also depend on the thermal stability and reactivity of the target compounds. Nonetheless, the figure provides a 
semi-quantitative starting point for the researchers: If a target material decomposes at relatively low temperature, 
it may be better to choose a precursor that tends to become active at lower temperature.

In order to demonstrate the diversity of synthesis routes represented in the dataset, we sorted the sequence of 
synthesis steps according to the following pre-defined patterns (table in Fig. 3):

•	 one-step synthesis consists of only solid mixing/grinding operations and at most one heating steps (final fir-
ing) without regrinding,

•	 synthesis with grinding in a liquid media to homogenize (without dissolution) the starting materials in any 
liquid media,

•	 solution-based synthesis contains any type of dissolution of starting materials in solvent,
•	 synthesis with intermediate heat has one or more heating steps (not including drying after mixing with liquid 

part) before final firing of the materials.

Targets Precursors Reactions

LiFePO4 TiO2 BaCO3 + TiO2 = BaTiO3 + CO2

LiMn2O4 SrCO3 3CuO + 4TiO2 + CaCO3 = CaCu3Ti4O12 + CO2

BaTiO3 BaCO3 0.5Bi2O3 + 0.5Fe2O3 = BiFeO3

BiFeO3 La2O3 SrCO3 + TiO2 = SrTiO3 + CO2

CaCu3Ti4O12 CaCO3 2Li2CO3 + 5TiO2 = Li4Ti5O12 + 2CO2

SrTiO3 Bi2O3 TiO2 + CaCO3 = CaTiO3 + CO2

Li4Ti5O12 Fe2O3 Nb2O5 + ZnO = ZnNb2O6

Y3Al5O12 Nb2O5 6Fe2O3 + BaCO3 = BaFe12O19 + CO2

CaTiO3 Li2CO3 Li2CO3 + TiO2 = Li2TiO3 + CO2

LiNi0.5Mn1.5O4 Na2CO3 0.5Li2CO3 + 0.333Co3O4 + 0.083O2 = LiCoO2 + 0.5CO2

Table 3. Ten most common targets, precursors and reactions present in the dataset.

https://doi.org/10.1038/s41597-019-0224-1
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First, we found that different synthesis types are represented in the database almost evenly (top pie-chart in 
Fig. 3): 26% of materials are synthesized in one-step, 25% of the syntheses routes are done with intermediate heat-
ing step(s) before finial firing, 21% of the syntheses contain grinding (homogenizing) in liquid, and 14% require 
dissolving of precursors in solvent. The rest of the recipes (14%) either do not contain any detailed synthesis 
procedure (6%), or the pathway is more complex (8%).

Since the choice of counter-ion used in a precursor often depends strongly on the synthesis method, we sur-
veyed which type of synthesis is common for a specific ion in precursor. We queried a subset of reactions which 
include the given counter-ion in a precursor compound, and calculated the fraction of each synthesis type in 
this subset. The resulting pie-charts are shown in Fig. 3. The emerging picture is consistent with known aspects 
of solid-state synthesis. For example, in the precipitation of solids during synthesis, the precursor is dissolved 
in the solution. As shown in Fig. 3, the solution-based synthesis (orange fraction) often uses soluble precursors 
with nitrates, acetates, and organic (CH-containing) radicals. Some counter-ions are more amenable to one-step 
synthesis than others, for example, chlorides, sulfides, and hydrides do not require much additional processing. 
On the other hand, relatively stable precursors such as oxides and carbonates are processed in a variety of ways, 
often requiring intermediate heating and grinding. This is probably due to the common formation of reaction 
impurities and non-equilibrium intermediates during reaction sequences45,46.

The extraction pipeline we developed allows for automatic processing of scientific paragraphs and identifying 
key information about solid-state synthesis from there. However, the pipeline still suffers from some issues with 
the text mining. First, most of the errors down the pipeline are introduced due to incorrect tokenization of the 
paragraphs and sentences. Although the ChemDataExtractor22 tokenizer significantly outperforms other NLP 
packages on chemistry-related texts, it still fails to correctly process large mixtures and solid solutions formulas as 
well as chemical names consisting of multiple words. We attribute this issue to the fact that ChemDataExtractor 
was trained on organic chemical entities, and using it for the recognition of inorganic tokens requires modifi-
cation of the algorithms. Secondly, no established template or pattern exists for describing synthesis procedure 
which results in significant amount of ambiguity and difficulty when a synthesis method is interpreted even 
by an expert47. This requires development of more advanced text extraction models considering the features of 

Fig. 2 Map of chemical space covered by the dataset. For each element, the frame colored in a yellow-to-green 
gradient represents the total amount of reactions that produce a target compound containing the element. 
The bar graph below each element shows the list of ions paired with the element in precursor compounds. The 
length of the bar corresponds to the firing temperature averaged over all the reactions using the given precursor 
(i.e. element + counter-ion). The elements occurring in five and less targets are faded in grey. “Ac” stands for 
acetate radical CH3COO− in the compound formula.
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scientific text flow. Third, although the dataset was generated from the paragraphs describing solid-state synthesis 
(as defined by a classification algorithm), it also contains reactions for solution-based precursors synthesis, such 
as sol-gel (Fig. 3). However, these entries mostly dropped out later in the pipeline, because the majority of them 
uses organic precursors with complex radicals, and balancing such chemical equations becomes complicated. 
Lastly, we found that most of the materials studied and synthesized after 2000’s are often modified (e.g. doped, ele-
ments substituted) compounds, mixtures, glasses or solid solutions. Parsing such materials into composition and 
building balanced reaction equations is not straightforward. For some compounds with doped and substituted 
elements, we included the information about modifying elements and corresponding precursors in the reaction 
string (see Methods). One of the ways to reconstruct reactions for mixtures, solid solutions, alloys, etc. is to split 
the entire material into compounds and match them with the corresponding precursors. Rather than fully resolve 
it, we choose to setup a flexible data structure which allows for its further development by the user.

Fig. 3 Correspondence between choice of synthesis route and precursors counter-ions. The top table gives an 
example of the four synthesis types defined: one-step synthesis, solution-based, synthesis with intermediate 
heating steps, synthesis including grinding of precursors in liquid media. The pie-charts on the right displays 
the fraction of each synthesis route in the dataset. The donuts-like charts represent the fractions of the four 
synthesis routes (given in table) for each counter-ions used in precursors. “Ac” stands for acetate radical 
CH3COO− in the compound formula. “Org” stands for organic radical (–CH–) in the compound formula.
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Usage Notes
The dataset is provided in a single file in JSON format. It can be read using all major programming languages, 
including Python, Matlab, R, Wolfram Mathematica. No specific technical setup is required as a dependency.

The dataset can be easily queried by target and precursor compound(s), their compositions and Materials 
Project IDs, type of operations used in synthesis, conditions and reaction. As an example, Fig. 4 illustrates the 
utility of the dataset in conducting rapid literature review of different synthesis procedures within a single chem-
ical space. It displays the result of a query for reactions to a target with Li, Mn and O in the composition. This 
example provides a birds-eye perspective of the various solid-state synthesis routes to target LMO compounds in 
this space using the dataset. The generated subset can be further queried by precursors types, as well as by type of 
heating/mixing conditions.

Although the dataset is provided as a static snapshot44, we plan to update it on a regular basis. The updates will 
be posted at the github repository at https://github.com/CederGroupHub/text-mined-synthesis_public.

Code availability
The scripts utilized to classify paragraphs and extract recipes as well as to perform the data analysis are home-
written codes which are publicly available at the github repository https://github.com/CederGroupHub/text-
mined-synthesis_public with acknowledgement of the current paper. The underlying machine-learning libraries 
used in this project are all open-source: Tensorflow (www.tensorflow.org), Keras (keras.io), SpaCy (spacy.io)42, 
gensim (radimrehurek.com)41 and scikit-learn (scikit-learn.org)48 ChemDataExtractor (chemdataextractor.org)22.

Fig. 4 Graphical representation of dataset entries queried for the Li-Mn-O system. Examples of the subset 
entries: target LMO material, synthesis reaction and route. The DOIs are provided for reference. The triangle 
shows the distribution of the LMO materials on the phase diagram. The circles size and color are scaled 
according to the number of reaction in the dataset with the given target material.
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