Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vitro culture of cynomolgus monkey embryos from blastocyst to early organogenesis

Abstract

Human early embryonic development is the cornerstone of a healthy baby. Abnormal early embryonic development may lead to developmental and pregnancy-related disorders. Accordingly, understanding the developmental events and mechanisms of human early embryonic development is very important. However, attempts to reveal these events and mechanisms are greatly hindered by the extreme inaccessibility of in vivo early human embryos. Fortunately, the emergence of in vitro culture (IVC) systems for mammalian embryos provides an alternative strategy. In recent years, different two-dimensional and three-dimensional IVC systems have been developed for human embryos. Ethical limitations restrict the IVC of human embryos beyond 14 days, which makes non-human primate embryos an ideal model for studying primate developmental events. Different culture systems have supported the development of monkey embryos to days postfertilization 14 and 25, respectively. The successful recapitulation of in vivo developmental events by these IVC embryos has greatly enriched our understanding of human early embryonic development, which undoubtedly helps us to develop possible strategies to predict or treat various gestation-related diseases and birth defects. In this protocol, we establish different two-dimensional and three-dimensional IVC systems for primate embryos, provide step-by-step culture procedures and notes, and summarize the advantages and limitations of different culture systems. Replicating this protocol requires a moderate level of experience in mammalian embryo IVC, and the embryo culture requires strict adherence to the procedures we have described.

Key points

  • This protocol describes the in vitro culture of cynomolgus monkey embryos from blastocyst to early organogenesis (up to 25 days postfertilization). Both two- and three-dimensional culture systems are described.

  • Ethical limitations restrict human embryos beyond 14 days, which makes nonhuman primate embryos an ideal model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The establishment of 2D and 3D culture systems for cynomolgus embryos.
Fig. 2: Comparison of 2D and 3D culture systems for cynomolgus embryos.
Fig. 3: IVC of cynomolgus blastocysts to 25 d.p.f. in pIVC system.
Fig. 4: The specialization of neurons in pIVC embryos.

Similar content being viewed by others

Data availability

Supporting data of this study can be found in our previous publications24 and are available from the corresponding author upon request.

References

  1. Zhang, P. et al. Transcriptome profiling of human pre-implantation development. PLoS ONE 4, e7844 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hertig, A. T., Rock, J. & Adams, E. C. A description of 34 human ova within the first 17 days of development. Am. J. Anat. 98, 435–493 (1956).

    Article  CAS  PubMed  Google Scholar 

  3. Sathananthan, H., Selvaraj, K. & Clark, J. The fine structure of human germ layers in vivo: clues to the early differentiation of embryonic stem cells in vitro. Reprod. Biomed. Online 23, 227–233 (2011).

    Article  PubMed  Google Scholar 

  4. Müller, F. & O’Rahilly, R. The primitive streak, the caudal eminence and related structures in staged human embryos. Cells Tissues Organs 177, 2–20 (2004).

    Article  PubMed  Google Scholar 

  5. Rossant, J. & Tam, P. P. L. Early human embryonic development: blastocyst formation to gastrulation. Dev. Cell 57, 152–165 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Hill, M. A. Developing the digital Kyoto collection in education and research. Anat. Rec. 301, 998–1003 (2018).

    Article  Google Scholar 

  7. Tyser, R. C. V. et al. Single-cell transcriptomic characterization of a gastrulating human embryo. Nature 600, 285–289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, L. et al. Single-cell multi-omics sequencing of human early embryos. Nat. Cell Biol. 20, 847–858 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Guo, F. et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161, 1437–1452 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Yan, L. et al. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Deglincerti, A. et al. Self-organization of the in vitro attached human embryo. Nature 533, 251–254 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, F. et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Xiang, L. et al. A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577, 537–542 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Y. et al. A single-cell characterization of human post-implantation embryos cultured in vitro delineates morphogenesis in primary syncytialization. Front. Cell Dev. Biol. 10, 835445 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lv, B. et al. Single-cell RNA sequencing reveals regulatory mechanism for trophoblast cell-fate divergence in human peri-implantation conceptuses. PLoS Biol. 17, e3000187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. West, R. C. et al. Dynamics of trophoblast differentiation in peri-implantation-stage human embryos. Proc. Natl Acad. Sci. USA 116, 22635–22644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu, Y. et al. A single-cell transcriptome atlas profiles early organogenesis in human embryos. Nat. Cell Biol. 25, 604–615 (2023).

    Article  PubMed  Google Scholar 

  19. Zeng, B. et al. The single-cell and spatial transcriptional landscape of human gastrulation and early brain development. Cell Stem Cell 30, 851–866.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Graeff, N., De Proost, L. & Munsie, M. ‘Ceci n’est pas un embryon?’ The ethics of human embryo model research. Nat. Methods 20, 1863–1867 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nakamura, T., Fujiwara, K., Saitou, M. & Tsukiyama, T. Non-human primates as a model for human development. Stem Cell Rep. 16, 1093–1103 (2021).

    Article  CAS  Google Scholar 

  22. Ma, H. et al. In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science 366, eaax7890 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Niu, Y. et al. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science 366, eaaw5754 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Zhai, J. et al. Neurulation of the cynomolgus monkey embryo achieved from 3D blastocyst culture. Cell 186, 2078–2091.e18 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Gong, Y. et al. Ex utero monkey embryogenesis from blastocyst to early organogenesis. Cell 186, 2092–2110.e23 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Hsu, Y. C. In vitro development of individually cultured whole mouse embryos from blastocyst to early somite stage. Dev. Biol. 68, 453–461 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Libbus, B. L. & Hsu, Y. C. Sequential development and tissue organization in whole mouse embryos cultured from blastocyst to early somite stage. Anat. Rec. 197, 317–329 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, L. T. & Hsu, Y. C. Development of mouse embryos in vitro: preimplantation to the limb bud stage. Science 218, 66–68 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Hsu, Y. C. Differentiation in vitro of mouse embryos beyond the implantation stage. Nature 239, 200–202 (1972).

    Article  CAS  PubMed  Google Scholar 

  30. Bedzhov, I., Leung, C. Y., Bialecka, M. & Zernicka-Goetz, M. In vitro culture of mouse blastocysts beyond the implantation stages. Nat. Protoc. 9, 2732–2739 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Aguilera-Castrejon, A. et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature 593, 119–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Gu, Z. et al. A uterus-inspired niche drives blastocyst development to the early organogenesis. Adv. Sci. 9, e2202282 (2022).

    Article  Google Scholar 

  33. Yan, R. et al. Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development. Nat. Genet. 55, 130–143 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Kikkawa, T., Takahashi, M. & Osumi, N. Electroporation in the rodent embryonic brain using whole embryo culture system. Curr. Protoc. Neurosci. 78, 3 30 1–3 30 16 (2017).

    Article  PubMed  Google Scholar 

  35. Enders, A. C. Transition from lacunar to villous stage of implantation in the macaque, including establishment of the trophoblastic shell. Acta Anat. 152, 151–169 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, L. et al. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell 186, 3776–3792.e16 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Buse, E. & Markert, U. R. The immunology of the macaque placenta: a detailed analysis and critical comparison with the human placenta. Crit. Rev. Clin. Lab. Sci. 56, 118–145 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Ochoa-Bernal, M. A. & Fazleabas, A. T. Physiologic events of embryo implantation and decidualization in human and non-human primates. Int. J. Mol. Sci. 21, 1973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoshimatsu, N. & Yanagimachi, R. Effects of cations and other medium components on the zona-induced acrosome reaction of hamster spermatozoa: (acrosome reaction/spermatozoa/cations/hamster). Dev. Growth Differ. 30, 651–659 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Bavister, B. D., Boatman, D. E., Leibfried, L., Loose, M. & Vernon, M. W. Fertilization and cleavage of rhesus monkey oocytes in vitro. Biol. Reprod. 28, 983–999 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. McKiernan, S. H. & Bavister, B. D. Culture of one-cell hamster embryos with water soluble vitamins: pantothenate stimulates blastocyst production. Hum. Reprod. 15, 157–164 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi, M., Makino, S., Kikkawa, T. & Osumi, N. Preparation of rat serum suitable for mammalian whole embryo culture. J. Vis. Exp. 3, e51969 (2014).

    Google Scholar 

  43. Rakvaag, E., Lund, M. D., Wiking, L., Hermansen, K. & Gregersen, S. Effects of different fasting durations on glucose and lipid metabolism in Sprague Dawley rats. Horm. Metab. Res. 51, 546–553 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Glanville-Jones, H. C., Woo, N. & Arkell, R. M. Successful whole embryo culture with commercially available reagents. Int. J. Dev. Biol. 57, 61–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, S. et al. Effects of rhFSH dose on ovarian follicular response, oocyte recovery and embryo development in rhesus monkeys. Theriogenology 67, 1194–1201 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Piekarski, N. et al. A comparison of oocyte yield between ultrasound-guided and laparoscopic oocyte retrieval in rhesus macaques. Animals 13, 3017 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Baldini, D. et al. Sperm selection for ICSI: do we have a winner? Cells 10, 3566 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Arakaki, P. R., Carvalho, F. M., Castro, P. H. G., Muniz, J. & Valle, R. Collection, evaluation, and coagulum dissolution of semen from Goeldi’s monkey, Callimico goeldii. Folia Primatol. 88, 334–343 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFA0112201, 2021YFA0805701, 2022YFA1103100), and the National Natural Science Foundation of China (NSFC, 82192870, 82322026, 32100654, 82201857, 82301883).

Author information

Authors and Affiliations

Authors

Contributions

H. Wang conceived and supervised the study. Y.X., J.Z. and H. Wu contributed equally to the study. Y.X., J.Z., H. Wu and H. Wang wrote the original draft and were involved in the editing and modification.

Corresponding author

Correspondence to Hongmei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Yasuhiro Takashima and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Zhai, J. et al. Cell 186, 2078–2091 (2023): https://doi.org/10.1016/j.cell.2023.04.019

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhai, J., Wu, H. et al. In vitro culture of cynomolgus monkey embryos from blastocyst to early organogenesis. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01025-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-01025-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing