Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Update
  • Published:

Optimizing the standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes

Abstract

Nanozymes are nanomaterials with enzyme-like catalytic properties. They are attractive reagents because they do not have the same limitations of natural enzymes (e.g., high cost, low stability and difficult storage). To test, optimize and compare nanozymes, it is important to establish fundamental principles and systematic standards to fully characterize their catalytic performance. Our 2018 protocol describes how to characterize the catalytic activity and kinetics of peroxidase nanozymes, the most widely used type of nanozyme. This approach was based on Michaelis–Menten enzyme kinetics and is now updated to take into account the unique physicochemical properties of nanomaterials that determine the catalytic kinetics of nanozymes. The updated procedure describes how to determine the number of active sites as well as other physicochemical properties such as surface area, shape and size. It also outlines how to calculate the hydroxyl adsorption energy from the crystal structure using the density functional theory method. The calculations now incorporate these measurements and computations to better characterize the catalytic kinetics of peroxidase nanozymes that have different shapes, sizes and compositions. This updated protocol better describes the catalytic performance of nanozymes and benefits the development of nanozyme research since further nanozyme development requires precise control of activity by engineering the electronic, geometric structure and atomic configuration of the catalytic sites of nanozymes. The characterization of the catalytic activity of peroxidase nanozymes and the evaluation of their kinetics can be performed in 4 h. The procedure is suitable for users with expertise in nano- and materials technology.

Key points

  • Nanozymes are nanoparticles designed to have catalytic properties similar to those of natural enzymes. Design and optimization of nanozyme properties require analytical methods to characterize their physical properties as well as their catalytic activity and kinetics.

  • This is an updated protocol for measuring catalytic behavior that incorporates data from measured physical properties unique to each nanoparticle as well as density functional theory calculations into the Michaelis–Menten approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reaction pathways for peroxidase nanozymes of different physicochemical properties.
Fig. 2: Peroxidase-like catalytic activity characterization using this updated protocol.
Fig. 3: Catalytic kinetics characterization of the peroxidase Fe3O4 NPs, Pt NPs and Pt-SAzyme using this protocol.
Fig. 4: Slab models of Fe3O4 nanozymes.

Similar content being viewed by others

Data availability

All data are available in the accompanying Supplementary Information.

References

  1. Gao, L. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Kotov, N. A. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Xie, B. et al. Hollow and porous Fe3C-NC nanoballoons nanozymes for cancer cell H2O2 detection. Sens. Actuators B Chem. 347, 130597 (2021).

    Article  CAS  Google Scholar 

  4. Yuan, B., Chou, H. L. & Peng, Y. K. Disclosing the origin of transition metal oxides as peroxidase (and catalase) mimetics. ACS Appl. Mater. Interfaces 14, 22728–22736 (2022).

    Article  CAS  Google Scholar 

  5. Meng, X. et al. Bimetallic nanozyme: a credible tag for in situ-catalyzed reporter deposition in the lateral flow immunoassay for ultrasensitive cancer diagnosis. Nano Lett. 24, 51–60 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, X., Chen, M. & Zhao, L. Development of a colorimetric sensing assay for ascorbic acid and sarcosine utilizing the dual-class enzyme activity of Fe3O4@SiO2@NiCo2S4. Chem. Eng. J. 468, 143612 (2023).

    Article  CAS  Google Scholar 

  7. Zhou, X. et al. Nanozyme inhibited sensor array for biothiol detection and disease discrimination based on metal ion-doped carbon dots. Anal. Chem. 95, 8906–8913 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Jiang, Y. et al. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 11, 1857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, T. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 11, 2788 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao, C. et al. Starvation, ferroptosis, and prodrug therapy synergistically enabled by a cytochrome c oxidase like nanozyme. Adv. Mater. 34, 2203236 (2022).

    Article  CAS  Google Scholar 

  11. Cao, F. et al. Self-adaptive single-atom catalyst boosting selective ferroptosis in tumor cells. ACS Nano 16, 855–868 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Ding, L. et al. Living macrophage-delivered tetrapod PdH nanoenzyme for targeted atherosclerosis management by ros scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano 16, 15959–15976 (2022).

    Article  PubMed  Google Scholar 

  13. Wei, H. & Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, J. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, H., Wan, K. & Shi, X. Recent advances in nanozyme research. Adv. Mater. 31, e1805368 (2019).

    Article  PubMed  Google Scholar 

  16. Liang, M. & Yan, X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52, 2190–2200 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, Y., Ren, J. & Qu, X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Yan, X. (ed) Nanozymology: Connecting Biology and Nanotechnology Vol 1 (Springer Nature, 2020).

  19. Jiang, B. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 13, 1506–1520 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Cha, S. A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state. J. Biol. Chem. 243, 820–825 (1968).

    Article  CAS  PubMed  Google Scholar 

  21. Fraser, S. J. The steady state and equilibrium approximations: a geometrical picture. J. Chem. Phys. 88, 4732–4738 (1988).

    Article  CAS  Google Scholar 

  22. Rodriguez-Lopez, J. N., Gilabert, M. A., Tudela, J., Thorneley, R. N. F. & Garcia-Canovas, F. Reactivity of horseradish peroxidase compound II toward substrates: kinetic evidence for a two-step mechanism. Biochemistry 39, 13201–13209 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Gao, X. J., Zhao, Y. & Gao, X. Catalytic signal transduction theory enabled virtual screening of nanomaterials for medical functions. Acc. Chem. Res. 56, 2366–2377 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Gao, X. J., Yan, J., Zheng, J. J., Zhong, S. & Gao, X. Clear-box machine learning for virtual screening of 2D nanozymes to target tumor hydrogen peroxide. Adv. Healthc. Mater. 12, e2202925 (2023).

    Article  PubMed  Google Scholar 

  25. Hulva, J. et al. Adsorption of Co on the Fe3O4 (001) surface. J. Phys. Chem. B 122, 721–729 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Luo, F. et al. Accurate evaluation of active-site density (SD) and turnover frequency (TOF) of PGM-free metal–nitrogen-doped carbon (MNC) electrocatalysts using CO cryo adsorption. ACS Catal. 9, 4841–4852 (2019).

    Article  CAS  Google Scholar 

  27. Herold, F., Gläsel, J., Etzold, B. J. M. & Rønning, M. Can temperature-programmed techniques provide the gold standard for carbon surface characterization? Chem. Mater. 34, 8490–8516 (2022).

    Article  CAS  Google Scholar 

  28. Chen, Y. et al. Thermal atomization of platinum nanoparticles into single atoms: an effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 143, 18643–18651 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Ji, S. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4, 407–417 (2021).

    Article  CAS  Google Scholar 

  30. Zandieh, M. & Liu, J. Nanozyme catalytic turnover and self-limited reactions. ACS Nano 15, 15645–15655 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Shen, X., Wang, Z., Gao, X. & Zhao, Y. Density functional theory-based method to predict the activities of nanomaterials as peroxidase mimics. ACS Catal. 10, 12657–12665 (2020).

    Article  CAS  Google Scholar 

  32. Shen, X., Wang, Z., Gao, X. J. & Gao, X. Reaction mechanisms and kinetics of nanozymes: insights from theory and computation. Adv. Mater. 36, e2211151 (2024).

    Article  PubMed  Google Scholar 

  33. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  37. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  40. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  41. Kim, J. K. & Tyson, J. J. Misuse of the Michaelis–Menten rate law for protein interaction networks and its remedy. PLoS Comput. Biol. 16, e1008258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Choi, B., Rempala, G. A. & Kim, J. K. Beyond the Michaelis–Menten equation: accurate and efficient estimation of enzyme kinetic parameters. Sci. Rep. 7, 17018 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang, Y., Li, T. & Wei, H. Determination of the maximum velocity of a peroxidase-like nanozyme. Anal. Chem. 95, 10105–10109 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Gumpelmayer, M. et al. Magnetite Fe3O4 has no intrinsic peroxidase activity, and is probably not involved in Alzheimer’s oxidative stress. Angew. Chem. Int. Ed. 57, 14758–14763 (2018).

    Article  CAS  Google Scholar 

  45. Fan, H. et al. Surface ligand engineering ruthenium nanozyme superior to horseradish peroxidase for enhanced immunoassay. Adv. Mater. 36, 2300387 (2024).

    Article  CAS  Google Scholar 

  46. Ma, C. B. et al. Guided synthesis of a Mo/Zn dual single-atom nanozyme with synergistic effect and peroxidase-like activity. Angew. Chem. Int. Ed. 61, e202116170 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFA1205801), the Basic Science Center Project of the National Natural Science Foundation of China (22388101), the National Natural Science Foundation of China (T2225026, 52202344, 82172087, 22203020, 52161135107) and the Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and X.G. conceived and designed the experiments. J.-J.Z., F. Z. and J.H. performed the experiments. M.L., X.G. and J.-J.Z. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jiuyang He, Xingfa Gao or Minmin Liang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Jae Kyoung, Hui Wei and Yu Zhang for their contribution to the peer review of this work.

Additional information

Related links

Key reference using this protocol

Jiang, B. et al. Nat. Protoc. 13, 1506–1520 (2018): https://doi.org/10.1038/s41596-018-0001-1

Chen, Y. et al. J. Am. Chem. Soc. 143, 18643–18651 (2021): https://doi.org/10.1021/jacs.1c08581

Shen, X. et al. ACS Catal. 10, 12657–12665 (2020): https://doi.org/10.1021/acscatal.0c03426

This protocol is an update to: Nat. Protoc. 13, 1506–1520 (2018): https://doi.org/10.1038/s41596-018-0001-1

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Notes 1 and 2.

Supplementary Data 1

Coordinates of the surface structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, JJ., Zhu, F., Song, N. et al. Optimizing the standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-01034-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing