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Single-cell RNa sequencing 
of a European and an african 
lymphoblastoid cell line
Daniel Osorio1, Xue Yu  2, Peng Yu3, Erchin Serpedin3 & James J. Cai  1,3,4

In biomedical research, lymphoblastoid cell lines (LCLs), often established by in vitro infection of resting 
B cells with Epstein-Barr virus, are commonly used as surrogates for peripheral blood lymphocytes. 
Genomic and transcriptomic information on LCLs has been used to study the impact of genetic 
variation on gene expression in humans. Here we present single-cell RNa sequencing (scRNa-seq) 
data on GM12878 and GM18502—two LCLs derived from the blood of female donors of European and 
African ancestry, respectively. Cells from three samples (the two LCLs and a 1:1 mixture of the two) 
were prepared separately using a 10x Genomics Chromium Controller and deeply sequenced. The 
final dataset contained 7,045 cells from GM12878, 5,189 from GM18502, and 5,820 from the mixture, 
offering valuable information on single-cell gene expression in highly homogenous cell populations. 
This dataset is a suitable reference for population differentiation in gene expression at the single-cell 
level. Data from the mixture provide additional valuable information facilitating the development of 
statistical methods for data normalization and batch effect correction.

Background & Summary
Immortalized cell lines are continuously growing cells derived from biological samples. Lymphoblastoid cell lines 
(LCLs) are one of the important members among many immortalized cell lines1. LCLs are usually established 
by infecting human peripheral blood lymphocytes in vitro with Epstein-Barr virus (EBV). The viral infection 
selectively immortalizes resting B cells, giving rise to an actively proliferating B cell population2. LCLs exhibit 
a low somatic mutation rate in continuous culture, making them the preferred choice of storage for individuals’ 
genetic material3. As one of the most reliable, inexpensive, and convenient sources of cells, LCLs have been used 
by several large-scale genomic DNA sequencing efforts such as the International HapMap and the 1,000 Genomes 
projects4,5, in which a large collection of LCLs were derived from individuals of different genetic backgrounds, to 
document the extensive genetic variation in human populations.

LCLs are also an in vitro model system for a variety of molecular and functional assays, contributing to studies 
in immunology, cellular biology, genetics, and other research areas6–12. It is also believed that gene expression 
in LCLs encompasses a wide range of metabolic pathways specific to individuals where the cells originated13. 
LCLs have been used in population-scale RNA sequencing projects14–16, as well as epigenomic projects17. For 
many LCLs used as reference strains, both genomic and transcriptomic information is available, making it pos-
sible to detect the correlation between genotype and expression level of genes and infer the potential causative 
function of genetic variants18. Furthermore, comparisons of gene expression profiles of LCLs between popula-
tions such as between Centre d’Etude du Polymorphisme Humain – Utah (CEPH/CEU) and Yoruba in Ibadan, 
Nigeria (YRI), have revealed the genetic basis underlying the differences in transcriptional activity between the 
two populations16,19.

With the advent of single-cell RNA sequencing (scRNA-seq) technology20,21, our approach for understanding 
the origin, global distribution, and functional consequences of gene expression variation is ready to be extended. 
For example, data generated from scRNA-seq provide an unprecedented resolution of the gene expression profiles 
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at single cell level, which allows the identification of previously unknown subpopulations of cells and functional 
heterogeneity in a cell population22–24.

