Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of AIEgen-based near-infrared afterglow luminescence nanoprobes for tumor imaging and image-guided tumor resection

Abstract

Fluorescence imaging represents a vital tool in modern biology, oncology and biomedical applications. Afterglow luminescence (AGL), which circumvents the light scattering and tissue autofluorescence interference associated with real-time excitation source, shows remarkably increased imaging sensitivity and depth. Here we present a protocol for the design and synthesis of AGL nanoprobes with an aggregation-induced emission (AIE) effect to simultaneously red shift and amplify the afterglow signal for tumor imaging and image-guided tumor resection. The nanoprobe (AGL AIE dot) is composed of an enol ether format of Schaap’s agent and a near-infrared AIE fluorogen (AIEgen) (tetraphenylethylene-phenyl-dicyanomethylene-4H-chromene, TPE-Ph-DCM) to suppress the nonradiative dissipation pathway. Pre-irradiating AGL AIE dots with white light could generate singlet oxygen to convert Schaap’s agent to its 1,2-dioxetane format, thus initializing the AGL process. With the aid of AIEgen, the AGL shows simultaneously red shifted emission maximum (from ~540 nm to ~625 nm) and enhanced intensity (by 3.2-fold), facilitating better signal-to-background ratio, imaging sensitivity and depth. Intriguingly, the activated AGL can last for over 10 days. Compared with conventional approaches, our method provides a new solution to concurrently red shift and amplify afterglow signals for better in vivo imaging outcomes. The preparation of AGL AIE dots takes ~2 days, the in vitro characterization takes ~10 days (less than 1 day if not involving afterglow kinetic profile study) and the tumor imaging and image-guided tumor resection takes ~7 days. These procedures can be easily reproduced and amended after standard laboratory training in chemical synthesis and animal handling.

Key points

  • The protocol describes the synthesis and characterization of near-infrared afterglow nanoprobes with an aggregation-induced emission effect to simultaneously red shift and amplify the afterglow signal.

  • Due to the long-lasting and improved signal intensity, these nanoprobes represent a powerful tool for real-time in vivo imaging and have been successfully employed for intraoperative image-guided tumor resection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of AGL AIE dots for deep tissue afterglow imaging.
Fig. 2: A schematic of TPE-Ph-DCM and AGL AIE dot synthesis.
Fig. 3: Overview of applying AGL AIE dots for tumor imaging and image-guided tumor resection.
Fig. 4: AIE effect and 1O2 generation characterization of TPE-Ph-DCM.
Fig. 5: Characterization of AGL AIE dots.
Fig. 6: In vitro validation of afterglow imaging ability of AGL AIE dots.
Fig. 7: Afterglow imaging of tumor and afterglow image-guided tumor resection with AGL AIE dots.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research paper51. The raw datasets are provided in the Source Data file. The online version also contains a Supplementary Information PDF file. All other data are available for research purposes from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Zhu, S., Tian, R., Antaris, A. L., Chen, X. & Dai, H. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv. Mater. 31, 1900321 (2019).

    Article  Google Scholar 

  2. Smith, A. M., Mancini, M. C. & Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle mediated optogenetics. Science 359, 679–684 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P. L. & Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620–2640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao, M., Yu, F., Lv, C., Choo, J. & Chen, L. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem. Soc. Rev. 46, 2237–2271 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y., Zhang, G., Zeng, Z. & Pu, K. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem. Soc. Rev. 51, 566–593 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article  CAS  Google Scholar 

  8. Li, J. & Pu, K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem. Soc. Rev. 48, 38–71 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Kenry, Duan, Y. & Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater. 30, 1802394 (2018).

    Article  Google Scholar 

  10. Yang, Q. et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 140, 1715–1724 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Wan, H. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 9, 1171 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. H. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, Z. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 4, 259–271 (2020).

    Article  PubMed  Google Scholar 

  14. Jiang, Y. & Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 121, 13086–13131 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Sun, S. K., Wang, H. F. & Yan, X. P. Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics. Acc. Chem. Res. 51, 1131–1143 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. He, S., Xie, C., Jiang, Y. & Pu, K. An organic afterglow protheranostic nanoassembly. Adv. Mater. 31, 1902672 (2019).

    Article  Google Scholar 

  17. Hananya, N. & Shabat, D. A glowing trajectory between bio- and chemiluminescence: from luciferin-based probes to triggerable dioxetanes. Angew. Chem. Int. Ed. Engl. 56, 16454–16463 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, M. et al. Chemiluminescence for bioimaging and therapeutics: recent advances and challenges. Chem. Soc. Rev. 49, 6800–6815 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, Y. & Zhang, F. Activatable chemiluminescent molecular probes for bioimaging and biosensing. Anal. Sens. 1, 75–89 (2021).

    CAS  Google Scholar 

  22. Cao, J., Campbell, J., Liu, L., Mason, R. P. & Lippert, A. R. In vivo chemiluminescent imaging agents for nitroreductase and tissue oxygenation. Anal. Chem. 88, 4995–5002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bruemmer, K. J., Green, O., Su, T. A., Shabat, D. & Chang, C. J. Chemiluminescent probes for activity-based sensing of formaldehyde released from folate degradation in living mice. Angew. Chem. Int. Ed. Engl. 57, 7508–7512 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lippert, A. R. Unlocking the potential of chemiluminescence imaging. ACS Cent. Sci. 3, 269–271 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hananya, N. & Shabat, D. Recent advances and challenges in luminescent imaging: bright outlook for chemiluminescence of dioxetanes in water. ACS Cent. Sci. 5, 949–959 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kagalwala, H. N. & Lippert, A. R. Energy transfer chemiluminescent spiroadamantane 1,2-dioxetane probes for bioanalyte detection and imaging. Angew. Chem. Int. Ed. Engl. 61, e202210057 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Han, J., Jose, J., Mei, E. & Burgess, K. Chemiluminescent energy-transfer cassettes based on fluorescein and nile red. Angew. Chem. Int. Ed. Engl. 46, 1684–1687 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Hananya, N., Green, O., Blau, R., Satchi-Fainaro, R. & Shabat, D. A highly efficient chemiluminescence probe for the detection of singlet oxygen in living cells. Angew. Chem. Int. Ed. Engl. 56, 11793–11796 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Green, O. et al. Near-infrared dioxetane luminophores with direct chemiluminescence emission mode. J. Am. Chem. Soc. 139, 13243–13248 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Hananya, N., Eldar Boock, A., Bauer, C. R., Satchi-Fainaro, R. & Shabat, D. Remarkable enhancement of chemiluminescent signal by dioxetane–fluorophore conjugates: turn-on chemiluminescence probes with color modulation for sensing and imaging. J. Am. Chem. Soc. 138, 13438–13446 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Lu, L. et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat. Commun. 11, 4192 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen, Z. et al. Design and synthesis of a small molecular NIR-II chemiluminescence probe for in vivo-activated H2S imaging. Proc. Natl Acad. Sci. USA 120, e2205186120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, J., Jiang, Y., Li, J., Huang, J. & Pu, K. Molecular chemiluminescent probes with a very long near-infrared emission wavelength for in vivo imaging. Angew. Chem. Int. Ed. Engl. 60, 3999–4003 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Luo, J. et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 18, 1740–1741 (2001).

    Article  Google Scholar 

  35. Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 7, 4332–4353 (2009).

    Article  Google Scholar 

  36. Mei, J., Leung, N. L. C., Kwok, R. T. K., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Mei, J. et al. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater. 26, 5429–5479 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Peng, Q. & Shuan, Z. Molecular mechanism of aggregation-induced emission. Aggregate 2, e91 (2021).

    Article  CAS  Google Scholar 

  39. Feng, G. & Liu, B. Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc. Chem. Res. 51, 1404–1414 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Ding, D., Li, K., Liu, B. & Tang, B. Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 46, 2441–2453 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Qian, J. & Tang, B. Z. AIE luminogens for bioimaging and theranostics: from organelles to animals. Chem 3, 56–91 (2017).

    Article  CAS  Google Scholar 

  42. Lim, X. The nanolight revolution is coming. Nature 531, 26–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Li, Y. et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nat. Commun. 11, 1255 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Feng, G. et al. Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking. Biomaterials 35, 8669–8677 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Qi, J. et al. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region. Adv. Mater. 30, 1706856 (2018).

    Article  Google Scholar 

  46. Li, D., Qin, W., Xu, B., Qian, J. & Tang, B. Z. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging. Adv. Mater. 29, 1703643 (2017).

    Article  Google Scholar 

  47. Ding, D. et al. Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. Adv. Mater. 25, 6083–6088 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, Y. et al. Aggregation-induced emission luminogen with deep-red emission for through-skull three-photon fluorescence imaging of mouse. ACS Nano 11, 10452–10461 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Kang, M. et al. Aggregation-enhanced theranostics: AIE sparkles in the biomedical field. Aggregate 1, 80–106 (2020).

    Article  Google Scholar 

  50. Sheng, Z. et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors. Adv. Mater. 30, 1800766 (2018).

    Article  Google Scholar 

  51. Ni, X. et al. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 19, 318–330 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Denk, W., Strickler, J. & Webb, W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, J. et al. Rational design of pyrrole derivatives with aggregation-induced phosphorescence characteristics for time-resolved and two-photon luminescence imaging. Nat. Commun. 12, 4883 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiao, F. et al. Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging. Nat. Commun. 13, 186 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, Y. et al. NIR-II chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging. Angew. Chem. Int. Ed. Engl. 59, 18380–18385 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, C. et al. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases. J. Am. Chem. Soc. 144, 3429–3441 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Xu, C. et al. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics. Nat. Biomed. Eng. 7, 298–312 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Jiang, Y. et al. A generic approach toward afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 10, 2064 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kagalwala, H. N., Gerberich, J., Smith, C. J., Mason, R. P. & Lippert, A. R. Chemiluminescent 1,2-dioxetane iridium complexes for near-infrared oxygen sensing. Angew. Chem. Int. Ed. Engl. 61, e202115704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Green, O. et al. Opening a gateway for chemiluminescence cell imaging: distinctive methodology for design of bright chemiluminescent dioxetane probes. ACS Cent. Sci. 3, 349–358 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, K. & Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 43, 6570–6597 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Jana, D., Boxi, S., Parui, P. P. & Ghorai, B. K. Planar-rotor architecture based pyrene-vinyl-tetraphenylethylene conjugated systems: photophysical properties and aggregation behavior. Org. Biomol. Chem. 13, 10663–10674 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Rathahao-Paris, E., Alves, S., Junot, C. & Tabet, J. High-resolution mass spectrometry for structural identification of metabolites in metabolomics. Metabolomics 16, 1–15 (2016).

    Google Scholar 

  66. Elyashberg, M. Identification and structure elucidation by NMR spectroscopy. Trends Anal. Chem. 69, 88–97 (2015).

    Article  CAS  Google Scholar 

  67. Dickinson, B. C., Lin, V. S. & Chang, C. J. Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells. Nat. Protoc. 8, 1249–1259 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (grant nos. 51961160730, 52225310, 22205067, 32201178, 32371449), the Fundamental Research Funds for the Central Universities and the Tianjin Science Fund for Distinguished Young Scholars (19JCJQJC61200), Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (2023B1212060003), Xi’an Jiaotong University Young Talent Support Grant.

Author information

Authors and Affiliations

Authors

Contributions

C.C., G.F. and D.D. conceived the idea of the project, C.C., Z.G. and X.Z. contributed to the experimal work invivoled in this protocol. C.C, Z.G., X.Z., G.F. and D.D. wrote the protocol, D.D. supervised the study and the prepration of the masnucript. All authors contributed to the editing and reviewing of the draft and approved the final manscript.

Corresponding authors

Correspondence to Guangxue Feng or Dan Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Qian Ju, Kanyi Pu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Ni, X. et al. Nano Lett. 19, 318–330 (2019): https://doi.org/10.1021/acs.nanolett.8b03936

Chen, C. et al. J. Am. Chem. Soc. 144, 3429–3441 (2022): https://doi.org/10.1021/jacs.1c11455

Gao, Z. et al. Angew. Chem. Int. Ed. Engl. 61, e202209793 (2022): https://doi.org/10.1002/anie.202209793

Li, J. et al. Adv. Funct. Mater. 33, 2212380 (2023): https://doi.org/10.1002/adfm.202212380

Extended data

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Methods.

Reporting Summary

Source data

Source Data Fig. 4–7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhang, X., Gao, Z. et al. Preparation of AIEgen-based near-infrared afterglow luminescence nanoprobes for tumor imaging and image-guided tumor resection. Nat Protoc 19, 2408–2434 (2024). https://doi.org/10.1038/s41596-024-00990-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-024-00990-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing