Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analysis of nanomaterial biocoronas in biological and environmental surroundings

Abstract

A biomolecular coating, or biocorona, forms on the surface of engineered nanomaterials (ENMs) immediately as they enter biological or environmental systems, defining their biological and environmental identity and influencing their fate and performance. This biomolecular layer includes proteins (the protein corona) and other biomolecules, such as nucleic acids and metabolites. To ensure a meaningful and reproducible analysis of the ENMs-associated biocorona, it is essential to streamline procedures for its preparation, separation, identification and characterization, so that studies in different labs can be easily compared, and the information collected can be used to predict the composition, dynamics and properties of biocoronas acquired by other ENMs. Most studies focus on the protein corona as proteins are easier to monitor and characterize than other biomolecules and play crucial roles in receptor engagement and signaling; however, metabolites play equally critical roles in signaling. Here we describe how to reproducibly prepare and characterize biomolecule-coated ENMs, noting especially the steps that need optimization for different types of ENMs. The structure and composition of the biocoronas are characterized using general methods (transmission electron microscopy, dynamic light scattering, capillary electrophoresis–mass spectrometry and liquid chromatography–mass spectrometry) as well as advanced techniques, such as transmission electron cryomicroscopy, synchrotron-based X-ray absorption near edge structure and circular dichroism. We also discuss how to use molecular dynamic simulation to study and predict the interaction between ENMs and biomolecules and the resulting biocorona composition. The application of this protocol can provide mechanistic insights into the formation, composition and evolution of the ENM biocorona, ultimately facilitating the biomedical and agricultural application of ENMs and a better understanding of their impact in the environment.

Key points

  • The authors provide a detailed workflow for the isolation and biophysical characterization of biomolecule corona (biocorona) components (proteins and metabolites) through mass spectrometry, advanced structural techniques (for example, transmission electron cryomicroscopy and synchrotron-based X-ray absorption near edge structure) and molecular dynamic simulations to model ENM–biocorona interactions.

  • The designed pipeline normalizes the acquisition of data in different labs, increases their reproducibility, and facilitates their use for the prediction of the biocoronas acquired by less characterized ENMs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the five main parts in the biocorona determination protocol.
Fig. 2
Fig. 3: Flowchart of the two ENM corona characterization assays using QCM-D.
Fig. 4: Flowchart of the BLI assay.
Fig. 5: General characterization of the biocorona on SWCNTs and Au ENMs.
Fig. 6: Structural characterization of the ENM protein corona.
Fig. 7: Identification and quantification of biocorona using CE–MS/MS.
Fig. 8: Identification and quantification of biocorona using nanoLC–MS/MS.
Fig. 9: Analysis of the protein corona from D. magna.
Fig. 10: QCM-D analysis of the interaction between ENMs and biocorona.
Fig. 11: Interaction dynamics between GDY, GDYO or MoS2 NMs and proteins determined with MD simulations.

Similar content being viewed by others

Data availability

Datasets for this protocol are based on the published research articles18,22,24,31,35,43,54,55,56,57,58. Other data related to this paper can be requested from the authors. Source data are provided with this paper.

References

  1. Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 43, 744–764 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, P. et al. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nat. Plants 7, 864–876 (2021).

    Article  PubMed  Google Scholar 

  3. Khan, A. O. et al. Surface chemistry-dependent evolution of the nanomaterial corona on TiO2 nanomaterials following uptake and sub-cellular localization. Nanomaterials 10, 401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Hong Nguyen, B.-J. L. Protein corona: a new approach for nanomedicine design. Int. J. Nanomed. 12, 3137 (2017).

    Article  Google Scholar 

  5. Ren, J. et al. Chemical and biophysical signatures of the protein corona in nanomedicine. J. Am. Chem. Soc. 144, 9184–9205 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lundqvist, M. et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano. 5, 7503–7509 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Strengers, P. F. Evidence-based clinical indications of plasma products and future prospects. Ann. Blood 2, 2–20 (2017).

    Article  Google Scholar 

  9. Juling, S. et al. Protein corona analysis of silver nanoparticles links to their cellular effects. J. Proteome Res. 16, 4020–4034 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Albanese, A. et al. Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano. 8, 5515–5526 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Cai, R. et al. Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism. Proc. Natl Acad. Sci. 119, e2200363119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chetwynd, A. J. & Lynch, I. The rise of the nanomaterial metabolite corona, and emergence of the complete corona. Environ. Sci. Nano. 7, 1041–1060 (2020).

    Article  CAS  Google Scholar 

  13. Chetwynd, A. J., Zhang, W., Thorn, J. A., Lynch, I. & Ramautar, R. The nanomaterial metabolite corona determined using a quantitative metabolomics approach: a pilot study. Small 16, 2000295 (2020).

    Article  CAS  Google Scholar 

  14. Lowry, G. V., Gregory, K. B., Apte, S. C. & Lead, J. R. Transformations of nanomaterials in the environment. Environ. Sci. Technol. 46, 6893–6899 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Wheeler, K. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Qiu, H. et al. Functional polymer materials for modern marine biofouling control. Prog. Polym. Sci. 127, 101516 (2022).

    Article  CAS  Google Scholar 

  17. Li, Y. et al. Impact of anti-biofouling surface coatings on the properties of nanomaterials and their biomedical applications. J. Mater. Chem. B 6, 9–24 (2018).

    Article  PubMed  Google Scholar 

  18. Ellis, L.-J. A. & Lynch, I. Mechanistic insights into toxicity pathways induced by nanomaterials in Daphnia magna from analysis of the composition of the acquired protein corona. Environ. Sci. Nano. 7, 3343–3359 (2020).

    Article  CAS  Google Scholar 

  19. Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Chetwynd, A. J., Wheeler, K. E. & Lynch, I. Best practice in reporting corona studies: Minimum information about Nanomaterial Biocorona Experiments (MINBE). Nano. Today 28, 100758 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, W., Chetwynd, A. J., Thorn, J. A., Lynch, I. & Ramautar, R. Understanding the significance of sample preparation in studies of the nanoparticle metabolite corona. ACS Meas. Sci. Au (2022).

  22. Faserl, K., Chetwynd, A. J., Lynch, I., Thorn, J. A. & Lindner, H. H. Corona isolation method matters: capillary electrophoresis mass spectrometry based comparison of protein corona compositions following on-particle versus in-solution or in-gel digestion. Nanomaterials 9, 898 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baimanov, D. et al. Immunological responses induced by blood protein coronas on two-dimensional MoS2 nanosheets. ACS Nano. 14, 5529–5542 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Guo, M. et al. The underlying function and structural organization of the intracellular protein corona on graphdiyne oxide nanosheet for local immunomodulation. Nano. Lett. 21, 6005–6013 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Weber, C., Simon, J., Mailänder, V., Morsbach, S. & Landfester, K. Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomater. 76, 217–224 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Walczyk, D., Bombelli, F. B., Monopoli, M. P., Lynch, I. & Dawson, K. A. What the Cell “Sees” in Bionanoscience. J. Am. Chem. Soc. 132, 5761–5768 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Ashkarran, A. A. et al. Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities. Nat. Commun. 13, 6610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grassi, G. et al. Proteomic profile of the hard corona of charged polystyrene nanoparticles exposed to sea urchin Paracentrotus lividus coelomic fluid highlights potential drivers of toxicity. Environ. Sci. Nano. 6, 2937–2947 (2019).

    Article  CAS  Google Scholar 

  29. Hayashi, Y. et al. Species differences take shape at nanoparticles: protein corona made of the native repertoire assists cellular interaction. Environ. Sci. Technol. 47, 14367–14375 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Gao, J., Lin, L., Wei, A. & Sepúlveda, M. S. Protein corona analysis of silver nanoparticles exposed to fish plasma. Environ. Sci. Technol. Lett. 4, 174–179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, X. et al. Probing adsorption behaviors of BSA onto chiral surfaces of nanoparticles. Small 14, 1703982 (2018).

    Article  Google Scholar 

  32. Monopoli, M. P. et al. Physical−chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525–2534 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Castagnola, V. et al. Sources of biases in the in vitro testing of nanomaterials: the role of biomolecular corona. Nanoscale Horiz. https://doi.org/10.1039/D3NH00510K (2024).

  34. Hoang, K. N. L., Wheeler, K. E. & Murphy, C. J. Isolation methods influence the protein corona composition on gold-coated iron oxide nanoparticles. Anal. Chem. 94, 4737–4746 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Ren, J. et al. Precision nanomedicine development based on specific opsonization of human cancer patient-personalized protein coronas. Nano. Lett. 19, 4692–4701 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Kilham, S. S., Kreeger, D. A., Lynn, S. G., Goulden, C. E. & Herrera, L. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377, 147–159 (1998).

    Article  CAS  Google Scholar 

  37. Kokkinopoulou, M., Simon, J., Landfester, K., Mailänder, V. & Lieberwirth, I. Visualization of the protein corona: towards a biomolecular understanding of nanoparticle-cell-interactions. Nanoscale 9, 8858–8870 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Martins, C. H. Z. et al. Functionalization of carbon nanotubes with bovine plasma biowaste by forming a protein corona enhances copper removal from water and ecotoxicity mitigation. Environ. Sci. Nano. 9, 2887–2905 (2022).

    Article  CAS  Google Scholar 

  39. Monikh, F. A. et al. Development of methods for extraction and analytical characterization of carbon-based nanomaterials (nanoplastics and carbon nanotubes) in biological and environmental matrices by asymmetrical flow field-flow fractionation. Environ. Pollut. 255, 113304 (2019).

    Article  Google Scholar 

  40. Drouin, N. et al. Capillary electrophoresis-mass spectrometry at trial by metabo-ring: effective electrophoretic mobility for reproducible and robust compound annotation. Anal. Chem. 92, 14103–14112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miles, A. J. & Wallace, B. Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem. Soc. Rev. 35, 39–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Bao, L. et al. Carbon nanotubes promote the development of intestinal organoids through regulating extracellular matrix viscoelasticity and intracellular energy metabolism. ACS Nano. 15, 15858–15873 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, L. et al. Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J. Am. Chem. Soc. 135, 17359–17368 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Du, T. et al. Aging of nanoplastics significantly affects protein corona composition thus enhancing macrophage uptake. Environ. Sci. Technol. 57, 3206–3217 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Shaw, C. A. et al. Protein corona formation in bronchoalveolar fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages. Nanotoxicology 10, 981–991 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Lima, T., Bernfur, K., Vilanova, M. & Cedervall, T. Understanding the lipid and protein corona formation on different sized polymeric nanoparticles. Sci. Rep. 10, 1129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, S. Y., Son, J. G., Moon, J. H., Joh, S. & Lee, T. G. Comparative study on formation of protein coronas under three different serum origins. Biointerphases 15, 061002 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Marques-Santos, L. F. et al. Cationic polystyrene nanoparticle and the sea urchin immune system: biocorona formation, cell toxicity, and multixenobiotic resistance phenotype. Nanotoxicology 12, 847–867 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Eigenheer, R. et al. Silver nanoparticle protein corona composition compared across engineered particle properties and environmentally relevant reaction conditions. Environ. Sci. Nano. 1, 238–247 (2014).

    Article  CAS  Google Scholar 

  50. Borgatta, J. R. et al. Biomolecular corona formation on CuO nanoparticles in plant xylem fluid. Environ. Sci. Nano. 8, 1067–1080 (2021).

