Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The HADDOCK2.4 web server for integrative modeling of biomolecular complexes

Abstract

Interactions between macromolecules, such as proteins and nucleic acids, are essential for cellular functions. Experimental methods can fail to provide all the information required to fully model biomolecular complexes at atomic resolution, particularly for large and heterogeneous assemblies. Integrative computational approaches have, therefore, gained popularity, complementing traditional experimental methods in structural biology. Here, we introduce HADDOCK2.4, an integrative modeling platform, and its updated web interface (https://wenmr.science.uu.nl/haddock2.4). The platform seamlessly integrates diverse experimental and theoretical data to generate high-quality models of macromolecular complexes. The user-friendly web server offers automated parameter settings, access to distributed computing resources, and pre- and post-processing steps that enhance the user experience. To present the web server’s various interfaces and features, we demonstrate two different applications: (i) we predict the structure of an antibody–antigen complex by using NMR data for the antigen and knowledge of the hypervariable loops for the antibody, and (ii) we perform coarse-grained modeling of PRC1 with a nucleosome particle guided by mutagenesis and functional data. The described protocols require some basic familiarity with molecular modeling and the Linux command shell. This new version of our widely used HADDOCK web server allows structural biologists and non-experts to explore intricate macromolecular assemblies encompassing various molecule types.

Key points

  • HADDOCK is an integrative modeling approach that can combine experimental and predicted information to guide the structure prediction of biomolecular complexes, including protein–protein, protein–ligand, protein–oligosaccharide and protein–nucleic acid complexes, starting from the individual structures of their components.

  • HADDOCK uses ambiguous interaction restraints to drive the docking process and supports various experimental data, including mutagenesis, NMR and cryo-EM data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structure of the HADDOCK2.4 web server.
Fig. 2: HADDOCK server statistics for the period January 2020 to June 2023.
Fig. 3: Overview of the HADDOCK2.4 result page.
Fig. 4: Online visualization of active/passive residues.

Similar content being viewed by others

Data availability

All data used in the procedures are available at a dedicated GitHub repository54: https://github.com/haddocking/haddock24-protocol.

Code availability

pdb-tools is available at https://github.com/haddocking/pdb-tools (Apache 2.0)55, and the HADDOCK2.4 web service application (used in the described protocols) is available at https://wenmr.science.uu.nl/haddock2.4.

References

  1. van Noort, C. W., Honorato, R. V. & Bonvin, A. M. J. J. Information-driven modeling of biomolecular complexes. Curr. Opin. Struct. Biol. 70, 70–77 (2021).

    Article  PubMed  Google Scholar 

  2. Masrati, G. et al. Integrative structural biology in the era of accurate structure prediction. J. Mol. Biol. 433, 167127 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Rout, M. P. & Sali, A. Principles for integrative structural biology studies. Cell 177, 1384–1403 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perrakis, A. & Sixma, T. K. AI revolutions in biology. EMBO Rep. 22, e54046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, S. et al. Recent advances in predicting protein–protein interactions with the aid of artificial intelligence algorithms. Curr. Opin. Struct. Biol. 73, 102344 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2021).

    Article  PubMed Central  Google Scholar 

  8. The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2022).

    Article  Google Scholar 

  9. Vakser, I. A. & Deeds, E. J. Computational approaches to macromolecular interactions in the cell. Curr. Opin. Struct. Biol. 55, 59–65 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. wwPDB Consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47, D520–D528 (2018).

    Article  Google Scholar 

  11. Sali, A. et al. Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Structure 23, 1156–1167 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vallat, B. et al. New system for archiving integrative structures. Acta Crystallogr. D. Struct. Biol. 77, 1486–1496 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saponaro, A., Maione, V., Bonvin, A. & Cantini, F. Understanding docking complexes of macromolecules using HADDOCK: the synergy between experimental data and computations. Bio-Protoc. 10, e3793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roel-Touris, J., Jiménez-García, B. & Bonvin, A. M. J. J. Integrative modeling of membrane-associated protein assemblies. Nat. Commun. 11, 6210 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ambrosetti, F., Jandova, Z. & Bonvin, A. M. J. J. Information-driven antibody–antigen modelling with HADDOCK. In: Methods in Molecular Biology Vol. 2552 (eds Tsumoto, K. & Kuroda, D.) 267–282 (Humana, 2023).

  16. Ambrosetti, F., Jiménez-García, B., Roel-Touris, J. & Bonvin, A. M. J. J. Modeling antibody-antigen complexes by information-driven docking. Structure 28, 119–129.e2 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Trellet, M., van Zundert, G. & Bonvin, A. M. J. J. Structural bioinformatics, methods and protocols. Methods Mol. Biol. 2112, 145–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Koukos, P. I. & Bonvin, A. M. J. J. Integrative modelling of biomolecular complexes. J. Mol. Biol. 432, 2861–2881 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Rosell, M. & Fernández-Recio, J. Docking approaches for modeling multi-molecular assemblies. Curr. Opin. Struct. Biol. 64, 59–65 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roel-Touris, J., Bonvin, A. M. J. J. & Jiménez-García, B. LightDock goes information-driven. Bioinformatics 36, 950–952 (2019).

    Article  PubMed Central  Google Scholar 

  21. Xia, B., Vajda, S. & Kozakov, D. Accounting for pairwise distance restraints in FFT-based protein–protein docking. Bioinformatics 32, 3342–3344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Echartea, M. E. R., Ritchie, D. W. & de Beauchêne, I. C. Using restraints in EROS‐DOCK improves model quality in pairwise and multicomponent protein docking. Proteins 88, 1121–1128 (2020).

    Article  Google Scholar 

  23. Dominguez, C., Boelens, R. & Bonvin, A. M. J. J. HADDOCK: a protein−protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Tsaban, T. et al. Harnessing protein folding neural networks for peptide–protein docking. Nat. Commun. 13, 176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghani, U. et al. Improved docking of protein models by a combination of Alphafold2 and ClusPro. Preprint at bioRxiv https://doi.org/10.1101/2021.09.07.459290 (2022).

  26. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  27. Bryant, P. et al. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nat. Commun. 13, 6028 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burke, D. F. et al. Towards a structurally resolved human protein interaction network. Nat. Struct. Mol. Biol. 30, 216–225 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D. Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  32. de Vries, S. J., van Dijk, M. & Bonvin, A. M. J. J. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5, 883–897 (2010).

    Article  PubMed  Google Scholar 

  33. van Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).

    Article  PubMed  Google Scholar 

  34. Roel-Touris, J., Don, C. G., Honorato, R. V., Rodrigues, J. P. G. L. M. & Bonvin, A. M. J. J. Less is more: coarse-grained integrative modeling of large biomolecular assemblies with HADDOCK. J. Chem. Theory Comput. 15, 6358–6367 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Honorato, R. V., Roel-Touris, J. & Bonvin, A. M. J. J. MARTINI-based protein-DNA coarse-grained HADDOCKing. Front. Mol. Biosci. 6, 102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. van Zundert, G. C. P. & Bonvin, A. M. J. J. Defining the limits and reliability of rigid-body fitting in cryo-EM maps using multi-scale image pyramids. J. Struct. Biol. 195, 252–258 (2016).

    Article  PubMed  Google Scholar 

  38. Neijenhuis, T., Keulen, S. Cvan & Bonvin, A. M. J. J. Interface refinement of low- to medium-resolution cryo-EM complexes using HADDOCK2.4. Structure 30, 476–484 (2021).

    Article  Google Scholar 

  39. Koukos, P. I., Réau, M. & Bonvin, A. M. J. J. Shape-restrained modeling of protein–small-molecule complexes with high ambiguity driven DOCKing. J. Chem. Inf. Model 61, 4807–4818 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Honorato, R. V. et al. Structural biology in the clouds: the WeNMR-EOSC ecosystem. Front. Mol. Biosci. 8, 729513 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Schüttelkopf, A. W. & van Aalten, D. M. F. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D. Biol. l Crystallogr. 60, 1355–1363 (2004).

    Article  Google Scholar 

  43. Rose, A. S. et al. NGL viewer: web-based molecular graphics for large complexes. Bioinformatics 34, 3755–3758 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jorgensen, W. L. & Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Fernández-Recio, J., Totrov, M. & Abagyan, R. Identification of protein–protein interaction sites from docking energy landscapes. J. Mol. Biol. 335, 843–865 (2004).

    Article  PubMed  Google Scholar 

  46. Veerapandian, B. et al. Functional implications of interleukin‐1β based on the three‐dimensional structure. Proteins 12, 10–23 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Blech, M. et al. One target—two different binding modes: structural insights into gevokizumab and canakinumab interactions to interleukin-1β. J. Mol. Biol. 425, 94–111 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Rodrigues, J. P. G. L. M., Teixeira, J. M. C., Trellet, M. & Bonvin, A. M. J. J. pdb-tools: a swiss army knife for molecular structures. F1000Res. 7, 1961 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mattiroli, F., Uckelmann, M., Sahtoe, D. D., van Dijk, W. J. & Sixma, T. K. The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A. Nat. Commun. 5, 3291 (2014).

    Article  PubMed  Google Scholar 

  50. McGinty, R. K., Henrici, R. C. & Tan, S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514, 591–596 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bentley, M. L. et al. Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex. EMBO J. 30, 3285–3297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blech, M. & Hoerer, S. Crystal structure of human IL-1beta in complex with therapeutic antibody binding fragment of gevokizumab. Available at https://www.rcsb.org/structure/4g6m (2012).

  53. Basu, S. & Wallner, B. DockQ: a quality measure for protein-protein docking models. PLoS One 11, e0161879 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. HADDOCK2.4 web server protocol data. GitHub https://github.com/haddocking/haddock24-protocol (2023).

  55. pdb-tools. GitHub https://github.com/haddocking/pdb-tools (2024).

  56. Eastman, P. et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tjandra, N., Omichinski, J. G., Gronenborn, A. M., Clore, G. M. & Bax, A. Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4, 732–738 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Meiler, J., Blomberg, N., Nilges, M. & Griesinger, C. A new approach for applying residual dipolar couplings as restraints in structure elucidation. J. Biomol. NMR 16, 245–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Banci, L. et al. Paramagnetism-based restraints for Xplor-NIH. J. Biomol. NMR 28, 249–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Tjandra, N., Garrett, D. S., Gronenborn, A. M., Bax, A. & Clore, G. M. Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nat. Struct. Biol. 4, 443–449 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the European Union Horizon 2020, projects BioExcel (675728, 823830), from the EuroHPC Joint Undertaking and Sweden, Netherlands, Germany, Spain, Finland and Norway (101093290) and from the Dutch Foundation for Scientific Research (NWO) (TOP-PUNT grant 718.015.001). The FP7 WeNMR (261572), H2020 West-Life (675858), EOSC-hub (777536) and EGI-ACE (101017567) European e-Infrastructure projects are acknowledged for the use of the EGI infrastructure with the dedicated support of CESNET-MCC, INFN-LNL-2, NCG-INGRID-PT, TW-NCHC, CESGA, IFCA-LCG2, UA-BITP, TR-FC1-ULAKBIM, CSTCLOUD-EGI, IN2P3-CPPM, CIRMMP, SURFsara and NIKHEF and the additional support of the national GRID Initiatives of Belgium, France, Italy, Germany, the Netherlands, Poland, Portugal, Spain, UK, Taiwan and the US Open Science Grid.

Author information

Authors and Affiliations

Authors

Contributions

A.M.J.J.B. supervised the project. All authors contributed to the development of HADDOCK2.4 and the various protocols and types of molecules supported. R.V.H., M.E.T, B.J.-G., J.J.S. and P.I.K. contributed to the development of the web interface. A.M.J.J.B. and R.V.H. wrote the manuscript. All authors contributed to the manuscript editing and checking.

Corresponding author

Correspondence to Alexandre M. J. J. Bonvin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks George Chiduza and Cedric Leyrat for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

de Vries, S. J. et al. Nat. Protoc. 5, 883–897 (2010): https://doi.org/10.1038/nprot.2010.32

Honorato, R. V. et al. Front. Mol. Biosci. 6, 102 (2019): https://doi.org/10.3389/fmolb.2019.00102

Ambrosetti, F. et al. Structure 28, 119–129.e2 (2020): https://doi.org/10.1016/j.str.2019.10.011

Extended data

Extended Data Fig. 1

Screenshots showing Steps 7–9 of Procedure 1.

Extended Data Fig. 2

Screenshots showing Steps 10–11 of Procedure 1.

Extended Data Fig. 3

Screenshots showing Steps 12–13 of Procedure 1.

Extended Data Fig. 4

Screenshots showing Steps 14–15 of Procedure 1.

Extended Data Fig. 5

Screenshots showing Step 20 of Procedure 1.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honorato, R.V., Trellet, M.E., Jiménez-García, B. et al. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-01011-0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing