Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy

Abstract

Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antitumor mechanisms of OVs.
Fig. 2: OV-aided cancer–immunity cycle.
Fig. 3: Steps within the pipeline for OV technology development.

Similar content being viewed by others

References

  1. Gujar, S., Bell, J. & Diallo, J.-S. SnapShot: cancer immunotherapy with oncolytic viruses. Cell 176, 1240–1240.e1 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Russell, S. J., Bell, J. C., Engeland, C. E. & McFadden, G. Advances in oncolytic virotherapy. Commun. Med. 2, 33 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Melcher, A., Harrington, K. & Vile, R. Oncolytic virotherapy as immunotherapy. Science 374, 1325–1326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lawler, S. E., Speranza, M.-C., Cho, C.-F. & Chiocca, E. A. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 3, 841–849 (2017).

    Article  PubMed  Google Scholar 

  5. Shalhout, S. Z., Miller, D. M., Emerick, K. S. & Kaufman, H. L. Therapy with oncolytic viruses: progress and challenges. Nat. Rev. Clin. Oncol. 20, 160–177 (2023).

    Article  PubMed  Google Scholar 

  6. Azad, T. et al. Synthetic virology approaches to improve the safety and efficacy of oncolytic virus therapies. Nat. Commun. 14, 3035 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bluming, A. Z. & Ziegler, J. L. Regression of Burkitt’s lymphoma in association with measles infection. Lancet 2, 105–106 (1971).

    Article  CAS  PubMed  Google Scholar 

  8. Pasquinucci, G. Possible effect of measles on leukaemia. Lancet 1, 136 (1971).

    Article  CAS  PubMed  Google Scholar 

  9. Zygiert, Z. Hodgkin’s disease: remissions after measles. Lancet 1, 593 (1971).

    Article  CAS  PubMed  Google Scholar 

  10. Gujar, S. A., Marcato, P., Pan, D. & Lee, P. W. K. Reovirus virotherapy overrides tumor antigen presentation evasion and promotes protective antitumor immunity. Mol. Cancer Ther. 9, 2924–2933 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Gujar, S. et al. Multifaceted therapeutic targeting of ovarian peritoneal carcinomatosis through virus-induced immunomodulation. Mol. Ther. 21, 338–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Tseha, S. T. Role of adenoviruses in cancer therapy. Front. Oncol. 12, 772659 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pol, J., Kroemer, G. & Galluzzi, L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology 5, e1115641 (2016).

    Article  PubMed  Google Scholar 

  14. Frampton, J. E. Teserpaturev/G47Δ: first approval. BioDrugs 36, 667–672 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Chaurasiya, S., Fong, Y. & Warner, S. G. Oncolytic virotherapy for cancer: clinical experience. Biomedicines 9, 419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harrington, K., Freeman, D. J., Kelly, B., Harper, J. & Soria, J.-C. Optimizing oncolytic virotherapy in cancer treatment. Nat. Rev. Drug Discov. 18, 689–706 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Twumasi-Boateng, K., Pettigrew, J. L., Kwok, Y. Y. E., Bell, J. C. & Nelson, B. H. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat. Rev. Cancer 18, 419–432 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Boorjian, S. A. et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial. Lancet Oncol. 22, 107–117 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, S. & Rabkin, S. D. The discovery and development of oncolytic viruses: are they the future of cancer immunotherapy? Expert Opin. Drug Discov. 16, 391–410 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Pol, J. et al. Trial watch: oncolytic viruses for cancer therapy. Oncoimmunology 3, e28694 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pol, J. et al. Trial watch–oncolytic viruses and cancer therapy. Oncoimmunology 5, e1117740 (2016).

    Article  PubMed  Google Scholar 

  22. Pol, J. G. et al. Trial watch: oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 7, e1503032 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marchini, A., Bonifati, S., Scott, E. M., Angelova, A. L. & Rommelaere, J. Oncolytic parvoviruses: from basic virology to clinical applications. Virol. J. 12, 6 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haller, S. L., Peng, C., McFadden, G. & Rothenburg, S. Poxviruses and the evolution of host range and virulence. Infect. Genet. Evol. 21, 15–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Hendrickson, R. C., Wang, C., Hatcher, E. L. & Lefkowitz, E. J. Orthopoxvirus genome evolution: the role of gene loss. Viruses 2, 1933–1967 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moussatche, N. & Condit, R. C. Fine structure of the vaccinia virion determined by controlled degradation and immunolocalization. Virology 475, 204–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Gujar, S., Pol, J. G., Kim, Y., Lee, P. W. & Kroemer, G. Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol. 39, 209–221 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Melcher, A., Parato, K., Rooney, C. M. & Bell, J. C. Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol. Ther. 19, 1008–1016 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Annels, N. E. et al. Oncolytic immunotherapy for bladder cancer using coxsackie A21 virus. Mol. Ther. Oncolytics 9, 1–12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thompson, E. M. et al. Poliovirus receptor (CD155) expression in pediatric brain tumors mediates oncolysis of medulloblastoma and pleomorphic xanthoastrocytoma. J. Neuropathol. Exp. Neurol. 77, 696–702 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642–662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tseng, J.-C., Granot, T., DiGiacomo, V., Levin, B. & Meruelo, D. Enhanced specific delivery and targeting of oncolytic Sindbis viral vectors by modulating vascular leakiness in tumor. Cancer Gene Ther. 17, 244–255 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Hess, M. et al. Bacterial glucuronidase as general marker for oncolytic virotherapy or other biological therapies. J. Transl. Med. 9, 172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pol, J. G. et al. Maraba virus as a potent oncolytic vaccine vector. Mol. Ther. 22, 420–429 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Schreiber, L.-M., Urbiola, C., Erlmann, P. & Wollmann, G. In vivo bioimaging for monitoring intratumoral virus activity. Methods Mol. Biol. 2058, 237–248 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Kuruppu, D. et al. Oncolytic HSV1 targets different growth phases of breast cancer leptomeningeal metastases. Cancer Gene Ther. 30, 833–844 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Miller, A. & Russell, S. J. The use of the NIS reporter gene for optimizing oncolytic virotherapy. Expert Opin. Biol. Ther. 16, 15–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Robertson, M. G. et al. Cancer imaging and therapy utilizing a novel NIS-expressing adenovirus: the role of adenovirus death protein deletion. Mol. Ther. Oncolytics 20, 659–668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, L. et al. Intratumoral expression of interleukin 23 variants using oncolytic vaccinia virus elicit potent antitumor effects on multiple tumor models via tumor microenvironment modulation. Theranostics 11, 6668–6681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, D., Shen, Y. & Liang, T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct. Target. Ther. 8, 1–29 (2023).

    Google Scholar 

  41. Neault, S. et al. Robust envelope exchange platform for oncolytic measles virus. J. Virol. Methods 302, 114487 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Stepanenko, A. A. et al. Superior infectivity of the fiber chimeric oncolytic adenoviruses Ad5/35 and Ad5/3 over Ad5-delta-24-RGD in primary glioma cultures. Mol. Ther. Oncolytics 24, 230–248 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Baker, A. T. et al. The fiber knob protein of human adenovirus type 49 mediates highly efficient and promiscuous infection of cancer cell lines using a novel cell entry mechanism. J. Virol. 95, e01849-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kleinlützum, D. et al. Enhancing the oncolytic activity of CD133-targeted measles virus: receptor extension or chimerism with vesicular stomatitis virus are most effective. Front. Oncol. 7, 127 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Menotti, L. & Avitabile, E. Herpes simplex virus oncolytic immunovirotherapy: the blossoming branch of multimodal therapy. Int. J. Mol. Sci. 21, 8310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, P.-H., Opadele, A. E., Onodera, Y. & Nam, J.-M. Targeting integrins in cancer nanomedicine: applications in cancer diagnosis and therapy. Cancers 11, 1783 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bates, E. A. et al. Development of a low-seroprevalence, αvβ6 integrin-selective virotherapy based on human adenovirus type 10. Mol. Ther. Oncolytics 25, 43–56 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Parato, K. A. et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol. Ther. 20, 749–758 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Paraskevakou, G. et al. Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR- or EGFRvIII expressing gliomas. Mol. Ther. 15, 677–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Allen, C. et al. Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity. Cancer Res. 66, 11840–11850 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Gao, Y. & Bergman, I. Vesicular stomatitis virus (VSV) G glycoprotein can be modified to create a Her2/neu-targeted VSV that eliminates large implanted mammary tumors. J. Virol. 97, e0037223 (2023).

    Article  PubMed  Google Scholar 

  52. Lauer, U. M. & Beil, J. Oncolytic viruses: challenges and considerations in an evolving clinical landscape. Future Oncol. https://doi.org/10.2217/fon-2022-0440 (2022).

  53. Macedo, N., Miller, D. M., Haq, R. & Kaufman, H. L. Clinical landscape of oncolytic virus research in 2020. J. Immunother. Cancer 8, e001486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Harrington, K. J. et al. Talimogene laherparepvec and pembrolizumab in recurrent or metastatic squamous cell carcinoma of the head and neck (MASTERKEY-232): a multicenter, phase 1b study. Clin. Cancer Res. 26, 5153–5161 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Stojdl, D. F. et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat. Med. 6, 821–825 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Stojdl, D. F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4, 263–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Ho, T. Y., Mealiea, D., Okamoto, L., Stojdl, D. F. & McCart, J. A. Deletion of immunomodulatory genes as a novel approach to oncolytic vaccinia virus development. Mol. Ther. Oncolytics 22, 85–97 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cristi, F., Gutiérrez, T., Hitt, M. M. & Shmulevitz, M. Genetic modifications that expand oncolytic virus potency. Front. Mol. Biosci. 9, 831091 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Muster, T. et al. Interferon resistance promotes oncolysis by influenza virus NS1-deletion mutants. Int. J. Cancer 110, 15–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Hong, B., Sahu, U., Mullarkey, M. P. & Kaur, B. Replication and spread of oncolytic herpes simplex virus in solid tumors. Viruses 14, 118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ramachandran, M. et al. Safe and effective treatment of experimental neuroblastoma and glioblastoma using systemically delivered triple microRNA-detargeted oncolytic semliki forest virus. Clin. Cancer Res. 23, 1519–1530 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Peter, M. & Kühnel, F. Oncolytic adenovirus in cancer immunotherapy. Cancers 12, 3354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gonzalez-Pastor, R., Goedegebuure, P. S. & Curiel, D. T. Understanding and addressing barriers to successful adenovirus-based virotherapy for ovarian cancer. Cancer Gene Ther. 28, 375–389 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Raimondi, G. et al. Patient-derived pancreatic tumour organoids identify therapeutic responses to oncolytic adenoviruses. EBioMedicine 56, 102786 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fiorini, E. & Corbo, V. Oncolytic virotherapy meets the human organoid technology for pancreatic cancers. EBioMedicine 57, 102828 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Diallo, J.-S., Roy, D., Abdelbary, H., De Silva, N. & Bell, J. C. Ex vivo infection of live tissue with oncolytic viruses. J. Vis. Exp. 2011, 2854 (2011).

    Google Scholar 

  67. Workenhe, S. T. & Mossman, K. L. Oncolytic virotherapy and immunogenic cancer cell death: sharpening the sword for improved cancer treatment strategies. Mol. Ther. 22, 251–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gujar, S., Pol, J. G. & Kroemer, G. Heating it up: oncolytic viruses make tumors ‘hot’ and suitable for checkpoint blockade immunotherapies. Oncoimmunology 7, e1442169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Galluzzi, L. et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 8, e000337 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brown, M. Engaging pattern recognition receptors in solid tumors to generate systemic antitumor immunity. Cancer Treat. Res. 183, 91–129 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Hoden, B., DeRubeis, D., Martinez-Moczygemba, M., Ramos, K. S. & Zhang, D. Understanding the role of Toll-like receptors in lung cancer immunity and immunotherapy. Front. Immunol. 13, 1033483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, D. & Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 6, 291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Humeau, J., Le Naour, J., Galluzzi, L., Kroemer, G. & Pol, J. G. Trial watch: intratumoral immunotherapy. Oncoimmunology 10, 1984677 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kepp, O. et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3, e955691 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kim, Y. et al. Dendritic cells in oncolytic virus-based anti-cancer therapy. Viruses 7, 6506–6525 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zafar, S. et al. CD40L coding oncolytic adenovirus allows long-term survival of humanized mice receiving dendritic cell therapy. Oncoimmunology 7, e1490856 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xu, Q. et al. Evaluation of Newcastle disease virus mediated dendritic cell activation and cross-priming tumor-specific immune responses ex vivo. Int. J. Cancer 146, 531–541 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Humeau, J., Lévesque, S., Kroemer, G. & Pol, J. G. Gold standard assessment of immunogenic cell death in oncological mouse models. Methods Mol. Biol. 1884, 297–315 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Deng, L. et al. Oncolytic therapy with vaccinia virus carrying IL-24 for hepatocellular carcinoma. Virol. J. 19, 44 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oh, E., Hong, J., Kwon, O.-J. & Yun, C.-O. A hypoxia- and telomerase-responsive oncolytic adenovirus expressing secretable trimeric TRAIL triggers tumour-specific apoptosis and promotes viral dispersion in TRAIL-resistant glioblastoma. Sci. Rep. 8, 1420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bressy, C., Hastie, E. & Grdzelishvili, V. Z. Combining oncolytic virotherapy with p53 tumor suppressor gene therapy. Mol. Ther. Oncolytics 5, 20–40 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yamada, S. et al. Oncolytic herpes simplex virus expressing yeast cytosine deaminase: relationship between viral replication, transgene expression, prodrug bioactivation. Cancer Gene Ther. 19, 160–170 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, J., Ding, M., Xu, K., Mao, L. & Zheng, J. shRNA-armed conditionally replicative adenoviruses: a promising approach for cancer therapy. Oncotarget 7, 29824–29834 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Atherton, M. J. et al. Customized viral immunotherapy for HPV-associated cancer. Cancer Immunol. Res. 5, 847–859 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Chen, T. et al. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J. Immunother. Cancer 9, e001647 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhu, Z. et al. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol. Cancer 21, 196 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao, Y. et al. Oncolytic adenovirus: prospects for cancer immunotherapy. Front. Microbiol. 12, 707290 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Heidbuechel, J. P. W. & Engeland, C. E. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J. Hematol. Oncol. 14, 63 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bridle, B. W. et al. HDAC inhibition suppresses primary immune responses, enhances secondary immune responses, and abrogates autoimmunity during tumor immunotherapy. Mol. Ther. 21, 887–894 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bridle, B. W. et al. Oncolytic vesicular stomatitis virus quantitatively and qualitatively improves primary CD8+ T-cell responses to anticancer vaccines. Oncoimmunology 2, e26013 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bridle, B. W. et al. Privileged antigen presentation in splenic B cell follicles maximizes T cell responses in prime-boost vaccination. J. Immunol. 196, 4587–4595 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Pol, J., Le Bœuf, F. & Diallo, J.-S. Genetic, immunological, and pharmacological strategies to generate improved oncolytic viruses. Med. Sci. (Paris) 29, 165–173 (2013).

    Article  PubMed  Google Scholar 

  93. Pol, J. G. et al. Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials. Oncoimmunology 8, e1512329 (2019).

    Article  PubMed  Google Scholar 

  94. Pol, J. G. et al. Development and applications of oncolytic Maraba virus vaccines. Oncolytic Virother. 7, 117–128 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pol, J. G. et al. Enhanced immunotherapeutic profile of oncolytic virus-based cancer vaccination using cyclophosphamide preconditioning. J. Immunother. Cancer 8, e000981 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pol, J. G., Bridle, B. W. & Lichty, B. D. Detection of tumor antigen-specific T-cell responses after oncolytic vaccination. Methods Mol. Biol. 2058, 191–211 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Pol, J. G., Workenhe, S. T., Konda, P., Gujar, S. & Kroemer, G. Cytokines in oncolytic virotherapy. Cytokine Growth Factor Rev. 56, 4–27 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, L. et al. Delivery of viral-vectored vaccines by B cells represents a novel strategy to accelerate CD8+ T-cell recall responses. Blood 121, 2432–2439 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Pol, J. G., Rességuier, J. & Lichty, B. D. Oncolytic viruses: a step into cancer immunotherapy. Virus Adapt. Treat. 4, 1–21 (2011).

    Google Scholar 

  100. Naumenko, V. A., Stepanenko, A. A., Lipatova, A. V., Vishnevskiy, D. A. & Chekhonin, V. P. Infection of non-cancer cells: a barrier or support for oncolytic virotherapy? Mol. Ther. Oncolytics 24, 663–682 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Toro Bejarano, M. & Merchan, J. R. Targeting tumor vasculature through oncolytic virotherapy: recent advances. Oncolytic Virother. 4, 169–181 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. Carew, J. S. et al. Oncolytic reovirus inhibits angiogenesis through induction of CXCL10/IP-10 and abrogation of HIF activity in soft tissue sarcomas. Oncotarget 8, 86769–86783 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nair, M. et al. Enhancing antitumor efficacy of heavily vascularized tumors by RAMBO virus through decreased tumor endothelial cell activation. Cancers 12, 1040 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hou, W., Chen, H., Rojas, J., Sampath, P. & Thorne, S. H. Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int. J. Cancer 135, 1238–1246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hardcastle, J. et al. Enhanced antitumor efficacy of vasculostatin (Vstat120) expressing oncolytic HSV-1. Mol. Ther. 18, 285–294 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, Z. et al. Suppression of tumor growth by oncolytic adenovirus-mediated delivery of an antiangiogenic gene, soluble Flt-1. Mol. Ther. 11, 553–562 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Raja, J., Ludwig, J. M., Gettinger, S. N., Schalper, K. A. & Kim, H. S. Oncolytic virus immunotherapy: future prospects for oncology. J. Immunother. Cancer 6, 140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Evgin, L. et al. Complement inhibition prevents oncolytic vaccinia virus neutralization in immune humans and cynomolgus macaques. Mol. Ther. 23, 1066–1076 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Doronin, K. et al. Coagulation factor X activates innate immunity to human species C adenovirus. Science 338, 795–798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Minuk, G. Y., Paul, R. W. & Lee, P. W. The prevalence of antibodies to reovirus type 3 in adults with idiopathic cholestatic liver disease. J. Med. Virol. 16, 55–60 (1985).

    Article  CAS  PubMed  Google Scholar 

  111. Russell, S. J. & Peng, K. W. Measles virus for cancer therapy. Curr. Top. Microbiol. Immunol. 330, 213–241 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Yu, B. et al. Seroprevalence of neutralizing antibodies to human adenovirus type 5 in healthy adults in China. J. Med. Virol. 84, 1408–1414 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Maroun, J. et al. Designing and building oncolytic viruses. Future Virol. 12, 193–213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Atasheva, S. et al. Systemic cancer therapy with engineered adenovirus that evades innate immunity. Sci. Transl. Med. 12, eabc6659 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, N. et al. Generation of novel oncolytic vaccinia virus with improved intravenous efficacy through protection against complement-mediated lysis and evasion of neutralization by vaccinia virus-specific antibodies. J. Immunother. Cancer 11, e006024 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Heiniö, C. et al. TNFa and IL2 encoding oncolytic adenovirus activates pathogen and danger-associated immunological signaling. Cells 9, 798 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hemminki, O. et al. Immunological data from cancer patients treated with Ad5/3-E2F-Δ24-GMCSF suggests utility for tumor immunotherapy. Oncotarget 6, 4467–4481 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Short, J. J. et al. Substitution of adenovirus serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor X binding, decreases liver tropism, and improves antitumor efficacy. Mol. Cancer Ther. 9, 2536–2544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Muharemagic, D. et al. Aptamer-facilitated protection of oncolytic virus from neutralizing antibodies. Mol. Ther. Nucleic Acids 3, e167 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Castleton, A. et al. Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute lymphoblastic leukemia in the presence of humoral immunity. Blood 123, 1327–1335 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Kaczorowski, A. et al. Delivery of improved oncolytic adenoviruses by mesenchymal stromal cells for elimination of tumorigenic pancreatic cancer cells. Oncotarget 7, 9046–9059 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Melen, G. J. et al. Influence of carrier cells on the clinical outcome of children with neuroblastoma treated with high dose of oncolytic adenovirus delivered in mesenchymal stem cells. Cancer Lett. 371, 161–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Dey, M. et al. Intranasal oncolytic virotherapy with CXCR4-enhanced stem cells extends survival in mouse model of glioma. Stem Cell Rep. 7, 471–482 (2016).

    Article  CAS  Google Scholar 

  124. Keshavarz, M. et al. Oncolytic virus delivery modulated immune responses toward cancer therapy: challenges and perspectives. Int. Immunopharmacol. 108, 108882 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Thambi, T., Hong, J., Yoon, A.-R. & Yun, C.-O. Challenges and progress toward tumor-targeted therapy by systemic delivery of polymer-complexed oncolytic adenoviruses. Cancer Gene Ther. 29, 1321–1331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shin, D. H. et al. Current strategies to circumvent the antiviral immunity to optimize cancer virotherapy. J. Immunother. Cancer 9, e002086 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Munguia, A., Ota, T., Miest, T. & Russell, S. J. Cell carriers to deliver oncolytic viruses to sites of myeloma tumor growth. Gene Ther. 15, 797–806 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Peng, K.-W. et al. Using clinically approved cyclophosphamide regimens to control the humoral immune response to oncolytic viruses. Gene Ther. 20, 255–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Fulci, G. et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc. Natl Acad. Sci. USA 103, 12873–12878 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu, Y.-P. et al. Polyinosinic acid decreases sequestration and improves systemic therapy of measles virus. Cancer Gene Ther. 19, 202–211 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Koski, A. et al. Systemic adenoviral gene delivery to orthotopic murine breast tumors with ablation of coagulation factors, thrombocytes and Kupffer cells. J. Gene Med. 11, 966–977 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Shashkova, E. V., Doronin, K., Senac, J. S. & Barry, M. A. Macrophage depletion combined with anticoagulant therapy increases therapeutic window of systemic treatment with oncolytic adenovirus. Cancer Res. 68, 5896–5904 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Ikeda, K. et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat. Med. 5, 881–887 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Niemann, J. et al. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat. Commun. 10, 3236 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wein, L. M., Wu, J. T. & Kirn, D. H. Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res. 63, 1317–1324 (2003).