In this study, we used scRNA-seq to assess the gene expression across thousands of cells from two LCLs: 
GM12878 and GM18502. Cells were prepared using a Chromium Controller (10x Genomics, Pleasanton, CA) as 
described previously21 and sequenced using an Illumina Novaseq. 6000 sequencer. We present this dataset on the 
single-cell gene expression profile for more than 7,000 cells from GM12878 and more than 5,000 from GM18502. 
GM12878 is a popular sample that has been widely used in genomic studies. For example, it is one of three ‘Tier 
1’ cell lines of the Encyclopedia of DNA Elements (ENCODE) project17,25. GM18502, derived from the donor of 
African ancestry, serves as a representative sample from the divergent population. The two cell lines are part of 
the International HapMap project, and genotypic information is available for both of them4. We also processed 
and sequenced an additional sample of 1:1 mixture of GM12878 and GM18502 using the same scRNA-seq pro-
cedure. Our dataset presented here provides a suitable reference for those researchers interested in performing 
between-populations comparisons in gene expression at the single-cell level, as well as for those developing new 
statistical methods and algorithms for scRNA-seq data analysis.

Methods
Cell culture. GM12878 and GM18502 cell lines were purchased from the Coriell Institute for Medical 
Research. Cells were cultured in the Roswell Park Memorial Institute (RPMI) Medium 1640 supplemented with 
2mM L-glutamine and 20% of non-inactivated fetal bovine serum in T25 tissue culture flasks. Flasks with 20 mL 
medium were incubated on the upright position at 37 °C under 5% of carbon dioxide. Cell cultures were split 
every three days for maintenance. Note that authentication test and mycoplasm contamination screening on these 
freshly purchased cell lines were not undertaken in this study.

Growth curve. Four culture flasks for each cell line were started with approximately 200,000 viable cells/mL  
to measure the growth rate of each cell line. Cells were prepared and cultured as described above. Viable cell num-
ber was estimated on a daily basis for four days. Briefly, 100 uL suspended cells from each flask were taken every 
day, to visualize the viable cells, the samples were stained using 10 uL of Trypan Blue (0.4%), and live cells were 
counted manually using a Neubauer counting chamber.

Single cell preparation. Single-cell sample preparation was conducted according to Sample Preparation 
Demonstrated Protocol provided by 10x Genomics as follows: 1 mL of cell suspensions from each cell line (day 
4, stable phase) was pelleted in Eppendorf tubes by centrifugation (400 g, 5 min). The supernatant was discarded, 
and the cells pellet was then resuspended in 1x PBS with 0.04% BSA, followed by two washing procedures by 
centrifugation (150 g, 3 min). After the second wash, cells were resuspended in ~500 uL 1x PBS with 0.04% BSA 
followed by gently pipetting mix 10–15 times. Cells were counted using an Invitrogen Countess automated cell 
counter (Thermo Fisher Scientific, Carlsbad, CA) and the viability of cells was assessed by Trypan Blue staining 
(0.4%).

Generation of single cell GEMs (Gel bead in EMulsion) and sequencing libraries. Libraries were 
prepared using the 10x Genomics Chromium Controller in conjunction with the single-cell 3′ v2 kit. Briefly, the 
cell suspensions were diluted in nuclease-free water according to manufacturer instructions to achieve a targeted 
cell count of 5,000 for each cell line. The cDNA synthesis, barcoding, and library preparation were then carried 
out according to the manufacturer’s instructions. Libraries were sequenced in the North Texas Genome Centre 
facilities on a Novaseq. 6000 sequencer (Illumina, San Diego).

Mapping of reads to transcripts and cells. Sample demultiplexing, barcode processing, and unique 
molecular identifiers (UMI) counting were performed by using the 10x Genomics pipeline CellRanger v.2.1.0 
with default parameters. Specifically, for each library, raw reads were demultiplexed using the pipeline command 
‘cellranger mkfastq’ in conjunction with ‘bcl2fastq’ (v2.17.1.14, Illumina) to produce two fastq files: 
the read 1 file contains 26-bp reads, each consists of a cell barcode and a unique molecule identifier (UMI), and 
the read 2 file contains 96-bp reads including cDNA sequences. Reads then were aligned to the human reference 
genome (GRCh38), filtered, and counted using ‘cellranger count’ to generate the gene-barcode matrix. 
Summary metrics of barcoding and sequencing from raw data are given in Table 1.

Quality control. Expression matrices were processed using Seurat (v2.3.4) R package26. Briefly, for each 
library, the expression matrix was loaded using the ‘Read10X’ function, and the default log-normalization was 
performed using the ‘NormalizeData’ function, followed by a cantering and scaling of the normalized values 
by using the ‘ScaleData’ function. Quality control (QC) measures, including UMI count, the number of genes 
detected per cell, and the percentage of mitochondrial transcripts were calculated. Cells with a proportion of 
mitochondrial reads lower than 10% and a library size smaller than 2.5x standard deviation (SD) from the average 
library size were considered good quality cells. The corresponding code used for the QC procedure is available 
online (see Code availability).

Cell cycle phase and population assignment. Cell cycle phase assignment was made using the 
‘CellCycleScoring’ function in the Seurat R package26, which uses the phase-specific marker genes, given 
by the ‘cc.genes’ dataset27. Cell population assignment, i.e., assigning cells in the mixture sample back to the 
cell line (GM12878 or GM18502) they belong to, was made using the Brunet algorithm28 for non-negative matrix 
factorization, in the NMF (v0.21) R package29. A set of marker genes (n = 252) with absolute log-fold change >2.5 
identified by comparing the pure cell lines was used as inputs and the resulting probabilities after 2,000 iterations 
were used to assign each cell in the mixture to either GM12878 or GM18502.
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Dimensionality reduction. Expression matrices from GM12878, GM18502, and the mixture sample were 
merged and log-normalized using the function ‘MergeSeurat’. The resultant matrix was then centered and 
scaled. Highly variable genes were identified using function ‘FindVariableGenes’ in the Seurat R package26. 
Identified highly variable genes were used as input to produce the t-Distributed Stochastic Neighbour Embedding 
(t-SNE) projection using the ‘RunTSNE’ function with standard settings (perplexity = 30, theta = 0.5, maximum 
iteration = 1000, learning rate = 250, and momentum reduction = 0.5, by using the first 5 components from the 
principal component analysis). The Uniform Manifold Approximation and Projection (UMAP) was produced 
with the same set of highly variable genes as input using the function ‘RunUMAP’ with standard settings (min_
dist = 0.3, metric = correlation, n_neighbors = 30).

scRNa-seq versus bulk RNa-seq. For both GM12878 and GM18502, transcriptome has been previously 
sequenced using bulk RNA-seq. The availability of these existing data allowed us to examine the correlation 
between gene expression levels measured using scRNA-seq and bulk RNA-seq in the same LCLs. Thus, we down-
loaded the raw fastq files of bulk RNA-seq experiments from the Gene Expression Omnibus (GEO) database 
using accessions GSM48489630,31 (for GM12878) and GSM239268932,33 (for GM18502) and quantified gene 
expression for both samples using Salmon34 (v0.12.0) against the human transcriptome (GRCh38). In addition, 
we also compared gene expression measured using scRNA-seq in GM12878 and GM18502 with the average 
gene expression measured in multiple samples from CEU and YRI populations. To do so, we downloaded the 
bulk RNA-seq data of 91 CEU and 89 YRI LCLs from the website of the Geuvadis RNA-seq project of 1,000 
Genomes. The expression of each gene was measured as the mean of transcripts per million (TPM) values across 
all individuals of CEU or YRI population. To visualize the relationship of the single-cell gene-expression profiles 
of the two cell lines with their respective population, a principal component analysis (PCA) was performed. The 
input data for PCA was batch-effect corrected using the ‘removeBatchEffect’ function in the limma (3.4.0) 
R package35 and quantile normalized using the ‘normalize.quantiles’ function in the preprocessCore 
(1.46.0) R package.

Data Records
The sequencing data from this study have been submitted as the BioProject reference (PRJNA508890), with 
descriptions of the Biosamples (SUB4895416, SUB4895422, SUB4895423). Raw data of three samples have been 
deposited at the National Center for Biotechnology Information (NCBI) Sequence Reads Archive (SRA) with 
accession ID: SRP17283836. For each sample, data include unprocessed scRNA-seq reads in two raw fastq files 
(*R1.fastq.gz for cell barcodes and UMIs, and *R2.fastq.gz for RNA reads), as well as an expression matrix file in 
matrix market exchange format (*.mtx) with columns corresponding to cells and row to genes. UMI matrices of 
this study have been deposited with the Gene Expression Omnibus at GEO: GSE12632137. The identifiers for the 
columns and rows are included in separated files (barcodes.tsv and genes.tsv). These processed files correspond to 

GM12878 GM18502 Mixture

Estimated Number of Cells 7,247 5,530 5,828

Mean Reads per Cell 65,466 91,493 83,326

Median Genes per Cell 2,954 3,960 3,621

Number of Reads 474,436,605 505,958,821 485,628,282

Valid Barcodes 97.20% 97.30% 97.20%

Sequencing Saturation 50.30% 53.50% 53.30%

Q30 Bases in Barcode 94.90% 94.80% 94.80%

Q30 Bases in RNA Read 90.20% 89.60% 89.90%

Q30 Bases in Sample Index 91.50% 93.40% 92.20%

Q30 Bases in UMI 94.80% 93.40% 94.70%

Reads Mapped to Genome 93.90% 93.70% 93.70%

Reads Mapped Confidently to Genome 92.00% 92.00% 92.00%

Reads Mapped Confidently to Intergenic Regions 2.60% 2.70% 2.70%

Reads Mapped Confidently to Intronic Regions 12.90% 13.10% 12.80%

Reads Mapped Confidently to Exonic Regions 76.50% 76.20% 76.50%

Reads Mapped Confidently to Transcriptome 72.60% 71.90% 72.50%

Reads Mapped Antisense to Gene 0.90% 0.90% 0.90%

Fraction Reads in Cells 90.70% 91.70% 89.80%

Total Genes Detected 21,329 20,701 21,151

Median UMI Counts per Cell 18,214 25,973 22,608

Table 1. Summary metrics for 10x Genomics scRNA-seq barcoding and sequencing of three LCL samples 
(GM12878, GM18502, and the 1:1 mixture). The estimates were produced by CellRanger on raw data, i.e., 
unfiltered feature-barcode matrix; values may differ slightly from those reported in the main text. For detailed 
definitions of metrics, refer to the 10x Genomics support website, https://support.10xgenomics.com/single-cell-
gene-expression/software/pipelines/latest/output/gex-metrics.
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the output produced by the cell ranger pipeline. In addition, a supplementary table with the barcodes, population, 
UMI count, gene count, and mitochondrial transcript levels is included.

technical Validation
Here we present the scRNA-seq gene expression profile for 7,045 and 5,189 cells for GM12878 and GM18502, 
respectively. For GM12878, the median UMI counts per cell is 18,214 and the median number of genes detected 
(at least 1 UMI) per cell is 3,167; for GM18502, 25,973 and 3,891. Figure 1 is a heatmap of log-transformed 
expression data of top 200 highly expressed genes in the two LCLs. Cells are grouped by their cell cycle phases 
(G1, S, and G2/M) and sorted within each group by their library size. Among the top expressed genes, there 
are several immunoglobulin genes such as IGLC2, IGHA1, IGKC, IGLC3, and IGHM. These genes are not only 
expressed highly on average but also expressed highly variably across cells—i.e., highly expressed in one set of 
cells but no expression in another set of cells. We consider that this highly variable expression pattern can be 
attributed to immunoglobulin gene rearrangement. During the formation of the naïve-B cells, gene rearrange-
ment process occurs to reshuffle different subunits of the variable (V), diversity (D) and joining (J) segments of 
immunoglobulin genes, resulting in the generation of a wide range of organism-specific antigen receptors that 
allow the immune system to recognize foreign molecules and initiate differential immune responses38,39. LCLs are 
produced through the rapid proliferation of few EBV-driven B cells from the blood cell population40. Thus, our 
scRNA-seq data of GM12878 and GM18502 offer a ‘snapshot’ of highly diverse immunoglobulin rearrangement 
profiles in a much larger population of polyclonal B cells found in the two donors.

We also performed scRNA-seq with a 1:1 mixture sample of the two LCLs and obtained data for additional 
5,820 cells with a median UMI counts per cell of 22,608 and a median number of genes detected per cell of 3,625. 
This mixture sample can be considered as a technical replicate for both GM12878 and GM18502. The use of the 
mixture sample facilitates direct comparison of gene expression between GM12878 and GM18502 because cells 
from two cell lines in the mixture were processed simultaneously in the same reaction, maximally eliminating 
the batch effect. We found that cells in the mixture were able to be assigned back to their original cell lines almost 
unambiguously using a non-negative matrix factorization algorithm (see Methods). Furthermore, the average 
gene expression measured in cells in the mixture, after discriminating cells in the mixture and assigning them to 
their respective one of original cell lines, was virtually indistinguishable from that measured in the original ‘pure’ 
cells (Fig. 2).

The percentage of mitochondrial transcripts, an indicator of apoptotic cells, was computed for all cells 
sequenced in all the three samples. We found that no more than 0.4% of cells, that is, 26 cells from GM12878, 6 
from GM18502, and 23 cells from the mixture sample, surpass the commonly used threshold of 10% mitochon-
drial transcripts41. This suggests that the majority of cells processed and sequenced were viable. Furthermore, as 
the 10x Genomics Chromium technology relies on droplets to partitioning cells and barcoding, it is normal some 
of them contain multiple cells in the cell droplet, making the estimation of the frequency of multiplets a critical 
aspect of quality control42. There are several ways to identify multiplets43–45. Here we adopted the threshold of 
2.5x SD from the average library size for each cell. Based on this threshold, only 171 cells were considered to be 
multiplets for GM12878, 66 for GM18502, and 87 for the mixture (Fig. 3). These results support the quality of 
the dataset.

In either t-SNE or UMAP projection, no separation was observed between cells from the two pure cell lines, 
GM12878 and GM18502, and cells from the corresponding replicates of the two pure cell lines in the mixture 
(Fig. 4). This result suggests that cells in the mixture have the global expression profiles indistinguishable from 
those of cells of their original samples. Population signal of each sample allows a sample to be separated from 
others in the first two t-SNE or UMAP dimensional spaces. Furthermore, for each cell line, cells of different 
cell cycle phases are not entirely separated—a continuous path between the different clusters of cells exist. This 
allows researchers interested in cell cycle development to perform pseudo-time analysis46. Also, cells in the same 
cell cycle phase tend to be spread out and form a spectrum of cells in intermediate stages, indicating that cell 

GM12878−G1 GM12878−S GM12878−G2M GM18502−G1 GM18502−S GM18502−G2M

4633 1113 1299 2525 1367 1297

HIGHLY EXPRESSED GENES

Number of Cells

IGHM

IGLC3
IGKC

IGHA1
IGLC2

0

1

2

3

4

lo
g 1

0(
E

xp
re

ss
io

n 
+ 

1 )

Fig. 1 Heatmap of single-cell gene expression levels of the top 200 genes highly expressed in GM12878 and 
GM18502. Values are log-transformed UMI counts. For coloring purposes, values are truncated at a range 
between 0 and 4. Genes are arranged by the expression level. Cells are grouped according to cell cycle phases 
and sorted by their library size within each group. Immunoglobulin genes are labeled.
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proliferation is a continuous process and researchers interested in this process can use this dataset to refine refer-
ence cell sub-populations by their characterized expression profiles.

For both GM12878 and GM18502, we conducted correlation analyses to validate our scRNA-seq expression 
data using bulk RNA-seq expression information as a reference. We first compared gene expression measured 
using scRNA-seq and bulk RNA-seq in the same LCL, GM12878 or GM18502. We also compared gene expres-
sion measured using scRNA-seq in GM12878 (and GM18502) with the average gene expression in correspond-
ing population CEU (and YRI). We found that in all cases the correlations are highly significant and strong 
with Spearman correlation coefficients (SCCs) of 0.78, 0.58, 0.76, and 0.77, respectively (Fig. 5). Thus, when 
scRNA-seq data are pooled across cells, genes’ expression levels are largely recapitulated as they were measured 
using bulk RNA-seq. These results further support the quality of our scRNA-seq dataset. We note that the SCC 
(0.58) between GM18502 scRNA-seq and GM18502 bulk RNA-seq is lower than that (0.78) between GM12878 
scRNA-seq and GM12878 bulk RNA-seq. This may be due to differences in cell population state at the time when 
GM18502 cells were harvested for scRNA-seq and bulk RNA-seq.

As long-lasting supplies of cells containing genotypic and phenotypic information matching that of B-cell ori-
gins, LCLs have contributed significantly to biomedical research. We present a high-quality dataset of scRNA-seq 
from homogenous cell populations of two LCLs, including GM12878—one of the most popular reference cell 
lines. Our dataset provides information that can be used to quantify cell-to-cell variability in gene expression and 
study cellular states and associated gene expression changes. It also informs the analysis and comparison of gene 
expression at the single-cell level between European and African LCLs. The data from the mixture sample are a 
suitable resource for estimating the technical variability of scRNA-seq and can also be used to calibrate statistical 
methods for data normalization and batch effect correction.

Fig. 2 Cell growth curves and the gene expression correlations between samples. (a) Growth curve of the 
GM12878 and GM18502 cultured in the same RPMI 1640 medium. (b) Spearman’s correlation between the 
gene expressions profiles UMI average of the cells assigned to the CEU population from the mixture and those 
from the pure GM12878 cell line. Values were log-transformed, and each dot represents a gene. (c) Spearman’s 
correlation between the gene expression (average UMI) of cells assigned to the YRI population from the mixture 
and those from the pure GM18502 cell line. Values are log-transformed, and each dot represents a gene.

Fig. 3 Distribution of the single-cell gene expression profiles under the defined quality control thresholds. 
There are 6,848 cells for the GM12878, 5,117 for the GM18502 and 5,710 for the mixture sample within the 
range of thresholds. These cells are considered to be of high quality.
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Fig. 5 Gene expression correlations between single-cell sample, bulk-cell sample, and population average of 
bulk-cell samples. (a) Spearman’s correlation between the gene expressions profiles at the single-cell level and 
the bulk expression level (TPM) for GM12878 and GM18502. (b) Spearman’s correlation between the gene 
expressions profiles at the single-cell level for the GM12878 and GM18502 compared to the average bulk level 
expression (average TPM) for the available samples of CEU and YRI. Values are log-transformed, and each 
dot represents a gene. (c) PCA plot shows the similarity between the same samples’ gene expression profiles 
obtained using bulk RNA-seq and scRNA-seq.
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Fig. 4 Plots of t-SNE and UMAP projections generated from the pooled scRNA-seq data of GM12878, 
GM18502, and the mixture samples. Separate panels are used to show cells labeled and colored differentially 
according to their cell line name and cell cycle state.

https://doi.org/10.1038/s41597-019-0116-4


7Scientific Data |           (2019) 6:112  | https://doi.org/10.1038/s41597-019-0116-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

Code availability
All the required code to replicate the feature characterization of GM12878 or GM18502 and the mixture, as well 
as all figures included in this document, are available in a public repository on GitHub at https://github.com/
cailab-tamu/sciData-LCL.
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