Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Ultra-fast supercritically solvothermal polymerization for large single-crystalline covalent organic frameworks

Abstract

Crystalline polymer materials, e.g., hyper-crosslinked polystyrene, conjugate microporous polymers and covalent organic frameworks, are used as catalyst carriers, organic electronic devices and molecular sieves. Their properties and applications are highly dependent on their crystallinity. An efficient polymerization strategy for the rapid preparation of highly or single-crystalline materials is beneficial not only to structure–property studies but also to practical applications. However, polymerization usually leads to the formation of amorphous or poorly crystalline products with small grain sizes. It has been a challenging task to efficiently and precisely assemble organic molecules into a single crystal through polymerization. To address this issue, we developed a supercritically solvothermal method that uses supercritical carbon dioxide (sc-CO2) as the reaction medium for polymerization. Sc-CO2 accelerates crystal growth due to its high diffusivity and low viscosity compared with traditional organic solvents. Six covalent organic frameworks with different topologies, linkages and crystal structures are synthesized by this method. The as-synthesized products feature polarized photoluminescence and second-harmonic generation, indicating their high-quality single-crystal nature. This method holds advantages such as rapid growth rate, high productivity, easy accessibility, industrial compatibility and environmental friendliness. In this protocol, we provide a step-by-step procedure including preparation of monomer dispersion, polymerization in sc-CO2, purification and characterization of the single crystals. By following this protocol, it takes 1–5 min to grow sub-mm-sized single crystals by polymerization. The procedure takes ~4 h from preparation of monomer dispersion and polymerization in sc-CO2 to purification and drying of the product.

Key points

  • While covalent organic frameworks are interesting materials with useful properties, their application has been limited, because most processes used to prepare two- and three-dimensional crystals are either slow or unreliable.

  • Replacing traditional solvents with supercritical CO2 has profound effects on the reaction kinetics and it is possible to produce large, high-quality crystalline covalent organic frameworks in a short time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the crystal growth process.
Fig. 2: Single-crystal polymerization mechanism of COFs in sc-CO2.
Fig. 3: Workflow of the preparation of monomer dispersion.
Fig. 4: Workflow of polymerization in sc-CO2.
Fig. 5: Workflow of purifying and drying the product.
Fig. 6: The polymerization reactions for producing COFs in sc-CO2.
Fig. 7: Ultra-fast crystal growth of sc-COFs.
Fig. 8: Equipment setup for supercritically solvothermal synthesis.
Fig. 9: Stainless steel reactor.
Fig. 10: Workflow of optical microscope characterization.
Fig. 11: Morphologies of the as-synthesized sc-COFs.
Fig. 12: PXRD characterization of sc-COFs and os-COFs.
Fig. 13: HR-TEM images and SAED patterns of 2D sc-COFs.
Fig. 14: HR-TEM images and SAED patterns of 3D sc-COFs.
Fig. 15: Characterization of the sc-COFTP–Py single crystals.
Fig. 16: Polarized PL and SHG results of sc-COFs.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article, its Supplementary Information and the supporting primary research papers15,16.

References

  1. Parvatkar, P. T. et al. A tailored COF for visible-light photosynthesis of 2,3-dihydrobenzofurans. J. Am. Chem. Soc. 145, 5074–5082 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu, Y., Zhou, Z. B., Qi, Q. Y., Yao, J. & Zhao, X. Polyamide covalent organic framework membranes for molecular sieving. ACS Appl. Mater. Interfaces 14, 37019–37027 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Shi, B. B. et al. Spacer-engineered ionic channels in covalent organic framework membranes toward ultrafast proton transport. Adv. Mater. 35, 2211004 (2023).

    Article  CAS  Google Scholar 

  4. Cao, L. et al. Switchable Na+ and K+ selectivity in an amino acid functionalized 2D covalent organic framework membrane. Nat. Commun. 13, 7894 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Wang, R. et al. Ultrathin covalent organic framework membranes prepared by rapid electrophoretic deposition. Adv. Mater. 34, 2204894 (2022).

    Article  CAS  Google Scholar 

  6. Ke, S. W. et al. Covalent organic frameworks with Ni-Bis(dithiolene) and Co-porphyrin units as bifunctional catalysts for Li-O2 batteries. Sci. Adv. 9, eadf2398 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu, Y. P. et al. Hybrid acid/alkali all covalent organic frameworks battery. Angew. Chem. Int. Ed. 62, e202215584 (2023).

    Article  CAS  Google Scholar 

  8. Xu, X. Y. et al. Janus dione-based conjugated covalent organic frameworks with high conductivity as superior cathode materials. J. Am. Chem. Soc. 145, 1022–1030 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, L. et al. Self-controlled growth of covalent organic frameworks by repolymerization. Chem. Mater. 32, 5634–5640 (2020).

    Article  CAS  Google Scholar 

  10. Tang, Y. Z., Zheng, M. Z., Xue, W. J., Huang, H. L. & Zhang, G. L. Combined skeleton and spatial rigidification of AIEgens in 2D covalent organic frameworks for boosted fluorescence emission and sensing of antibiotics. ACS Appl. Mater. Interfaces 14, 37853–37864 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, L. et al. Covalent organic frameworks (COFs)-based biosensors for the assay of disease biomarkers with clinical applications. Biosens. Bioelectron. 217, 114668 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Meng, Z. & Mirica, K. A. Covalent organic frameworks as multifunctional materials for chemical detection. Chem. Soc. Rev. 50, 13498–13558 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei, L. et al. Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework. Nat. Commun. 13, 7936 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Guo, Q. Y. et al. Olefin-linked covalent organic frameworks with twisted tertiary amine knots for enhanced ultraviolet detection. Chin. Chem. Lett. 33, 2621–2624 (2022).

    Article  CAS  Google Scholar 

  15. Peng, L. et al. Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nat. Commun. 12, 5077 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Peng, L. et al. Ultra-fast synthesis of single-crystalline three-dimensional covalent organic frameworks and their applications in polarized optics. Chem. Mater. 34, 2886–2895 (2022).

    Article  CAS  Google Scholar 

  17. Hai-Sen, X. U. et al. Single crystal of a one-dimensional metallo-covalent organic framework. Nat. Commun. 11, 1434 (2020).

    Article  ADS  Google Scholar 

  18. Gavezzotti, A. Are crystal structures predictable? Acc. Chem. Res. 27, 309–314 (1994).

    Article  CAS  Google Scholar 

  19. Desiraju, G. R. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. 46, 8342–8356 (2007).

    Article  CAS  Google Scholar 

  20. Desiraju, G. R. Crystal engineering: from molecule to crystal. J. Am. Chem. Soc. 135, 9952–9967 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Baston, T. J. & Bowden, F. P. Localized damage of metal crystals by laser irradiation. Nature 218, 150–152 (1968).

    Article  CAS  ADS  Google Scholar 

  22. Shoenberg, D. Magnetic properties of metal single crystals at low temperatures. Nature 164, 225–226 (1949).

    Article  CAS  ADS  Google Scholar 

  23. Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different twodimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Jeon, S. et al. Reversible disorder–order transitions in atomic crystal nucleation. Science 371, 498–503 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Wen, C. et al. Dielectric properties of ultrathin CaF2 ionic crystals. Adv. Mater. 32, 2002525 (2020).

    Article  CAS  Google Scholar 

  27. Wilson, M. & Madden, P. A. Growth of ionic crystals in carbon nanotubes. J. Am. Chem. Soc. 123, 2101–2102 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Nangia, A. Conformational polymorphism in organic crystals. Acc. Chem. Res. 41, 595–604 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Dalgarno, S. J., Thallapally, R. K., Barbour, L. J. & Atwood, J. L. Engineering void space in organic van der Waals crystals: calixarenes lead the way. Chem. Soc. Rev. 36, 236–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Taylor, R. & Kennard, O. Hydrogen-bond geometry in organic crystals. Acc. Chem. Res. 17, 320–326 (1984).

    Article  CAS  Google Scholar 

  31. Adolf, C. R. R., Ferlay, S., Kyritsakas, N. & Hosseini, M. W. Welding molecular crystals. J. Am. Chem. Soc. 137, 15390–15393 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Erdemir, D., Lee, A. Y. & Myerson, A. S. Nucleation of crystals from solution: classical and two-step models. Acc. Chem. Res. 42, 621–629 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Brammer, L. Developments in inorganic crystal engineering. Chem. Soc. Rev. 33, 476–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Bürgi, H. B. & Dunitz, J. D. From crystal statics to chemical dynamics. Acc. Chem. Res. 16, 153–161 (1983).

    Article  Google Scholar 

  35. Desiraju, G. R. Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res. 35, 565–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Braga, D. & Grepioni, F. Intermolecular interactions in nonorganic crystal engineering. Acc. Chem. Res. 33, 601–608 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Hu, W. B. Polymer features in crystallization. Chin. J. Polym. Sci. 40, 545–555 (2022).

    Article  CAS  Google Scholar 

  38. Evans, A. M. et al. Emissive single-crystalline boroxine-linked colloidal covalent organic frameworks. J. Am. Chem. Soc. 141, 19728–19735 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Kang, C. J. et al. Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study. Nat. Commun. 13, 1370 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Liang, L. et al. Noninterpenetrated single-crystal covalent organic frameworks. Angew. Chem. Int. Ed. 59, 17991–17995 (2020).

    Article  CAS  Google Scholar 

  41. Wang, H. J. et al. Covalent organic framework membranes for efficient separation of monovalent cations. Nat. Commun. 13, 7123 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Shi, X. S. et al. Design of three-dimensional covalent organic framework membranes for fast and robust organic solvent nanofiltration. Angew. Chem. Int. Ed. 61, e202207559 (2022).

    Article  CAS  ADS  Google Scholar 

  43. Yang, L. & Wei, D. C. Semiconducting covalent organic frameworks: a type of two-dimensional conducting polymers. Chin. Chem. Lett. 27, 1395–1404 (2016).

    Article  CAS  Google Scholar 

  44. Guo, Z. Y. et al. Missing-linker defects in covalent organic framework membranes for efficient CO2 separation. Angew. Chem. Int. Ed. 61, e202210466 (2022).

    Article  CAS  Google Scholar 

  45. Zhang, Q. et al. Designing covalent organic frameworks with Co-O4 atomic sites for efficient CO2 photoreduction. Nat. Commun. 14, 1147 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Wang, Q. K., Sun, J. & Wei, D. C. Two-dimensional metal-organic frameworks and covalent organic frameworks. Chin. J. Chem. 40, 1359–1385 (2022).

    Article  CAS  Google Scholar 

  47. Lin, H. X. et al. Enhanced CO2 photoreduction through spontaneous charge separation in end-capping assembly of heterostructured covalentorganic frameworks. Angew. Chem. Int. Ed. 61, e202214142 (2022).

    Article  MathSciNet  CAS  Google Scholar 

  48. Wang, X. X. et al. Two-dimensional porphyrin-based covalent organic framework with enlarged inter-layer spacing for tunable photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 14, 41122–41130 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  PubMed  ADS  Google Scholar 

  50. Yang, J. et al. Constitutional isomerism of the linkages in donor–acceptor covalent organic frameworks and its impact on photocatalysis. Nat. Commun. 13, 6317 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Hamzehpoor, E. et al. Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping. Nat. Chem. 15, 83–90 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Albacete, P. et al. Layer-stacking-driven fluorescence in a two-dimensional iminelinked covalent organic framework. J. Am. Chem. Soc. 140, 12922–12929 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Krishnaraj, C. et al. Linker engineering of 2D imine covalent organic frameworks for the heterogeneous palladium-catalyzed Suzuki coupling reaction. ACS Appl. Mater. Interfaces 14, 50923–50931 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Basak, A., Karak, S. & Banerjee, R. Covalent organic frameworks as porous pigments for photocatalytic metal-free C–H borylation. J. Am. Chem. Soc. 145, 7592–7599 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. He, T. et al. Porphyrin-based covalent organic frameworks anchoring Au single atoms for photocatalytic nitrogen fixation. J. Am. Chem. Soc. 145, 6057–6066 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, Z. S. et al. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat. Commun. 14, 1106 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Chen, D. et al. Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production. Angew. Chem. Int. Ed. 62, e202217479 (2023).

    Article  CAS  ADS  Google Scholar 

  58. Das, P. et al. Integrating bifunctionality and chemical stability in covalent organic frameworks via one-pot multicomponent reactions for solar-driven H2O2 production. J. Am. Chem. Soc. 145, 2975–2984 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Knez, Ž. et al. Industrial applications of supercritical fluids: a review. Energy 77, 235–243 (2014).

    Article  CAS  Google Scholar 

  60. Cooper, A. I. Polymer synthesis and processing using supercritical carbon dioxide. J. Mater. Chem. 10, 207–234 (2000).

    Article  CAS  Google Scholar 

  61. Field, C. N. et al. Precipitation of solvent-free C60(CO2)0.95 from conventional solvents: a new antisolvent approach to controlled crystal growth using supercritical carbon dioxide. J. Am. Chem. Soc. 122, 2480–2488 (2000).

    Article  CAS  Google Scholar 

  62. Fu, C. P. et al. Supercritical fluid-assisted fabrication of diselenide-bridged polymeric composites for improved indocyanine green-guided photodynamic therapy. Chem. Eng. J. 407, 127108 (2021).

    Article  CAS  Google Scholar 

  63. Kubovics, M. et al. Supercritical CO2 synthesis of porous metalloporphyrin frameworks: application in photodynamic therapy. Chem. Mater. 35, 1080–1093 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Truong, Q. D., Devaraju, M. K. & Honma, I. Benzylamine-directed growth of olivine-type LiMPO4 nanoplates by a supercritical ethanol process for lithium-ion batteries. J. Mater. Chem. A 2, 17400–17407 (2014).

    Article  CAS  Google Scholar 

  65. MacEachern, L., Kermanshahi-pour, A. & Mirmehrabi, M. Supercritical carbon dioxide for pharmaceutical co-crystal production. Cryst. Growth Des. 20, 6226–6244 (2020).

    Article  CAS  Google Scholar 

  66. Beckman, E. J. Supercritical and near-critical CO2 in green chemical synthesis and processing. J. Supercrit. Fluids 28, 121–191 (2004).

    Article  CAS  Google Scholar 

  67. Moisan, S. et al. General approach for the synthesis of organic-inorganic hybrid nanoparticles mediated by supercritical CO2. J. Am. Chem. Soc. 129, 10602–10606 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Durando, M., Morrish, R. & Muscat, A. J. Kinetics and mechanism for the reaction of hexafluoroacetylacetone with CuO in supercritical carbon dioxide. J. Am. Chem. Soc. 130, 16659–16668 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, C. L., Wang, Z. Z., Zhang, L. & Dong, Z. Y. Soft 2D covalent organic framework with compacted honeycomb topology. J. Am. Chem. Soc. 144, 18784–18789 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Auras, F. et al. Synchronized offset stacking: a concept for growing large-domain and highly crystalline 2D covalent organic frameworks. J. Am. Chem. Soc. 138, 16703–16710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, Y. N. et al. Vinylene-linked 2D conjugated covalent organic frameworks by Wittig reactions. Angew. Chem. Int. Ed. 134, e202209762 (2022).

    Article  Google Scholar 

  72. Lan, Z. A. et al. Ionothermal synthesis of covalent triazine frameworks in a NaCl-KCl-ZnCl2 eutectic salt for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 61, e202201482 (2022).

    Article  CAS  Google Scholar 

  73. Maschita, J. et al. Ionothermal synthesis of imide-linked covalent organic frameworks. Angew. Chem. Int. Ed. 59, 15750–15758 (2020).

    Article  CAS  Google Scholar 

  74. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    Article  CAS  Google Scholar 

  75. Bojdys, M. J., Jeromenok, J., Thomas, A. & Antonietti, M. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity. Adv. Mater. 22, 2202–2205 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Campbell, N. L., Clowes, R., Ritchie, L. K. & Cooper, A. I. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 21, 204–206 (2009).

    Article  CAS  Google Scholar 

  77. Ritchie, L. K., Trewin, A., Reguera-Galan, A., Hasell, T. & Cooper, A. I. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Microporous Mesoporous Mater. 132, 132–136 (2010).

    Article  CAS  Google Scholar 

  78. Chandra, S. et al. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135, 17853–17861 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Biswal, B. P. et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135, 5328–5331 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Zhao, W. et al. Accelerated synthesis and discovery of covalent organic framework photocatalysts for hydrogen peroxide production. J. Am. Chem. Soc. 144, 9902–9909 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, S. T., Kim, J., Cho, H. Y., Kim, S. & Ahn, W. S. Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Adv. 2, 10179–10181 (2012).

    Article  CAS  ADS  Google Scholar 

  82. Zhang, M. X. et al. Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. J. Am. Chem. Soc. 142, 9169–9174 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, M. D. et al. Electrochemical interfacial polymerization toward ultrathin COF membranes for brine desalination. Angew. Chem. Int. Ed. 62, e202219084 (2023).

    Article  CAS  Google Scholar 

  84. Tang, J. Q. et al. Large-area free-standing metalloporphyrin-based covalent organic framework films by liquid-air interfacial polymerization for oxygen electrocatalysis. Angew. Chem. Int. Ed. 62, e202214449 (2023).

    Article  CAS  Google Scholar 

  85. Giri, A., Shreeraj, G., Dutta, T. K. & Patra, A. Transformation of an imine cage to a covalent organic framework film at the liquid–liquid interface. Angew. Chem. Int. Ed. 62, e202219083 (2023).

    Article  CAS  Google Scholar 

  86. Wang, G. B. et al. Construction of covalent organic frameworks via a visible-lightactivated photocatalytic multicomponent reaction. J. Am. Chem. Soc. 145, 4951–4956 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Kim, S. & Choi, H. C. Light-promoted synthesis of highly conjugated crystalline covalent organic framework. Commun. Chem. 2, 60 (2019).

    Article  Google Scholar 

  88. Kim, S. et al. Rapid photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth. Adv. Funct. Mater. 27, 1700925 (2017).

    Article  Google Scholar 

  89. Chang, J. N. et al. Oxidation-reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H2O2. Angew. Chem. Int. Ed. 62, e202218868 (2023).

    Article  CAS  ADS  Google Scholar 

  90. Zhi, Q. J. et al. Piperazine-linked metalphthalocyanine frameworks for highly efficient visible-light-driven H2O2 photosynthesis. J. Am. Chem. Soc. 144, 21328–21336 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Wu, X. et al. Arylboron functional covalent organic frameworks for synergistic photocatalytic hydrogen evolution. J. Mater. Chem. A 10, 17691–17698 (2022).

    Article  CAS  Google Scholar 

  92. Ma, S. et al. Photocatalytic hydrogen production on a sp2-carbon-linked covalent organic framework. Angew. Chem. Int. Ed. 61, e202208919 (2022).

    Article  CAS  ADS  Google Scholar 

  93. Zhao, Z. F. et al. Spatial regulation of acceptor units in olefin-linked COFs toward highly efficient photocatalytic H2 evolution. Adv. Sci. 9, 2203832 (2022).