    CAS  PubMed  Google Scholar 

  136. Lopez, M. V. et al. Tumor associated stromal cells play a critical role on the outcome of the oncolytic efficacy of conditionally replicative adenoviruses. PLoS ONE 4, e5119 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Li, L., Liu, S., Han, D., Tang, B. & Ma, J. Delivery and biosafety of oncolytic virotherapy. Front. Oncol. 10, 475 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zhou, P. et al. Intratumoral delivery of a novel oncolytic adenovirus encoding human antibody against PD-1 elicits enhanced antitumor efficacy. Mol. Ther. Oncolytics 25, 236–248 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Knapp, J. P., Kakish, J. E., Bridle, B. W. & Speicher, D. J. Tumor temperature: friend or foe of virus-based cancer immunotherapy. Biomedicines 10, 2024 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bilbao, R. et al. A blood-tumor barrier limits gene transfer to experimental liver cancer: the effect of vasoactive compounds. Gene Ther. 7, 1824–1832 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Rust, N. M. et al. Bradykinin enhances Sindbis virus infection in human brain microvascular endothelial cells. Virology 422, 81–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Jaime-Ramirez, A. C. et al. Reolysin and histone deacetylase inhibition in the treatment of head and neck squamous cell carcinoma. Mol. Ther. Oncolytics 5, 87–96 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Springfeld, C. et al. Oncolytic efficacy and enhanced safety of measles virus activated by tumor-secreted matrix metalloproteinases. Cancer Res. 66, 7694–7700 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Ebert, O. et al. Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Cancer Res. 64, 3265–3270 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, J., Frolov, I. & Russell, S. J. Gene therapy for malignant glioma using Sindbis vectors expressing a fusogenic membrane glycoprotein. J. Gene Med. 6, 1082–1091 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Le Boeuf, F. et al. Reovirus FAST protein enhances vesicular stomatitis virus oncolytic virotherapy in primary and metastatic tumor models. Mol. Ther. Oncolytics 6, 80–89 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Morodomi, Y. et al. BioKnife, a uPA activity-dependent oncolytic Sendai virus, eliminates pleural spread of malignant mesothelioma via simultaneous stimulation of uPA expression. Mol. Ther. 20, 769–777 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jung, K. H. et al. Oncolytic adenovirus expressing relaxin (YDC002) enhances therapeutic efficacy of gemcitabine against pancreatic cancer. Cancer Lett. 396, 155–166 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Oh, E., Choi, I.-K., Hong, J. & Yun, C.-O. Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model. Oncotarget 8, 4730–4746 (2017).

    Article  PubMed  Google Scholar 

  150. Yang, Y. et al. Systemic delivery of an oncolytic adenovirus expressing decorin for the treatment of breast cancer bone metastases. Hum. Gene Ther. 26, 813–825 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yumul, R. et al. Epithelial junction opener improves oncolytic adenovirus therapy in mouse tumor models. Hum. Gene Ther. 27, 325–337 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tedcastle, A., Illingworth, S., Brown, A., Seymour, L. W. & Fisher, K. D. Actin-resistant DNAse I expression from oncolytic adenovirus enadenotucirev enhances its intratumoral spread and reduces tumor growth. Mol. Ther. 24, 796–804 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sette, P. et al. GBM-targeted oHSV armed with matrix metalloproteinase 9 enhances anti-tumor activity and animal survival. Mol. Ther. Oncolytics 15, 214–222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ungerechts, G. et al. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses. Mol. Ther. Methods Clin. Dev. 3, 16018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Harrington, K. J. Oncolytic viruses: methods and protocols. Br. J. Cancer 108, 735 (2013).

    Article  PubMed Central  Google Scholar 

  156. Kirn, D. H., Liu, T.-C. & Thorne, S. H. (eds) Oncolytic Viruses: Methods and Protocols (Humana Press, 2012).

  157. Abdelmageed, A. A. & Ferran, M. C. The propagation, quantification, and storage of vesicular stomatitis virus. Curr. Protoc. Microbiol. 58, e110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nakamura, T. et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat. Biotechnol. 23, 209–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Schneider, U., von Messling, V., Devaux, P. & Cattaneo, R. Efficiency of measles virus entry and dissemination through different receptors. J. Virol. 76, 7460–7467 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dybas, J. M. et al. Adenovirus remodeling of the host proteome and host factors associated with viral genomes. mSystems https://doi.org/10.1128/mSystems.00468-21 (2021).

  161. Gueret, V., Negrete-Virgen, J. A., Lyddiatt, A. & Al-Rubeai, M. Rapid titration of adenoviral infectivity by flow cytometry in batch culture of infected HEK293 cells. Cytotechnology 38, 87–97 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mendoza, E. J., Manguiat, K., Wood, H. & Drebot, M. Two detailed plaque assay protocols for the quantification of infectious SARS‐CoV‐2. Curr. Protoc. Microbiol. 57, ecpmc105 (2020).

    Article  PubMed  Google Scholar 

  163. James, K. T. et al. Novel high-throughput approach for purification of infectious virions. Sci. Rep. 6, 36826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shmulevitz, M. & Lee, P. W. K. in Oncolytic Viruses: Methods and Protocols (eds Kirn, D. H., Liu, T.-C. & Thorne, S. H.) 163–176 (Humana Press, 2012).

  165. Langfield, K. K., Walker, H. J., Gregory, L. C. & Federspiel, M. J. Manufacture of measles viruses. Methods Mol. Biol. 737, 345–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Shmulevitz, M., Gujar, S. A., Ahn, D.-G., Mohamed, A. & Lee, P. W. K. Reovirus variants with mutations in genome segments S1 and L2 exhibit enhanced virion infectivity and superior oncolysis. J. Virol. 86, 7403–7413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Peck, K. M. & Lauring, A. S. Complexities of viral mutation rates. J. Virol. 92, e01031-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Howley, P. M. Fields Virology: Fundamentals. (Wolters Kluwer Medical, 2023).

  169. Cacciabue, M., Currá, A. & Gismondi, M. I. ViralPlaque: a Fiji macro for automated assessment of viral plaque statistics. PeerJ 7, e7729 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Liu, T. et al. Rapid and stain-free quantification of viral plaque via lens-free holography and deep learning. Nat. Biomed. Eng. 7, 1040–1052 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Dulbecco, R. & Vogt, M. Some problems of animal virology as studied by the plaque technique. Cold Spring Harb. Symp. Quant. Biol. 18, 273–279 (1953).

    Article  CAS  PubMed  Google Scholar 

  172. Baer, A. & Kehn-Hall, K. Viral concentration determination through plaque assays: using traditional and novel overlay systems. J. Vis. Exp. 2014, e52065 (2014).

    Google Scholar 

  173. McSharry, J. J. Uses of flow cytometry in virology. Clin. Microbiol. Rev. 7, 576–604 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tang, V. A. et al. Single-particle characterization of oncolytic vaccinia virus by flow virometry. Vaccine 34, 5082–5089 (2016).

    Article  PubMed  Google Scholar 

  175. Roingeard, P., Raynal, P.-I., Eymieux, S. & Blanchard, E. Virus detection by transmission electron microscopy: still useful for diagnosis and a plus for biosafety. Rev. Med. Virol. 29, e2019 (2019).

    Article  PubMed  Google Scholar 

  176. Lee, P. & Gujar, S. Potentiating prostate cancer immunotherapy with oncolytic viruses. Nat. Rev. Urol. 15, 235–250 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Petkov, C. I. et al. Unified ethical principles and an animal research ‘Helsinki’ declaration as foundations for international collaboration. Curr. Res. Neurobiol. 3, 100060 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Waehler, R., Russell, S. J. & Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 8, 573–587 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Russell, L. et al. PTEN expression by an oncolytic herpesvirus directs T-cell mediated tumor clearance. Nat. Commun. 9, 5006 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Farrera-Sal, M., Moya-Borrego, L., Bazan-Peregrino, M. & Alemany, R. Evolving status of clinical immunotherapy with oncolytic adenovirus. Clin. Cancer Res. 27, 2979–2988 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Suksanpaisan, L. et al. Preclinical development of oncolytic immunovirotherapy for treatment of HPVPOS cancers. Mol. Ther. Oncolytics 10, 1–13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Evgin, L. et al. Oncolytic virus-mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci. Transl. Med. 14, eabn2231 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Loken, S. D. et al. Morbidity in immunosuppressed (SCID/NOD) mice treated with reovirus (Dearing 3) as an anti-cancer biotherapeutic. Cancer Biol. Ther. 3, 734–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Gujar, S. A., Pan, D., Marcato, P., Garant, K. A. & Lee, P. W. Oncolytic virus-initiated protective immunity against prostate cancer. Mol. Ther. 19, 797–804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mosely, S. I. S. et al. Rational selection of syngeneic preclinical tumor models for immunotherapeutic drug discovery. Cancer Immunol. Res. 5, 29–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Prestwich, R. J. et al. Tumor infection by oncolytic reovirus primes adaptive antitumor immunity. Clin. Cancer Res. 14, 7358–7366 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Nelson, A., Gebremeskel, S., Lichty, B. D. & Johnston, B. Natural killer T cell immunotherapy combined with IL-15-expressing oncolytic virotherapy and PD-1 blockade mediates pancreatic tumor regression. J. Immunother. Cancer 10, e003923 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kwan, A. et al. Macrophages mediate the antitumor effects of the oncolytic virus HSV1716 in mammary tumors. Mol. Cancer Ther. 20, 589–601 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Karandikar, S. H. et al. New epitopes in ovalbumin provide insights for cancer neoepitopes. JCI Insight 5, e127882 (2019).

    Article  PubMed  Google Scholar 

  190. Wang, D. et al. Ultralow-dose binary oncolytic/helper-dependent adenovirus promotes antitumor activity in preclinical and clinical studies. Sci. Adv. 9, eade6790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Allen, T. M. et al. Humanized immune system mouse models: progress, challenges and opportunities. Nat. Immunol. 20, 770–774 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. McKenna, M. K., Rosewell-Shaw, A. & Suzuki, M. Modeling the efficacy of oncolytic adenoviruses in vitro and in vivo: current and future perspectives. Cancers 12, 619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Shenderov, E. et al. Generation and characterization of HLA-A2 transgenic mice expressing the human TCR 1G4 specific for the HLA-A2 restricted NY-ESO-1157-165 tumor-specific peptide. J. Immunother. Cancer 9, e002544 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Fulci, G. et al. Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res. 67, 9398–9406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kurozumi, K. et al. Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J. Natl Cancer Inst. 99, 1768–1781 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Sánchez, D., Cesarman-Maus, G., Amador-Molina, A. & Lizano, M. Oncolytic viruses for canine cancer treatment. Cancers 10, 404 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Martín-Carrasco, C. et al. Safety and efficacy of an oncolytic adenovirus as an immunotherapy for canine cancer patients. Vet. Sci. 9, 327 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Gentschev, I. et al. Oncolytic virotherapy of canine and feline cancer. Viruses 6, 2122–2137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Hummel, J. et al. Maraba virus-vectored cancer vaccines represent a safe and novel therapeutic option for cats. Sci. Rep. 7, 15738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Jogler, C. et al. Replication properties of human adenovirus in vivo and in cultures of primary cells from different animal species. J. Virol. 80, 3549–3558 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Cervera-Carrascon, V. et al. Comparison of clinically relevant oncolytic virus platforms for enhancing T cell therapy of solid tumors. Mol. Ther. Oncolytics 17, 47–60 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Steel, J. C. et al. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus. Virology 369, 131–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Zhang, H. et al. Naturally existing oncolytic virus M1 is nonpathogenic for the nonhuman primates after multiple rounds of repeated intravenous injections. Hum. Gene Ther. 27, 700–711 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Cassady, K. A. et al. Pre-clinical assessment of C134, a chimeric oncolytic herpes simplex virus, in mice and non-human primates. Mol. Ther. Oncolytics 5, 1–10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Samson, A. et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci. Transl. Med. 10, eaam7577 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Clements, D. R., Kim, Y., Gujar, S. A. & Lee, P. W. All that glitters is not gold: the need to consider desirable and undesirable immune aspects of oncolytic virus therapy. Oncoimmunology 5, e1057674 (2016).

    Article  PubMed  Google Scholar 

  207. Clements, D. R. et al. Newly recruited CD11b+, GR-1+, Ly6Chigh myeloid cells augment tumor-associated immunosuppression immediately following the therapeutic administration of oncolytic reovirus. J. Immunol. 194, 4397–4412 (2015).

    Article  CAS  PubMed  Google Scholar 

  208. Zhang, L. et al. Robust oncolytic virotherapy induces tumor lysis syndrome and associated toxicities in the MPC-11 plasmacytoma model. Mol. Ther. 24, 2109–2117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhang, L. et al. Safety studies in tumor and non-tumor-bearing mice in support of clinical trials using oncolytic VSV-IFNβ-NIS. Hum. Gene Ther. Clin. Dev. 27, 111–122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang, Y. et al. Preclinical safety evaluation of oncolytic herpes simplex virus type 2. Hum. Gene Ther. 30, 651–660 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Abdullahi, S. et al. A novel chimeric oncolytic virus vector for improved safety and efficacy in hepatocellular carcinoma. J. Virol. 92, e01386-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Kurzrock, R. et al. Moving beyond 3+3: The future of clinical trial design. Am. Soc. Clin. Oncol. Educ. Book 41, e133–e144 (2021).

    Article  PubMed  Google Scholar 

  213. Tannenbaum, C., Ellis, R. P., Eyssel, F., Zou, J. & Schiebinger, L. Sex and gender analysis improves science and engineering. Nature 575, 137–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. White, J., Tannenbaum, C., Klinge, I., Schiebinger, L. & Clayton, J. The integration of sex and gender considerations into biomedical research: lessons from international funding agencies. J. Clin. Endocrinol. Metab. 106, 3034–3048 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Canadian Institutes of Health Research. How to integrate sex and gender into research CIHR https://cihr-irsc.gc.ca/e/50836.html (2018).

  216. Jang, S. R. et al. Association between sex and immune checkpoint inhibitor outcomes for patients with melanoma. JAMA Netw. Open 4, e2136823 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Carrera, C., Potrony, M. & Puig, S. Sex as a predictor of response to cancer immunotherapy. Lancet Oncol. 19, e375 (2018).

    Article  PubMed  Google Scholar 

  218. Madala, S. et al. Gender differences and their effects on survival outcomes in lung cancer patients treated with PD-1/PD-L1 checkpoint inhibitors: a systematic review and meta-analysis. Clin. Oncol. 34, 799–809 (2022).

    Article  CAS  Google Scholar 

  219. Russell, L., Peng, K. W., Russell, S. J. & Diaz, R. M. Oncolytic viruses: priming time for cancer immunotherapy. BioDrugs 33, 485–501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Kim, Y. et al. Immune checkpoint blockade augments changes within oncolytic virus-induced cancer MHC-I peptidome, creating novel antitumor CD8 T cell reactivities. Mol. Cell. Proteom. 21, 100182 (2022).

    Article  CAS  Google Scholar 

  221. Roy, D. G. et al. Adjuvant oncolytic virotherapy for personalized anti-cancer vaccination. Nat. Commun. 12, 2626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ding, J. et al. Pre-existing HSV-1 immunity enhances anticancer efficacy of a novel immune-stimulating oncolytic virus. Viruses 14, 2327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Tähtinen, S. et al. Exploiting preexisting immunity to enhance oncolytic cancer immunotherapy. Cancer Res. 80, 2575–2585 (2020).

    Article  PubMed  Google Scholar 

  224. Bourgeois-Daigneault, M.-C. et al. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci. Transl. Med. 10, eaao1641 (2018).

    Article  PubMed  Google Scholar 

  225. Murphy, J. P. et al. Therapy-induced MHC I ligands shape neo-antitumor CD8 T cell responses during oncolytic virus-based cancer immunotherapy. J. Proteome Res. 18, 2666–2675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  227. Koutsakos, M. et al. SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses. Immunity 56, 879–892.e4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Pai, C.-C. S. et al. Clonal deletion of tumor-specific T cells by interferon-γ confers therapeutic resistance to combination immune checkpoint blockade. Immunity 50, 477–492.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang, Y. et al. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Argüello, R. J. et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab. 32, 1063–1075.e7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Sharma, P. et al. The next decade of immune checkpoint therapy. Cancer Discov. 11, 838–857 (2021).

    Article  CAS  PubMed  Google Scholar 

  233. Chesney, J. A. et al. Randomized, double-blind, placebo-controlled, global phase III trial of talimogene laherparepvec combined with pembrolizumab for advanced melanoma. J. Clin. Oncol. 41, 528–540 (2023).

    Article  CAS  PubMed  Google Scholar 

  234. Chesney, J. A. et al. Talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone for advanced melanoma: 5-year final analysis of a multicenter, randomized, open-label, phase II trial. J. Immunother. Cancer 11, e006270 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Zhang, H. et al. Oncolytic adenoviruses synergistically enhance anti-PD-L1 and anti-CTLA-4 immunotherapy by modulating the tumour microenvironment in a 4T1 orthotopic mouse model. Cancer Gene Ther. 29, 456–465 (2022).

    Article  CAS  PubMed  Google Scholar 

  236. Gujar, S. A. et al. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br. J. Cancer 110, 83–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  237. Ju, F. et al. Oncolytic virus expressing PD-1 inhibitors activates a collaborative intratumoral immune response to control tumor and synergizes with CTLA-4 or TIM-3 blockade. J. Immunother. Cancer 10, e004762 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  238. du Sert, N. P. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).

    Article  Google Scholar 

  239. Zafar, S. et al. Oncolytic adenovirus type 3 coding for CD40L facilitates dendritic cell therapy of prostate cancer in humanized mice and patient samples. Hum. Gene Ther. 32, 192–202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zafar, S. et al. Intravenously usable fully serotype 3 oncolytic adenovirus coding for CD40L as an enabler of dendritic cell therapy. Oncoimmunology 6, e1265717 (2017).

    Article  PubMed  Google Scholar 

  241. Trinh, H. V. et al. Avidity binding of human adenovirus serotypes 3 and 7 to the membrane cofactor CD46 triggers infection. J. Virol. 86, 1623–1637 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Hemminki, O. et al. Ad3-hTERT-E1A, a fully serotype 3 oncolytic adenovirus, in patients with chemotherapy refractory cancer. Mol. Ther. 20, 1821–1830 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Agrelli, A., de Moura, R. R., Crovella, S. & Brandão, L. A. C. ZIKA virus entry mechanisms in human cells. Infect. Genet. Evol. 69, 22–29 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Hemminki, O. et al. Oncolytic adenovirus based on serotype 3. Cancer Gene Ther. 18, 288–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  245. Arnberg, N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol. Sci. 33, 442–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  246. Gerber-Tichet Dienst, E. & Kremer, E. J. Adenovirus receptors on antigen-presenting cells of the skin. Biol. Cell 114, 297–308 (2022).

    Article  PubMed  Google Scholar 

  247. Chen, C. Y. et al. Species D adenoviruses as oncolytics against B-cell cancers. Clin. Cancer Res. 17, 6712–6722 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Wu, H. & Mei, Y.-F. An oncolytic adenovirus 11p vector expressing adenovirus death protein in the E1 region showed significant apoptosis and tumour-killing ability in metastatic prostate cells. Oncotarget 10, 1957–1974 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Dyer, A. et al. Oncolytic group B adenovirus enadenotucirev mediates non-apoptotic cell death with membrane disruption and release of inflammatory mediators. Mol. Ther. Oncolytics 4, 18–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  250. Silver, J. & Mei, Y.-F. Transduction and oncolytic profile of a potent replication-competent adenovirus 11p vector (RCAd11pGFP) in colon carcinoma cells. PLoS ONE 6, e17532 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Ono, R., Takayama, K., Sakurai, F. & Mizuguchi, H. Efficient antitumor effects of a novel oncolytic adenovirus fully composed of species B adenovirus serotype 35. Mol. Ther. Oncolytics 20, 399–409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Doerner, J. et al. Novel group C oncolytic adenoviruses carrying a miRNA inhibitor demonstrate enhanced oncolytic activity in vitro and in vivo. Mol. Cancer Ther. 21, 460–470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Zheng, H. et al. Combination IFNβ and membrane-stable CD40L maximize tumor dendritic cell activation and lymph node trafficking to elicit systemic T-cell immunity. Cancer Immunol. Res. 11, 466–485 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Gállego Pérez-Larraya, J. et al. Oncolytic DNX-2401 virus for pediatric diffuse intrinsic pontine glioma. N. Engl. J. Med. 386, 2471–2481 (2022).

    Article  PubMed  Google Scholar 

  255. Kazemi Shariat Panahi, H. et al. Oncolytic viruses as a promising therapeutic strategy against the detrimental health impacts of air pollution: the case of glioblastoma multiforme. Semin. Cancer Biol. 86, 1122–1142 (2022).

    Article  CAS  PubMed  Google Scholar 

  256. Zhang, J. et al. Efficacy and safety of recombinant human adenovirus type 5 (H101) in persistent, recurrent, or metastatic gynecologic malignancies: a retrospective study. Front. Oncol. 12, 877155 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Garcia-Carbonero, R. et al. Phase I, multicenter, open-label study of intravenous VCN-01 oncolytic adenovirus with or without nab-paclitaxel plus gemcitabine in patients with advanced solid tumors. J. Immunother. Cancer 10, e003255 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Kesari, S. et al. BETA PRIME: phase I study of AdAPT-001 as monotherapy and combined with a checkpoint inhibitor in superficially accessible, treatment-refractory solid tumors. Future Oncol. 18, 3245–3254 (2022).

    Article  CAS  PubMed  Google Scholar 

  259. Larson, C., Oronsky, B. & Reid, T. AdAPT-001, an oncolytic adenovirus armed with a TGF-β trap, overcomes in vivo resistance to PD-L1-immunotherapy. Am. J. Cancer Res. 12, 3141–3147 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Yun, C.-O., Hong, J. & Yoon, A.-R. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front. Immunol. 13, 953410 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Ylösmäki, E. et al. Characterization of a novel OX40 ligand and CD40 ligand-expressing oncolytic adenovirus used in the PeptiCRAd cancer vaccine platform. Mol. Ther. Oncolytics 20, 459–469 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Gao, J., Zhang, W. & Ehrhardt, A. Expanding the spectrum of adenoviral vectors for cancer therapy. Cancers 12, 1139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Zhang, Z. et al. A tumor-targeted replicating oncolytic adenovirus Ad-TD-nsIL12 as a promising therapeutic agent for human esophageal squamous cell carcinoma. Cells 9, 2438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Cook, M. & Chauhan, A. Clinical application of oncolytic viruses: a systematic review. Int. J. Mol. Sci. 21, 7505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Garcia-Moure, M. et al. The oncolytic adenovirus VCN-01 promotes anti-tumor effect in primitive neuroectodermal tumor models. Sci. Rep. 9, 14368 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  266. García, M. et al. A phase 1 trial of oncolytic adenovirus ICOVIR-5 administered intravenously to cutaneous and uveal melanoma patients. Hum. Gene Ther. 30, 352–364 (2019).

    Article  PubMed  Google Scholar 

  267. Garcia-Moure, M., Martinez-Vélez, N., Patiño-García, A. & Alonso, M. M. Oncolytic adenoviruses as a therapeutic approach for osteosarcoma: a new hope. J. Bone Oncol. 9, 41–47 (2017).

    Article  PubMed  Google Scholar 

  268. Dong, W. et al. ORCA-010, a novel potency-enhanced oncolytic adenovirus, exerts strong antitumor activity in preclinical models. Hum. Gene Ther. 25, 897–904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Farzad, L. et al. Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy. Mol. Ther. Oncolytics 1, 14008 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Nasu, Y. et al. Suicide gene therapy with adenoviral delivery of HSV-tK gene for patients with local recurrence of prostate cancer after hormonal therapy. Mol. Ther. 15, 834–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  271. Ries, S. & Korn, W. M. ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br. J. Cancer 86, 5–11 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Osipov, I. D. et al. Development of oncolytic vectors based on human adenovirus type 6 for cancer treatment. Viruses 15, 182 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Persson, B. D. et al. Human species D adenovirus hexon capsid protein mediates cell entry through a direct interaction with CD46. Proc. Natl Acad. Sci. USA 118, e2020732118 (2021).

    Article  CAS  PubMed  Google Scholar 

  274. Bullard, B. L., Corder, B. N. & Weaver, E. A. Species D adenoviruses as oncolytic viral vectors. Viruses 12, 1399 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Zhu, Z. et al. Zika virus targets glioblastoma stem cells through a SOX2-integrin αvβ5 Axis. Cell Stem Cell 26, 187–204.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Oei, S. L. & Schad, F. Are aspects of integrative concepts helpful to improve pancreatic cancer therapy? Cancers 15, 1116 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Cui, C. et al. OrienX010, an oncolytic virus, in patients with unresectable stage IIIC-IV melanoma: a phase Ib study. J. Immunother. Cancer 10, e004307 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Miller, K. E. et al. Immune activity and response differences of oncolytic viral therapy in recurrent glioblastoma: gene expression analyses of a phase IB study. Clin. Cancer Res. 28, 498–506 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Haines, B. B. et al. ONCR-177, an oncolytic HSV-1 designed to potently activate systemic antitumor immunity. Cancer Immunol. Res. 9, 291–308 (2021).

    Article  CAS  PubMed  Google Scholar 

  280. Chiocca, E. A., Nakashima, H., Kasai, K., Fernandez, S. A. & Oglesbee, M. Preclinical toxicology of rQNestin34.5v.2: an oncolytic herpes virus with transcriptional regulation of the ICP34.5 neurovirulence gene. Mol. Ther. Methods Clin. Dev. 17, 871–893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Zhang, K.-X. et al. Intravesical treatment of advanced urothelial bladder cancers with oncolytic HSV-1 co-regulated by differentially expressed microRNAs. Gene Ther. 23, 460–468 (2016).

    Article  CAS  PubMed  Google Scholar 

  282. Fujiwara, S. et al. Carrier cell-based delivery of replication-competent HSV-1 mutants enhances antitumor effect for ovarian cancer. Cancer Gene Ther. 18, 77–86 (2011).

    Article  CAS  PubMed  Google Scholar 

  283. Lee, C. Y. F., Rennie, P. S. & Jia, W. W. G. MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Clin. Cancer Res. 15, 5126–5135 (2009).

    Article  CAS  PubMed  Google Scholar 

  284. Agelidis, A. M. & Shukla, D. Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol. 10, 1145–1154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Madavaraju, K., Koganti, R., Volety, I., Yadavalli, T. & Shukla, D. Herpes simplex virus cell entry mechanisms: an update. Front. Cell. Infect. Microbiol. 10, 617578 (2020).

    Article  PubMed  Google Scholar 

  286. Zhang, B. et al. Intratumoral OH2, an oncolytic herpes simplex virus 2, in patients with advanced solid tumors: a multicenter, phase I/II clinical trial. J. Immunother. Cancer 9, e002224 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Luo, S. et al. Contribution of N-linked glycans on HSV-2 gB to cell-cell fusion and viral entry. Virology 483, 72–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  288. Fu, X., Tao, L. & Zhang, X. An oncolytic virus derived from type 2 herpes simplex virus has potent therapeutic effect against metastatic ovarian cancer. Cancer Gene Ther. 14, 480–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  289. Qiu, W., Ding, X., Li, S., He, Y. & Zhu, L. Oncolytic bovine herpesvirus 1 inhibits human lung adenocarcinoma A549 cell proliferation and tumor growth by inducing DNA damage. Int. J. Mol. Sci. 22, 8582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Cuddington, B. P., Dyer, A. L., Workenhe, S. T. & Mossman, K. L. Oncolytic bovine herpesvirus type 1 infects and kills breast tumor cells and breast cancer-initiating cells irrespective of tumor subtype. Cancer Gene Ther. 20, 282–289 (2013).

    Article  CAS  PubMed  Google Scholar 

  291. Pastenkos, G., Lee, B., Pritchard, S. M. & Nicola, A. V. Bovine herpesvirus 1 entry by a low-pH endosomal pathway. J. Virol. 92, e00839-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Chai, C. et al. The effects of oncolytic pseudorabies virus vaccine strain inhibited the growth of colorectal cancer HCT-8 cells in vitro and in vivo. Animals 12, 2416 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Shiau, A.-L. et al. Development of a conditionally replicating pseudorabies virus for HER-2/neu-overexpressing bladder cancer therapy. Mol. Ther. 15, 131–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  294. Li, A. et al. Structural basis of nectin-1 recognition by pseudorabies virus glycoprotein D. PLoS Pathog. 13, e1006314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Aligholipour Farzani, T. et al. Assessment of replication of bovine herpesvirus type 4 in human glioblastoma and breast cancer cells as a potential oncolytic virus. Virus Genes 57, 31–39 (2021).

    Article  CAS  PubMed  Google Scholar 

  296. Redaelli, M. et al. Herpes simplex virus type 1 thymidine kinase-armed bovine herpesvirus type 4-based vector displays enhanced oncolytic properties in immunocompetent orthotopic syngenic mouse and rat glioma models. Neuro Oncol. 14, 288–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Gillet, L., Dewals, B., Farnir, F., de Leval, L. & Vanderplasschen, A. Bovine herpesvirus 4 induces apoptosis of human carcinoma cell lines in vitro and in vivo. Cancer Res. 65, 9463–9472 (2005).

    Article  CAS  PubMed  Google Scholar 

  298. Macnab, S. A. et al. Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells. Int. J. Oncol. 39, 1173–1181 (2011).

    CAS  PubMed  Google Scholar 

  299. Stevenson, A. J. et al. Specific oncolytic activity of herpesvirus saimiri in pancreatic cancer cells. Br. J. Cancer 83, 329–332 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Ferreira, T. et al. Oncolytic H-1 parvovirus hijacks galectin-1 to enter cancer cells. Viruses 14, 1018 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Kulkarni, A. et al. Oncolytic H-1 parvovirus binds to sialic acid on laminins for cell attachment and entry. Nat. Commun. 12, 3834 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Marchini, A., Daeffler, L., Pozdeev, V. I., Angelova, A. & Rommelaere, J. Immune conversion of tumor microenvironment by oncolytic viruses: the protoparvovirus H-1PV case study. Front. Immunol. 10, 1848 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Lacroix, J. et al. Preclinical testing of an oncolytic parvovirus in Ewing sarcoma: protoparvovirus H-1 induces apoptosis and lytic infection in vitro but fails to improve survival in vivo. Viruses 10, 302 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Geletneky, K. et al. Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol. Ther. 25, 2620–2634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Angelova, A. L., Witzens-Harig, M., Galabov, A. S. & Rommelaere, J. The oncolytic virotherapy era in cancer management: prospects of applying H-1 parvovirus to treat blood and solid cancers. Front. Oncol. 7, 93 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Angelova, A. L., Geletneky, K., Nüesch, J. P. F. & Rommelaere, J. Tumor selectivity of oncolytic parvoviruses: from in vitro and animal models to cancer patients. Front. Bioeng. Biotechnol. 3, 55 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Heinrich, B., Goepfert, K., Delic, M., Galle, P. R. & Moehler, M. Influence of the oncolytic parvovirus H-1, CTLA-4 antibody tremelimumab and cytostatic drugs on the human immune system in a human in vitro model of colorectal cancer cells. Onco Targets Ther. 6, 1119–1127 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Li, J. et al. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas. EMBO Mol. Med. 5, 1537–1555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Paglino, J. C., Ozduman, K. & van den Pol, A. N. LuIII parvovirus selectively and efficiently targets, replicates in, and kills human glioma cells. J. Virol. 86, 7280–7291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Angelova, A. L. et al. Oncolytic rat parvovirus H-1PV, a candidate for the treatment of human lymphoma: in vitro and in vivo studies. Mol. Ther. 17, 1164–1172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Grekova, S. P., Raykov, Z., Zawatzky, R., Rommelaere, J. & Koch, U. Activation of a glioma-specific immune response by oncolytic parvovirus Minute Virus of Mice infection. Cancer Gene Ther. 19, 468–475 (2012).

    Article  CAS  PubMed  Google Scholar 

  312. Halder, S. et al. Profiling of glycan receptors for minute virus of mice in permissive cell lines towards understanding the mechanism of cell recognition. PLoS ONE 9, e86909 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Ricordel, M. et al. Cowpox virus: a new and armed oncolytic poxvirus. Mol. Ther. Oncolytics 7, 1–11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  314. Chung, C. S., Hsiao, J. C., Chang, Y. S. & Chang, W. A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate. J. Virol. 72, 1577–1585 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Howard, A. R., Senkevich, T. G. & Moss, B. Vaccinia virus A26 and A27 proteins form a stable complex tethered to mature virions by association with the A17 transmembrane protein. J. Virol. 82, 12384–12391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Cousin, S. et al. Phase 2 trial of intravenous oncolytic virus JX-594 combined with low-dose cyclophosphamide in patients with advanced breast cancer. Exp. Hematol. Oncol. 11, 104 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Samson, A. et al. Neoadjuvant intravenous oncolytic vaccinia virus therapy promotes anticancer immunity in patients. Cancer Immunol. Res. 10, 745–756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Zhang, Z. et al. CF33-hNIS-antiPDL1 virus primes pancreatic ductal adenocarcinoma for enhanced anti-PD-L1 therapy. Cancer Gene Ther. 29, 722–733 (2022).

    Article  CAS  PubMed  Google Scholar 

  319. Zuo, S. et al. An engineered oncolytic vaccinia virus encoding a single-chain variable fragment against TIGIT induces effective antitumor immunity and synergizes with PD-1 or LAG-3 blockade. J. Immunother. Cancer 9, e002843 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  320. Kloker, L. D. et al. Oncolytic vaccinia virus GLV-1h68 exhibits profound antitumoral activities in cell lines originating from neuroendocrine neoplasms. BMC Cancer 20, 628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. O’Leary, M. P. et al. Novel oncolytic chimeric orthopoxvirus causes regression of pancreatic cancer xenografts and exhibits abscopal effect at a single low dose. J. Transl. Med. 16, 110 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Peng, J. et al. Synergistic suppression effect on tumor growth of acute myeloid leukemia by combining cytarabine with an engineered oncolytic vaccinia virus. Onco Targets Ther. 11, 6887–6900 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Futami, M. et al. Efficacy and safety of doubly-regulated vaccinia virus in a mouse xenograft model of multiple myeloma. Mol. Ther. Oncolytics 6, 57–68 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Lv, C., Su, Q., Liang, Y., Hu, J. & Yuan, S. Oncolytic vaccine virus harbouring the IL-24 gene suppresses the growth of lung cancer by inducing apoptosis. Biochem. Biophys. Res. Commun. 476, 21–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  325. Kim, M. Replicating poxviruses for human cancer therapy. J. Microbiol. 53, 209–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  326. Guse, K., Cerullo, V. & Hemminki, A. Oncolytic vaccinia virus for the treatment of cancer. Expert Opin. Biol. Ther. 11, 595–608 (2011).

    Article  CAS  PubMed  Google Scholar 

  327. Thorne, S. H. Immunotherapeutic potential of oncolytic vaccinia virus. Immunol. Res. 50, 286–293 (2011).

    Article  CAS  PubMed  Google Scholar 

  328. Brun, J. et al. Identification of genetically modified Maraba virus as an oncolytic rhabdovirus. Mol. Ther. 18, 1440–1449 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Luteijn, R. D. et al. A genome-wide haploid genetic screen identifies heparan sulfate-associated genes and the macropinocytosis modulator TMED10 as factors supporting vaccinia virus infection. J. Virol. 93, e02160-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  330. Bengali, Z., Townsley, A. C. & Moss, B. Vaccinia virus strain differences in cell attachment and entry. Virology 389, 132–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  331. Ricordel, M. et al. Oncolytic properties of non-vaccinia poxviruses. Oncotarget 9, 35891–35906 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Evgin, L. et al. Potent oncolytic activity of raccoonpox virus in the absence of natural pathogenicity. Mol. Ther. 18, 896–902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Rintoul, J. L. et al. ORFV: a novel oncolytic and immune stimulating parapoxvirus therapeutic. Mol. Ther. 20, 1148–1157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. von Buttlar, H., Siegemund, S., Büttner, M. & Alber, G. Identification of Toll-like receptor 9 as parapoxvirus ovis-sensing receptor in plasmacytoid dendritic cells. PLoS ONE 9, e106188 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  335. Mahar, R. et al. Metabolic signatures associated with oncolytic myxoma viral infections. Sci. Rep. 12, 12599 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Christie, J. D. et al. Systemic delivery of TNF-armed myxoma virus plus immune checkpoint inhibitor eliminates lung metastatic mouse osteosarcoma. Mol. Ther. Oncolytics 22, 539–554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Rahman, M. M. & McFadden, G. Oncolytic virotherapy with myxoma virus. J. Clin. Med. 9, 171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Najarro, P. et al. Yaba-like disease virus chemokine receptor 7L, a CCR8 orthologue. J. Gen. Virol. 87, 809–816 (2006).

    Article  CAS  PubMed  Google Scholar 

  339. Würdinger, T. et al. Targeting non-human coronaviruses to human cancer cells using a bispecific single-chain antibody. Gene Ther. 12, 1394–1404 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  340. Tresnan, D. B., Levis, R. & Holmes, K. V. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol. 70, 8669–8674 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Cook, S., Castillo, D., Williams, S., Haake, C. & Murphy, B. Serotype I and II feline coronavirus replication and gene expression patterns of feline cells—building a better understanding of serotype I FIPV biology. Viruses 14, 1356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Verheije, M. H. et al. Coronavirus genetically redirected to the epidermal growth factor receptor exhibits effective antitumor activity against a malignant glioblastoma. J. Virol. 83, 7507–7516 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Würdinger, T. et al. Soluble receptor-mediated targeting of mouse hepatitis coronavirus to the human epidermal growth factor receptor. J. Virol. 79, 15314–15322 (2005).

    Article  PubMed  PubMed Central