    Article  CAS  Google Scholar 

  51. Zhang, P. et al. Nanoparticles-EPS corona increases the accumulation of heavy metals and biotoxicity of nanoparticles. J. Hazard. Mater. 409, 124526 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Fadare, O. O. et al. Eco-corona vs protein corona: effects of humic substances on corona formation and nanoplastic particle toxicity in Daphnia magna. Environ. Sci. Technol. 54, 8001–8009 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Gao, J. et al. Inherited and acquired corona of coronavirus in the host: inspiration from the biomolecular corona of nanoparticles. Nano. Today 39, 101161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ge, C. et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl Acad. Sci. USA 108, 16968–16973 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, L. et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano. Lett. 11, 772–780 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, X. et al. Chiral surface of nanoparticles determines the orientation of adsorbed transferrin and its interaction with receptors. ACS Nano. 11, 4606–4616 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Cao, M. et al. Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol. 16, 708–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Cai, R. et al. Corona of thorns: the surface chemistry-mediated protein corona perturbs the recognition and immune response of macrophages. ACS Appl. Mater. Interfaces 12, 1997–2008 (2019).

    Article  Google Scholar 

  59. Kelpsiene, E. et al. Protein binding on acutely toxic and non-toxic polystyrene nanoparticles during filtration by Daphnia magna. Environ. Sci. Nano 9, 2500–2509 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was supported by the Engineering and Physical Sciences Research Council Impact Acceleration Accounts Developing Leaders (grant no. 1001634) and EU H2020 projects NanoSolveIT (grant agreement 814572), RiskGone (grant agreement 814425), NanoCommons (grant agreement 731032) and CompSafeNano (grant agreement 101008099), the National Key Research and Development Program of China (2023YFC3711500, 2021YFA1200900, 2022YFA1603700 and 2021YFE0112600), the Major Instrument Project of National Natural Science Foundation of China (22027810 and 32071402), the National Natural Science Foundation of China (22027810 and U2032107), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000), the New Cornerstone Science Foundation (NCI202318), the National Postdoctoral Program for Innovative Talents (BX2021088), Project funded by China Postdoctoral Science Foundation (2021M700977) and the Special Research Assistant Funding Project of the Chinese Academy of Sciences (E37751R1 to M.C.). Royal Society International Exchange Programs (1853690 and 2122860) and the CAS PIFI award to I.L. (2020VBA0012) are also acknowledged. We acknowledge the University of Eastern Finland water program funded by the Saastamoinen foundation, the Wihuri foundation and the Olvi foundation. The authors acknowledge Milena L. Brito and Luelc S. Costa (LNNano/CNPEM) for discussions to elaborate the cryo-TEM protocol for characterization of ENM biocoronas.

Author information

Authors and Affiliations

Authors

Contributions

P.Z., M.C., A.J.C., F.A.M., K.F., W.Z., R.R., L.-J.A.E., H.H.D., K.R., R.C., K.E.W., D.S.T.M., Z.G., C.C. and I.L. cowrote the manuscript. Z.G., P.Z., C.C., M.C. and I.L. oversaw the manuscript preparation and revised the manuscript.

Corresponding authors

Correspondence to Zhiling Guo, Chunying Chen or Iseult Lynch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Monica Carril and Morteza Mahmoudi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol.

Cai, R. et al. Proc. Natl Acad. Sci. USA 119, e2200363119 (2022): https://doi.org/10.1073/pnas.2200363119

Ellis, L.-J. A. & Lynch, I. Environ. Sci. Nano 7, 3343–3359 (2020): https://doi.org/10.1039/D0EN00625D

Chetwynd, A. J. et al. Small 16, 2000295 (2020): https://doi.org/10.1002/smll.202000295

Guo, M. et al. Nano Lett. 21, 6005–6013 (2021): https://doi.org/10.1021/acs.nanolett.1c01048

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–8 and Figs. 1 and 2.

Source data

Source Data Figs. 5, 8, 10

Fig. 5: hydrodynamic radius and protein density values; Fig. 8: raw data of protein counts associated with the specific NMs; Fig. 10: frequency variation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Cao, M., Chetwynd, A.J. et al. Analysis of nanomaterial biocoronas in biological and environmental surroundings. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-01009-8

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing