
1Scientific Data |           (2019) 6:199  | https://doi.org/10.1038/s41597-019-0211-6

www.nature.com/scientificdata

Upper limb activity of twenty 
myoelectric prosthesis users and 
twenty healthy anatomically intact 
adults
alix Chadwell  , Laurence Kenney  , Malcolm Granat, Sibylle thies, adam Galpin & 
John Head

the upper limb activity of twenty unilateral upper limb myoelectric prosthesis users and twenty 
anatomically intact adults were recorded over a 7-day period using two wrist worn accelerometers 
(Actigraph, LLC). This dataset reflects the real-world activities of the participants during their normal 
day-to-day routines. Participants included students, working adults, and retirees recruited from across 
the United Kingdom. This dataset offers a potential wealth of knowledge into a poorly understood 
cohort. The raw unprocessed data files and the activity count data exported from the Actilife software 
are provided. We also provide a non-wear algorithm developed for the removal of prosthesis non-wear 
periods and resulting activity count data corresponding to prothesis wear periods. Finally, we have 
included the transposed activity diaries provided by the participants. Analysis to date has primarily 
involved assessment of the symmetry of upper limb activity, however, there is potential to undertake 
additional analysis such as understanding the differences in the way a prosthesis is used compared to an 
anatomical arm.

Background & Summary
Statistics relating to the prevalence of upper limb absence and provision of prostheses are poor1. In the UK, 
based on informed discussions with upper limb prosthetists/occupational therapists, we estimate that there are 
approximately 800–1000 people registered to the 43 NHS limb centres who have been prescribed with a myoe-
lectric prosthesis2 (a myoelectric prosthesis contains motors which are controlled using the naturally generated 
electrical signals produced during muscle contractions). It is believed that this population may encompass those 
who wear the prosthesis all day, every day, through to those who have completely rejected the device. The reasons 
for wear/non wear and use/non-use decisions by users are difficult to unpick in the absence of high quality, real 
world usage data. However, until very recently1, there has been no objective data on upper limb activity in pros-
thesis users.

For a person with unilateral upper limb absence, over-reliance on the intact side of the body can lead to over-
use injuries3–5. It is widely believed that by providing the person with a functional prosthesis, such as a myoelec-
tric prosthesis, offering control over movement of the prosthetic digits, reliance on the anatomically intact side 
may reduce. Many of the current methods for evaluating the use of upper limb prostheses are time consuming 
for clinicians, and recent research has shown that the results of upper limb assessments within labs/clinics may 
not correlate with how a prosthesis is used in the real-world6. Activity monitors offer an objective, simple and 
time-efficient way to evaluate periods of prosthesis wear and use. In this paper we publish a real world upper limb 
activity dataset on myoelectric prosthesis users (and others), collected as part of a larger project6.

The upper limb activity dataset was recorded using commercial, wrist worn, tri-axial accelerometers 
(Actigraph, LLC). Twenty unilateral trans-radial myoelectric prosthesis users, and twenty anatomically intact 
adults took part in the study. For each participant the data were recorded from each wrist over a 7-day period, 
whilst they went about their normal day-to-day activities. For the prosthesis users, one of the two sensors 
remained on the wrist of their myoelectric prosthesis, regardless of whether they were wearing the prosthetic 
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arm at the time. We define activity as accelerations of the forearms exceeding thresholds sufficient to generate an 
‘activity count’7 on any of the axes.

We previously published methods developed to quantify the symmetry of upper limb activity over time and 
to display this data graphically using histograms and spiral plots8. Our initial analysis of this upper limb activity 
dataset using these methods has been published in an associated journal6. However, further analysis of these data 
is possible and may be beneficial. For example, in Chadwell et al.8 we presented only graphical description of 
the time-series data and there is potential for further analysis of this aspect of the dataset, through for example, 
fractal analysis9 (as suggested by Raoul Bongers – University of Groningen – 2019 – Personal communication). 
Further, additional analyses of the dataset, based on, for example different epoch lengths, or different methods for 
the interpretation of movement intensity1,10 may also be warranted. By making the full upper limb activity dataset 
publicly available through figshare11 we present others with opportunities to undertake their own analysis. In 
this data-descriptor we provide the information required for additional analysis. Specifically, we provide the raw 
unprocessed data (30 Hz) from the accelerometers recorded over 7 days. Note that this raw data includes periods 
when the monitors were not worn by the participants. Self-reported wear times are included to aid interpretation 
of the data. We also provide downsampled, epoched, filtered data exported from the Actilife software in the form 
of activity counts. We have included files with 1 s and 60 s epochs, downloaded with and without the additional 
Low Frequency Extension filter12. Finally, we have included data (based on the 60 s epoch data with the LFE filter 
applied) which has been passed through our prosthesis non-wear algorithm.

In the supplementary material to our earlier Scientific Reports paper6, we described the development of this 
non-wear algorithm, which removes prosthesis non-wear periods based on the accelerometer signals. In this data 
descriptor we provide the necessary detail to allow both for the replication of our analysis and the development of 
a more advanced non-wear algorithm. To this end we have we have provided the Matlab code for this non-wear 
algorithm, as well as the post-processed data detailing the calculated prosthesis wear status (worn/not-worn) for 
each epoch. We have also included in the dataset the self-reported prosthesis removal, sensor removal, and sleep 
times provided by the prosthesis users. Please note that at present we have only undertaken detailed testing6 of 
our algorithm using 60 s epoch data, but all of the information required to run analyses using different epoch 
lengths are provided in the upper limb activity dataset11.

Methods
These methods are expanded versions of descriptions in our related work6, where we have published the results 
of our initial analysis of this dataset; note that the participant demographic summary is the same for both 
manuscripts.

Participants. Twenty participants (14 male, 6 female) with unilateral upper limb absence at a trans-radial 
level were recruited from six (4 NHS, 2 University) sites across the UK. All participants had a single degree of 
freedom myoelectric prosthesis (e.g. Steeper Select or Ottobock DMC Plus/VariPlus/Sensor Speed). Full meta-
data is provided with the dataset11.

The age of the prosthesis users ranged from 18 to 75 years (median age 54 years). Eleven people had congenital 
limb absence (6 Right/5 Left), and nine had an amputation (6 Right/3 Left); six of the amputations had occurred 
on the dominant side. Time since amputation ranged from 8–47 years (median 24 years). Time since prescription 
of a myoelectric prosthesis ranged from 1.5–39 years (median 20 years).

A group of twenty anatomically intact participants (9 male, 11 female, age 23–61, median age 41, 3 left handed) 
with no upper limb impairments were also recruited through the University of Salford.

Ethical approval for this study was granted by the University of Salford School of Health Sciences Research 
Ethics committee (REF: HSCR 16–25), by the University of Strathclyde Department of Biomedical Engineering 
Ethics Committee (DEC.BioMed.2017.220) and through the NHS IRAS system (IRAS Project ID: 193794). 
Informed consent was gained from all participants.

Sensors. Each participant was provided with two identical Actigraph activity monitoring sensors from the 
GT3X range (GT3X + , wGT3X, wGT3X-BT), one labelled to be worn on the right wrist and the other labelled 
for the left wrist. The specific sensors for each data record are detailed in the metadata and in the file titles. These 
sensors record accelerations along three axes with a dynamic range of +/−6g (+/−8g for the wGT3X-BT) and 
a sensitivity of 2.93 mg (3.91 mg for the wGT3X-BT). Acceleration is sampled by a 12-bit analogue to digital 
convertor at user selectable rates between 30 Hz and 100 Hz (for this study they were all set at 30 Hz). The data is 
stored directly onto non-volatile flash memory in a raw, non-filtered/accumulated format in units of gravity (g).

Activity diary. Each participant was asked to complete an activity diary to assist with the interpretation of the 
accelerometer data. Information collected were the times when the participant went to sleep/woke up, when they 
removed the prosthesis/put the prosthesis on, and when they removed the sensors/put the sensors on.

Sensor initialisation. The Actigraph sensors were initialised using Actilife software (Fig. 1). Please note that 
for prosthesis users 1 and 2 (PU1 & PU2), and anatomically intact participants 1 and 2 (AI1 & AI2), the sensors 
were initialised using Actilife version 5; we then upgraded the software to version 6 for compatibility with the 
newer sensors for all remaining participants. We are not aware of this having any impact on the way the sensor 
collects the data. Each sensor was fully charged, then initialised to record data continuously for 7 days at 30 Hz. 
Participants were asked to wear the sensors on the outside of each wrist. The sensors were labelled as ‘left’ or ‘right’ 
to inform the participants as to which arm they should be worn on. The sensors were also labelled with an arrow 
pointing towards the hand to inform participants as to the correct orientation of the sensors (this orientation 
corresponded to the + ve y axis (Fig. 2) pointing up the forearm away from the hand).
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Data collection. Participants were instructed to wear the sensors throughout the recording period, removing 
them only when they might get wet. Some participants chose to remove the monitors when sleeping or at other 
times during the day. Times when each of the sensors was/were reported to have been removed were recorded in 
the activity diary. When the prosthesis was removed from the arm, the participants were instructed to keep the 
sensors on both wrists (one remaining on the wrist of the unworn prosthesis, and the other on the participant’s 
anatomically intact wrist). Therefore, at times when the prosthesis was removed, we would only expect to see 
activity on the sensor which was worn on the anatomical wrist. Times when the prosthesis was reported to be 
removed were recorded in the activity diary. It is worth noting that when the prosthesis was removed but carried 
around, this still showed as activity on the prosthesis worn sensor. At the end of the 7-day recording period, par-
ticipants were instructed to remove the sensors and return them.

SENSOR INITIALISATION

DATA COLLECTION

DATA DOWNLOAD

DATA ANALYSIS TO DATE Time series visualisa�on 
of upper limb symmetry

Automa�c detec�on of 
prosthesis wear/non-

wear periods

Histogram to visualise 
upper limb symmetry

7
days

Par�cipants record:
Sleep �mes
Prosthesis wear �mes
Sensor wear �mes

Epoch LFE filter File Type

Raw Data: N/A N/A .gt3x / .csv

Processed Data: 60s Yes .csv

60s No .csv

1s Yes .csv

1s No .csv

1 2

1 2

•
•
•

Fig. 1 Schematic for data collection and processing.
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Data download/pre-processing. Data were downloaded from the sensors using Actilife software (Fig. 1). 
The raw unprocessed data is stored in a .gt3x file13. Please note that for prosthesis users 1 and 2 (PU1 & PU2), 
and anatomically intact participants 1 and 2 (AI1 & AI2), the .gt3x files were downloaded from the sensors using 
Actilife version 5; we then upgraded the software to version 6 for compatibility with the newer sensors for all 
remaining participants and any further processing of the data. We are not aware of this having any impact on the 
data downloaded into the .gt3x files. In the dataset accompanying this manuscript11, we have provided this .gt3x 
file alongside, for ease of re-use, a .csv file and a .wav file containing the same unprocessed data extracted using 
the Actilife software.

We used proprietary algorithms within the Actilife software to downsample and filter the raw data, collate it 
into epochs, and convert it into ‘activity counts’. Further details on these proprietary algorithms have been pub-
lished by Brond et al.14. For increased reusability, here we have provided the processed activity count data both 
with and without Actilife’s low frequency extension filter (developed for compatibility with older accelerome-
ters12) and with epochs of 1 second and 60 seconds. For our own previously published analysis6 we used the 60 s 
epoch data with the low frequency extension filter (LFE).

For the 20 prosthesis users the 60 s epoch data (with LFE) from the monitor on the prosthesis were passed 
through a non-wear algorithm developed to remove the periods when the prosthesis was not worn. We have 
previously published details of this non-wear algorithm as supplementary material to an earlier paper6 and the 
associated Matlab code is included in this dataset11. The dataset also includes the files output from this algorithm 
with activity counts marked as to whether the prosthesis was calculated to be worn.

Data analysis. The quality of self-report varied between participants6. All complete data from the diaries is 
included in this dataset, however, please note that the monitor removal data for PU4, PU6, and PU14, the pros-
thesis removal data for PU5, PU11, and PU14, and the sleep data for PU5 and PU14 are incomplete; additionally, 
no diary data was provided by PU16. Full details are provided under usage notes.

Please note that the 7-day recording period for participants PU4 and PU5 included a period overnight on 
25th–26th March 2017 when the clocks in the UK moved forward one hour for British Summertime. This was not 
accounted for by the internal clock within the activity monitors which was initiated prior to the time change, and 
therefore the timestamps for the monitor data after this period were 1 hour earlier than any self-reported times in 
the diaries. To ease interpretation, in this dataset we have manually adjusted the times reported in the diaries to 
align with the monitor data (thus suggesting that the person reported to start waking up one hour earlier, when in 
fact this did not occur). More detail on the diary data is provided in the usage notes. If patterns in the timeseries 
data were to be analysed, another approach could be to offset the activity monitoring data by 1 hour by including 
a ‘blank’ hour.

Analyses of these data6 suggested that anatomically intact participants were symmetrical in their upper limb 
activity, with only a slight skew of reliance towards the dominant side. Prosthesis users on the other hand showed 
a preference towards their anatomically intact side during periods where they wore their prosthesis. Patterns of 
prosthesis wear varied between prosthesis users, with some wearing the prosthesis for extended periods, and 
others taking it on and off throughout the day. We did not find a correlation between prosthesis wear and pros-
thesis use, with one of the all-day prosthesis users showing as the least symmetrical participant with respect 
to their upper limb activity during the prosthesis wear time. We did find that participants who had been pre-
scribed a myoelectric prosthesis for more years tended to use the arms more symmetrically during the times 

Fig. 2 Sensor orientation. Direction of the three acceleration axes (participants were instructed to wear the 
monitor on the back of the wrist with the + ve y axis pointing up the forearm away from the hand).
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when the prosthesis was worn. It would be interesting to establish whether any other patterns exist, for example 
do increased prosthesis wear time or time since prescription relate to an increased magnitude of activity from the 
prosthetic side? This data could also be used to help us to understand if/how movements of a prosthetic arm differ 
from those of an anatomical arm, and whether there is a relationship between the amount of wear of a prosthesis 
and the tendency of the movement patterns towards those of an anatomically intact arm.

Data Records
All of the data described in this manuscript are stored in Figshare11.

A metadata file is provided with the following information relating to each participant.

•	 Gender
•	 Age
•	 Sensor type
•	 Serial number for right sensor
•	 Serial number for left sensor
•	 Data records available for each participant (e.g. available/incomplete/missing)

o Raw .gt3x
o Raw .csv
o Raw .wav
o 60 s epoch activity counts .csv (without low frequency extension filter)
o 1 s epoch activity counts .csv (without low frequency extension filter)
o 60 s epoch activity counts .csv (with low frequency extension filter)
o 1 s epoch activity counts .csv (with low frequency extension filter)
o Wear data .csv
o Sleep diary .csv
o Prosthesis wear diary .csv
o Sensor wear diary .csv

For prosthesis users only

•	 Side of limb absence (and whether this was previously the dominant side)
•	 Cause of limb absence

For anatomically intact participants only

•	 Dominance

raw accelerometer data. The raw 30 Hz unprocessed data collected on the Actigraph monitors are con-
tained in .gt3x files. Actigraph provide documentation to guide the decoding of the .gt3x file format through 
github13. For ease of re-use, we have also provided this raw accelerometer data in .csv format extracted using the 
Actilife software and have also converted these .csv files into .wav files using Matlab to allow for faster import. The 
.wav files have an amplitude range from −1 to 1, therefore, the data contained in the .wav files have been divided 
by a scaling factor based on the dynamic range of the sensor; to convert these data back to their raw format, the 
data should be multiplied by 6 (for the GT3X + and wGT3X sensors) or 8 (for the wGT3X-BT sensors).

Activity counts/epoch data. Data grouped in 1 s and 60 s epochs (with and without the Actilife low fre-
quency extension filter) are provided as .csv files. To create these .csv files, the .gt3x files were first converted into 
.agd files using the Actilife software, which were then converted into .csv datatables. Each .csv file contains 11 
header rows, after which, each row contains the data from one epoch. Columns 1–2 contain the date and time, 
columns 3–5 contain the activity counts on each of the three axes, column 6 contains the step count according 
to the Actilife algorithms, column 7 contains the lux readings, columns 8–11 contain inclinometer values, and 
column 12 contains the vector magnitude values. For our analysis to date we have concentrated on the vector 
magnitude values, which are a resultant of the activity counts of all three orthogonal axes.

Non-wear algorithm. The prosthesis wear/non-wear data output from the non-wear algorithm are provided 
in .csv files. These files do not contain any header rows. Column 1 contains a timestamp (time in minutes since 
the start of the recording). Columns 2–4 contain the activity counts for axes x, y, and z respectively for the sensor 
worn on the prosthesis, and column 5 contains the corresponding vector magnitudes. Columns 6–8 contain the 
activity counts for axes x, y, and z respectively for the sensor worn on the anatomically intact wrist, and column 
9 contains the corresponding vector magnitudes. Finally, column 10 contains the categorisation according to the 
non-wear algorithm, where 1 signifies prosthesis wear and 0 signifies prosthesis non-wear. To analyse only the 
times when the prosthesis was worn, all rows where column 10 is equal to 0 should be deleted.

Self-report diary data. The self-reported diary data was transcribed into .csv files. All times are provided 
in the format DD/MM/YYYY,hh:mm:ss. Please note that where the participants recorded midnight (00:00:00) in 
the diary, this has been recorded as the 1st timepoint on the subsequent day (for example midnight at the end of 
22/10/2017 was recorded as 23/10/2017,00:00:00).
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•	 Diary-MonitorsRemoved.csv contains the periods the sensors were self-reported to be removed from the 
wrists. Odd numbered rows record the times the sensors were reported to be removed, and even numbered 
rows record the times the sensors were reported to be put back on. If the sensors were not worn at the time the 
recording ended, the final row (sensors put back on) contains the time the recording was set to end. All files 
contain an even number of rows. It has been assumed that when one sensor was removed from the wrist, the 
other sensor would also be removed, therefore the times in this file refer to the removal of both of the sensors.

•	 Diary-Sleep.csv contains the periods the participants self-reported to be asleep. Odd numbered rows record 
the times the participant reported to go to sleep, and even numbered rows record the times the participant 
reported to wake up. All data collection began in the middle of the day therefore, all files contain an even 
number of rows.

•	 Diary-ProsthesisNonWear.csv, which is only provided for the prosthesis users, contains the periods the par-
ticipants self-reported to remove the myoelectric prosthesis. Odd numbered rows record the times the partic-
ipant reported to remove the prosthesis, and even numbered rows record the times the participant reported 
to put the prosthesis back on. If the prosthesis was not worn at the time the recording ended, the final row 
(prosthesis put back on) contains the time the recording was set to end. Where participants were not wearing 
the prosthesis at the start of the recording period, the first row (prosthesis removal) contains the time the 
recording was set to start. All files contain an even number of rows.

Details on the interpretation of any incomplete diaries are provided in the usage notes.

technical Validation
The data from four participants (2 anatomically intact and 2 prosthesis users) were used to pilot the study1. The 
raw data from these 4 participants were visually inspected. The data collected from the wrist of the prosthesis 
would be expected to be of a lower magnitude than the data from the anatomically intact wrist, and bouts of activ-
ity would be expected to be shorter and less frequent. Further, the activity on both sensors would be expected to 
reduce at night. This was confirmed through the visual inspection.

As can be seen in the supplementary material attached to Chadwell et al.6, during development of the 
non-wear algorithm, the self-reported prosthesis and sensor wear times were compared against the vector mag-
nitude of the 60 s activity count epochs. Some limitations/inaccuracies to both the algorithm and the self-report 
data were highlighted. For example:

•	 The algorithm calculated the prosthesis wear time to be on average 4.4 hours shorter (over 7 days) than the 
self-reported wear. From visual inspection of the data, it would suggest that for most participants the algo-
rithm detected prosthesis wear more accurately than self-reported. Participants generally appear to over-re-
port their prosthesis wear time.

•	 The algorithm was unable to differentiate between the prosthesis being carried or sat on a chair in the car, and 
the prosthesis being worn.

•	 The algorithm was unable to detect short <20 min periods of prosthesis non-wear.

Usage Notes
For the prosthesis users, 17 complete sleep diaries were received (2 incomplete, 1 missing), 16 complete prosthesis 
wear diaries were received (3 incomplete, 1 missing), and 16 complete sensor wear diaries were received (3 incom-
plete, 1 missing). For the anatomically intact participants, 18 complete sleep diaries were received (1 incomplete, 
1 missing), and 20 complete sensor wear diaries were received. Here we report any differences between the .csv 
files provided with this dataset11 and the paper diaries provided by the participants. Note that we have presented 
these in the format the paper diaries were laid out, rather than in the .csv file layout.

The recording period for two of the prosthesis users (PU4 and PU5) spanned the evening (25th–26th March 
2017) when the clocks changed by 1 hour due to British Summertime. To align the diary data with the timestamps 
on the activity data, the reported times were reduced by one hour as demonstrated in Table 1.

No sleep data was provided by AI15, therefore the file ‘Diary-Sleep.csv’ for this participant is empty.
Participant AI18 provided no times for going to sleep on the evening of 26th or waking up on the morning of 

the 27th. As they self-reported not to be wearing the sensors during this period, this should not have any impact 
on the dataset.

Some of the prosthesis users provided incomplete activity diaries. Tables 2–9 compare the difference between 
the self-reported times and the data included in the diary files with this dataset. Data which have been adjusted or 
excluded from the diary files are highlighted in bold.

No diary data was provided by PU16, therefore all diary files for this participant are empty.

Limitations. There are some limitations to this dataset which should be considered when reanalysing the 
data. Due to the availability of sensors, data were collected on different generations of Actigraph sensor. From 
discussions with Actigraph we do not believe that this has had a major impact on our data. However, it is worth 
noting that the dynamic range of the accelerometer for the wGT3X-BT was +/−8g whilst for all other generations 
of the sensor it was +/−6g. This should be considered when evaluating the magnitude of activity collected using 
the 6 g sensors where clipping may occur (Fig. 3).

It is also worth noting that activity monitoring sensors are liable to offset and clock drift15,16. When comparing 
the data across the two sensors it is therefore possible that the epochs under evaluation do not cover precisely the 
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same time period. This limitation should be considered if the epoch length were to be reduced, or the recording 
period were to be increased.

As noted previously, for some participants the diary data was incomplete, additionally our analysis suggests 
that in some cases the self-report under/overestimated the wear time. Further, we highlighted above that for two 
of the participants the clocks changed to British Summertime during the recording period. This should be taken 
into consideration if evaluating day-day patterns in activity. It is worth noting that based purely on the data from 
the activity monitors we are unable to differentiate between the prosthesis/monitors being worn or carried, and 
the self-report data should therefore also be considered.

Some participants mentioned accidentally wearing the monitors upside down (+ve y axis pointing towards 
hand), or on the inside of the wrists (for comfort reasons). Our analysis made use of the vector magnitude (result-
ant) of the acceleration along the three axes, however, if in the re-use of the data the individual axes of acceleration 
were to be used to determine the orientation of the arm, the data should be sense checked to ensure the orienta-
tion of the monitor on the wrist is known. This may be of use if for example a new non-wear algorithm were to be 

Self-report Diary file

Woke up Went to sleep Woke up Went to sleep

23-Mar 21:20 21:20

24-Mar 06:00 20:25 06:00 20:25

25-Mar 06:00 19:40 06:00 19:40

26-Mar 06:00 21:30 05:00 20:30 British Summertime

27-Mar 06:10 21:40 05:10 20:40 British Summertime

28-Mar 06:00 21:35 05:00 20:35 British Summertime

29-Mar 06:00 00:05 05:00 23:05 British Summertime

30-Mar 09:00 08:00 British Summertime

Table 1. Sleep diary for PU4. Times reported on 26th–30th March have been adjusted by 1 hour compared to the 
self-report to allow direct comparison against the timestamps in the activity monitor data.

Self-report Diary file

Removed Put on Removed Put on

23-Mar 21:00 21:15 21:00 21:15

24-Mar 20:50 21:16 20:50 21:16

25-Mar 19:00 19:35 19:00 19:35

26-Mar 21:20 21:40 20:20 20:40 British Summertime

27-Mar 21:10 21:35 20:10 20:35 British Summertime

28-Mar 21:10 06:35 — — British Summertime

29-Mar 06:35 — British Summertime

30-Mar 16:50 09:30 — — British Summertime

Table 2. Sensor removal diary for PU4. We were unable to make sense of the self-reported times on 28th–30th 
March when looking at the data, these times have therefore been excluded from the diary file. For this 
participant, times have also been adjusted for British Summertime as explained in Table 1.

Self-report Diary file

Woke up Went to sleep Woke up Went to sleep

25-Mar 04:00 04:00

11:00 22:15 11:00 22:15

26-Mar 11:00 10:00 British Summertime

27-Mar 01:00 00:00 British Summertime

09:00 08:00 British Summertime

28-Mar 10:00 — British Summertime

29-Mar 10:30 — British Summertime

30-Mar 01:15 00:15 British Summertime

10:00 09:00 British Summertime

31-Mar 10:50 — British Summertime

Table 3. Sleep diary for PU5. Please note that for this participant, times have been adjusted for British 
Summertime as explained in Table 1. The participant did not report times for going to sleep on 27th/28th/30th, 
therefore the corresponding waking times have been excluded from the diary file.

https://doi.org/10.1038/s41597-019-0211-6
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developed where the orientation of the arm was to be used as another factor to establish whether the prosthesis 
had been removed.

We have only undertaken detailed testing of the prosthesis non-wear algorithm using 60 s epochs, if a dif-
ferent epoch size were to be passed through the algorithm, we would recommend the data is checked against 
the self-reported non-wear according to the methods published in the supplementary material attached to our 
associated Scientific Reports paper6. It is worth noting that participants only recorded wear times to the nearest 
minute, so validating the non-wear algorithm for epoch lengths less than 60 s should be approached with consid-
erable caution.

The prosthetic hands used in this dataset contained electric motors which allowed the user to open/close the 
prosthetic hand. Knowledge of when the prosthetic hand was activated would provide further useful insights into 
the prosthesis use. It would therefore be interesting in future studies to see whether the activation of the motors 

Self-report Diary file

Put on Removed Put on Removed

25-Mar 12:30 16:40 — 16:40

17:45 22:15 17:45 22:15

26-Mar 13:00 15:38 12:00 14:38 British Summertime

27-Mar 10:30 22:00 09:30 21:00 British Summertime

28-Mar 10:30 17:35 09:30 16:35 British Summertime

17:38 22:26 16:38 — British Summertime

29-Mar 15:20 14:20 British Summertime

30-Mar 10:28 11:36 09:28 10:36 British Summertime

15:45 14:45 23:31 British Summertime

31-Mar 00:31 16:30 End time

Table 4. Prosthesis removal diary for PU5. Please note that for this participant, times have been adjusted 
for British Summertime as explained in Table 1. The data would suggest that the participant was wearing the 
prosthesis on the first day of recording (24th), therefore it is unclear what time it was removed in order to be put 
back on the morning of the 25th, therefore we have excluded this timestamp from the diary file. Additionally, 
the prosthesis was reported to be removed on the evening of the 28th, but as no time was reported for it to be put 
back on the 29th before being removed again that evening, we have excluded the removal on the 28th from the 
diary file.

Self-report Diary file

Removed Put on Removed Put on

30-Mar 07:09 07:50 07:09 07:50

31-Mar 13:15 13:42 13:15 13:42

02-Apr 10:41 ? — —

20:38 23:01 20:38 23:01

04-Apr 06:47 07:08 06:47 07:08

Table 5. Sensor removal diary for PU6. The participant did not provide a time for putting the sensor back on 
the 2nd (instead they put a question mark), therefore, we have excluded the removal time from the diary file.

Self-report Diary file

Put on Removed Put on Removed

11-Aug 15:24 15:24

12-Aug 06:27 06:42 06:27 06:42

09:05 14:25 09:05 14:25

13-Aug 09:20 13:52 09:20 13:52

15:01 16:54 15:01 16:54

14-Aug 08:30 14:23 08:30 14:23

15-Aug 08:54 15:04 08:54 —

16-Aug 12:08 12:08

17-Aug 08:40 18:21 08:40 18:21

18-Aug 08:55 08:55

Table 6. Prosthesis removal diary for PU11. The prosthesis was reported to be removed on the evening of the 
15th, but as no time was reported for it to be put back on the 16th before being removed again that evening, we 
have excluded the removal on the 15th from the diary file.
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in the hand resulted in any detectable patterns within the raw acceleration data recorded at the wrist, or whether 
additional sensors would be required to record this activity.

It is worth noting that from this dataset we have no information on the use of the affected arm during times 
when the myoelectric prosthesis was not worn (this was not the goal of the study for which this data was col-
lected). Future studies should also consider the arm activity during these periods when the prosthesis is not 
worn. Makin et al.17, have previously collected data during periods when a prosthesis was not worn by placing 
sensors on the anatomically intact wrist and the proximal aspect of the upper arm on the affected side, however, 
they did not record prosthesis wear, so it is not possible to compare the activity between wear and non-wear 
periods. Additionally, by placing the sensors in different locations on each arm, the accelerations are not directly 
comparable.

Finally, a recent study from Makin’s lab by Maimon Mor18 gives us further indication of the potential value of 
activity monitoring data in this population. In their study, data were collected from accelerometers worn on both 
the prosthetic and anatomical limbs of people with unilateral upper limb absence whilst performing ‘gesture facil-
itating tasks’. Activity data were also collected over a 2-day period and the researchers found positive correlations 
between the amount of involvement of the anatomical limb in the gesture tasks and prosthesis usage; and between 
prosthesis embodiment and usage. The ability to explore how lab-based data may, or may not correlate with real 

Self-report Diary file

Woke up Went to sleep Woke up Went to sleep

03-Aug 08:00 23:00 — 23:00

04-Aug 08:00 23:30 08:00 23:30

05-Aug 08:00 08:00

06-Aug 00:30 00:30

06:30 06:30

07-Aug 00:00 00:00

07:30 07:30

08-Aug 07:00 —

09-Aug 08:00 —

Table 7. Sleep diary for PU14. No times were reported for going to sleep on the 2nd, 7th, or 8th, therefore, we 
have excluded the corresponding waking times from the diary file.

Self-report Diary file

Put on Removed Put on Removed

03-Aug 08:00 20:30 — 20:30

04-Aug 09:00 21:00 09:00 21:00

05-Aug 08:30 20:00 08:30 20:00

06-Aug 07:30 21:00 07:30 21:00

07-Aug 08:15 16:30 08:15 16:30

19:50 19:50

08-Aug 07:30 —

09-Aug 08:40 —

Table 8. Prosthesis removal diary for PU14. The data would suggest that the participant was wearing the 
prosthesis on the first day of recording (2nd), therefore it is unclear what time it was removed in order to be put 
back on in the morning on the 3rd, therefore we have excluded this timestamp from the diary file. Additionally, 
the prosthesis was reported to be put on in the morning on the 8th and 9th, but as no time was reported for it to 
be removed prior to these times we have excluded these timestamps from the diary file.

Self-report Diary file

Removed Put on Removed Put on

02-Aug 22:00 22:00

03-Aug 08:30 08:30

05-Aug 08:40 09:10 08:40 09:10

07-Aug 16:30 19:50 16:30 19:50

08-Aug 07:30 —

09-Aug 08:40 —

Table 9. Sensor removal diary for PU14. The sensors were reported to be put on in the mornings on the 8th and 9th, 
but as no corresponding removal times were reported, these timestamps have been excluded from the diary file.
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world use/wear data, provides researchers with a novel approach to the interpretation of both traditionally-used, 
and novel outcome measures.

Code availability
The Matlab code used to detect periods of prosthesis wear/non-wear is included with the dataset on figshare11 
The inputs to this function are: (1) a 4 column matrix containing the epoch data from the monitor worn on the 
prosthesis (activity counts on the x, y, and z axes and the vector magnitude), (2) a 4 column matrix containing the 
epoch data from the monitor worn on the anatomically intact wrist (activity counts on the x, y, and z axes and the 
vector magnitude), and (3) the epoch size in minutes.

Within the function, the prosthesis worn monitor data for each epoch is analysed, and the epoch marked as 
wear or non-wear. Full details on the algorithm used to determine whether each epoch should be categorised as 
wear/non-wear have been published previously as supplementary material to Chadwell et al.6 and in the appendi-
ces of Chadwell’s thesis2. The algorithm involved comparison of each epoch to the previous epoch. If activity was 
recorded during a prosthesis non-wear period, or the vector magnitude was equal to 0 during a prosthesis wear 
period the neighbouring epochs were evaluated to determine whether the prosthesis had been put on/removed. 
Due to the design of the algorithm, it is unlikely that prosthesis removal or wear periods shorter than 20 minutes 
would be detected.

The output from the function is a 10-column matrix containing the timestamp (minutes since record-
ing began), the data from the two 4 column matrices passed into the function initially, and the categorisation 
(wear = 1, non-wear = 0).

The non-wear algorithm was developed for use with the 60 s epoch vector magnitude data exported from 
Actilife, however the algorithm has the compatibility for use with other epoch sizes (please note the limitations 
detailed above). Subsequently to the collection of this dataset, we have also used the non-wear algorithm with 
data collected using Axivity sensors, where the raw data has been converted into ‘Actigraph activity counts’ using 
the codes developed by Brond et al.14.

The Matlab code used to produce the spiral plots is not publicly available at this stage, however, by contacting 
the corresponding author, we would be happy to collaborate to enable you to reproduce your own data. The meth-
ods for producing these plots are published in Chadwell et al.8. Codes have also been developed to allow data from 
other sensors to be displayed in this format, for example the data from Axivity sensors has been visualised over a 
14-day period following similar methods combined with the code developed by Brond et al.14. These spiral plots 
also have potential for use with other types of data besides upper limb activity data.

References
 1. Chadwell, A., Kenney, L., Thies, S., Galpin, A. & Head, J. The reality of myoelectric prostheses: Understanding what makes these 

devices difficult for some users to control. Front. Neurorobot. 10, https://doi.org/10.3389/fnbot.2016.00007 (2016).
 2. Chadwell, A. The Reality of Myoelectric Prostheses: How do EMG skill, unpredictability of prosthesis response, and delays impact on user 

functionality and everyday prosthesis use?, PhD Thesis, University of Salford, http://usir.salford.ac.uk/id/eprint/47264 (2018).
 3. Gambrell, C. R. Overuse syndrome and the unilateral upper limb amputee: consequences and prevention. JPO 20, 126–132, https://

doi.org/10.1097/JPO.0b013e31817ecb16 (2008).
 4. Jones, L. E. & Davidson, J. H. Save that arm: A study of problems in the remaining arm of unilateral upper limb amputees. Prosthet. 

Orthot. Int. 23, 55–58, https://doi.org/10.3109/03093649909071611 (1999).
 5. Østlie, K., Franklin, R. J., Skjeldal, O. H., Skrondal, A. & Magnus, P. Musculoskeletal pain and overuse syndromes in adult acquired 

major upper-limb amputees. Arch. Phys. Med. Rehabil. 92, 1967–1973, https://doi.org/10.1016/j.apmr.2011.06.026 (2011).
 6. Chadwell, A. et al. Upper limb activity in myoelectric prosthesis users is biased towards the intact limb and appears unrelated to 

goal-directed task performance. Sci. Rep. 8, 11084, https://doi.org/10.1038/s41598-018-29503-6 (2018).

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

12
6

13
2

13
8

14
4

15
0

15
6

16
2

16
8

Hours since recording started

-8

-6

-4

-2

0

2

4

6

8

A
cc

el
er

at
io

n
 (

g
)

Fig. 3 Accelerations recorded with a dynamic range of 8 g. Raw unprocessed tri-axial acceleration data recorded 
for participant AI19 using a wGT3X-BT sensor with a dynamic range of 8 g. If this data had been collected with 
a dynamic range of 6 g, clipping would have occurred for some of the signals. It is also worth noting that this was 
the only participant where possible clipping at 8 g was visible (day 5).

https://doi.org/10.1038/s41597-019-0211-6
https://doi.org/10.3389/fnbot.2016.00007
http://usir.salford.ac.uk/id/eprint/47264
https://doi.org/10.1097/JPO.0b013e31817ecb16
https://doi.org/10.1097/JPO.0b013e31817ecb16
https://doi.org/10.3109/03093649909071611
https://doi.org/10.1016/j.apmr.2011.06.026
https://doi.org/10.1038/s41598-018-29503-6


1 1Scientific Data |           (2019) 6:199  | https://doi.org/10.1038/s41597-019-0211-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

 7. Actigraph Corp. ActiGraph White Paper: What is a count?, (49E Chase Street, Pensacola, FL 32502), https://s3.amazonaws.com/
actigraphcorp.com/wp-content/uploads/2017/11/26205758/ActiGraph-White-Paper_What-is-a-Count_.pdf (2008)

 8. Chadwell, A. et al. Visualisation of upper limb activity using spirals: A new approach to the assessment of daily prosthesis usage. 
Prosthet. Orthot. Int. 42, 37–44, https://doi.org/10.1177/0309364617706751 (2017).

 9. Paraschiv-Ionescu, A., Perruchoud, C., Buchser, E. & Aminian, K. Barcoding Human Physical Activity to Assess Chronic Pain 
Conditions. PLOS ONE 7, e32239, https://doi.org/10.1371/journal.pone.0032239 (2012).

 10. Lang, C. E., Waddell, K. J., Klaesner, J. W. & Bland, M. D. A Method for quantifying upper limb performance in daily life using 
accelerometers. JoVE, e55673, https://doi.org/10.3791/55673 (2017).

 11. Chadwell, A. et al. Upper limb activity of twenty myoelectric prosthesis users and twenty healthy anatomically intact adults. Figshare. 
https://doi.org/10.6084/m9.figshare.c.4457855 (2019).

 12. Cain, K. L., Conway, T. L., Adams, M. A., Husak, L. E. & Sallis, J. F. Comparison of older and newer generations of ActiGraph 
accelerometers with the normal filter and the low frequency extension. Int. J. Behav. Nutr. Phys. Act. 10, 51, https://doi.
org/10.1186/1479-5868-10-51 (2013).

 13. Judge, D. & Maygarden, J. ActiGraph .gt3x file format. Github, https://github.com/actigraph/GT3X-File-Format (2014).
 14. Brond, J. C., Andersen, L. B. & Arvidsson, D. Generating ActiGraph counts from raw acceleration recorded by an alternative 

monitor. Med. Sci. Sports Exerc. 49, 2351–2360, https://doi.org/10.1249/mss.0000000000001344 (2017).
 15. Barreira, T. V., Zderic, T. W., Schuna, J. M., Hamilton, M. T. & Tudor-Locke, C. Free-living activity counts-derived breaks in 

sedentary time: Are they real transitions from sitting to standing? Gait & Posture 42, 70–72, https://doi.org/10.1016/j.
gaitpost.2015.04.008 (2015).

 16. Clucas, J., White, C., Koo, B., Milham, M. & Klein, A. Assessing actimeters for inclusion in the Healthy Brain Network. bioRxiv, 
183772, https://doi.org/10.1101/183772 (2017).

 17. Makin, T. R. et al. Deprivation-related and use-dependent plasticity go hand in hand. eLife 2, e01273, https://doi.org/10.7554/
eLife.01273 (2013).

 18. Maimon Mor, R. O. et al. Gesticulation with hand and prosthesis in congenital one-handers and acquired amputees. In Conference 
Proceedings: Trent International Prosthetics Symposium (2019).

Acknowledgements
The authors would like to acknowledge the assistance of Daniek Mos (Technical University of Delft) for her 
assistance in transcribing the diary data and converting the .gt3x files. They would also like to acknowledge the 
assistance of the staff at NHS prosthetics centres in Manchester, Roehampton, Sheffield, and Nottingham, as well 
as the University of Strathclyde, with respect to participant recruitment.

author Contributions
The study was initially conceived by L.K. and A.C. Recruitment, data collection and data analysis were undertaken 
by A.C. M.G., A.C. and L.K. were all involved in the development of the analysis techniques. The manuscript was 
initially drafted by A.C. and L.K. All other authors reviewed the manuscript prior to submission. A.C. was jointly 
supervised throughout this study by L.K., S.T., J.H. and A.G.

additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ 
applies to the metadata files associated with this article.
 
© The Author(s) 2019

https://doi.org/10.1038/s41597-019-0211-6
https://s3.amazonaws.com/actigraphcorp.com/wp-content/uploads/2017/11/26205758/ActiGraph-White-Paper_What-is-a-Count_.pdf
https://s3.amazonaws.com/actigraphcorp.com/wp-content/uploads/2017/11/26205758/ActiGraph-White-Paper_What-is-a-Count_.pdf
https://doi.org/10.1177/0309364617706751
https://doi.org/10.1371/journal.pone.0032239
https://doi.org/10.3791/55673
https://doi.org/10.6084/m9.figshare.c.4457855
https://doi.org/10.1186/1479-5868-10-51
https://doi.org/10.1186/1479-5868-10-51
https://github.com/actigraph/GT3X-File-Format
https://doi.org/10.1249/mss.0000000000001344
https://doi.org/10.1016/j.gaitpost.2015.04.008
https://doi.org/10.1016/j.gaitpost.2015.04.008
https://doi.org/10.1101/183772
https://doi.org/10.7554/eLife.01273
https://doi.org/10.7554/eLife.01273
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

	Upper limb activity of twenty myoelectric prosthesis users and twenty healthy anatomically intact adults
	Background & Summary
	Methods
	Participants. 
	Sensors. 
	Activity diary. 
	Sensor initialisation. 
	Data collection. 
	Data download/pre-processing. 
	Data analysis. 

	Data Records
	Raw accelerometer data. 
	Activity counts/epoch data. 
	Non-wear algorithm. 
	Self-report diary data. 

	Technical Validation
	Usage Notes
	Limitations. 

	Acknowledgements
	Fig. 1 Schematic for data collection and processing.
	Fig. 2 Sensor orientation.
	Fig. 3 Accelerations recorded with a dynamic range of 8 g.
	Table 1 Sleep diary for PU4.
	Table 2 Sensor removal diary for PU4.
	Table 3 Sleep diary for PU5.
	Table 4 Prosthesis removal diary for PU5.
	Table 5 Sensor removal diary for PU6.
	Table 6 Prosthesis removal diary for PU11.
	Table 7 Sleep diary for PU14.
	Table 8 Prosthesis removal diary for PU14.
	Table 9 Sensor removal diary for PU14.