    Article  MathSciNet  CAS  Google Scholar 

  94. Li, Z. P. et al. Three-component donor-π-acceptor covalent-organic frameworks for boosting photocatalytic hydrogen evolution. J. Am. Chem. Soc. 145, 8364–8374 (2023).

    CAS  Google Scholar 

  95. Ma, T. Q. et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  96. Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  97. Zheng, Q. et al. Single-crystalline covalent organic frameworks as high-performance liquid chromatographic stationary phases for positional isomer separation. ACS Appl. Mater. Interfaces 14, 9754–9762 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Natraj, A. et al. Single-crystalline imine-linked two-dimensional covalent organic frameworks separate benzene and cyclohexane efficiently. J. Am. Chem. Soc. 144, 19813–19824 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, X. H., Enomoto, R. & Murakami, Y. Ionic additive strategy to control nucleation and generate larger single crystals of 3D covalent organic frameworks. Chem. Commun. 57, 6656–6659 (2021).

    Article  CAS  Google Scholar 

  100. Sun, J., Sobolev, Y. I., Zhang, W. Y., Zhuang, Q. & Grzybowski, B. A. Enhancing crystal growth using polyelectrolyte solutions and shear flow. Nature 579, 73–79 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  101. Yu, F. et al. Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat. Commun. 11, 5534 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  102. She, P. F., Qin, Y. Y., Wang, X. & Zhang, Q. C. Recent progress in external-stimulus-responsive 2D covalent organic frameworks. Adv. Mater. 34, 2101175 (2022).

    Article  CAS  Google Scholar 

  103. Sasmal, H. S., Mahato, A. K., Majumder, P. & Banerjee, R. Landscaping covalent organic framework nanomorphologies. J. Am. Chem. Soc. 144, 11482–11498 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Karak, S., Dey, K. & Banerjee, R. Maneuvering applications of covalent organic frameworks via framework-morphology modulation. Adv. Mater. 34, 2202751 (2022).

    Article  CAS  Google Scholar 

  105. Xue, M. M., Yang, J. L., Kang, F. Y., Wang, X. & Zhang, Q. C. Recent progress in single-crystal structures of organic polymers. J. Mater. Chem. C. 10, 17027–17047 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Zhao and D. Hu for their support on this protocol. This work was supported by the National Key R&D Program of China (2018YFA0703200), the National Natural Science Foundation of China (61890940), the Chongqing Bayu Scholar Program (DP2020036), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB30000000), Program of Shanghai Academic Research Leaders (23XD1420200), State Key Laboratory of Molecular Engineering of Polymers and Fudan University.

Author information

Authors and Affiliations

Authors

Contributions

D.W. conceived, designed and originally developed the protocol. L.P. and J.S. performed the experiments and analyzed the data. J.S., X.W., Q.W. and D.W. wrote the manuscript. J.S., X.W., Q.W., Y.L. and D.W. edited the manuscript. D.W. supervised the research. All authors read, commented on and accepted the final manuscript. J.S., X.W. and Q.W. contributed equally to this protocol.

Corresponding author

Correspondence to Dacheng Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Rahul Banerjee, Zhi Xu, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol:

Peng, L. et al. Nat. Commun. 12, 5077 (2021): https://doi.org/10.1038/s41467-021-24842-x

Peng, L. et al. Chem. Mater. 34, 2886−2895 (2022): https://doi.org/10.1021/acs.chemmater.1c02382

Extended data

Extended Data Fig. 1 Growth of sc-COFTP-Py in sc-CO2 with different concentrations of n-BuOH.

a, PXRD patterns of the as-synthesized sc-COFTP-Py. b-e, SEM images of sc-COFTP-Py. The samples are grown for 1 hour in sc-CO2 with 0.25% to 25% (vol.) n-BuOH. Scale bars: b, 5 μm; ce, 2 μm. Figure adapted from ref. 15, CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/).

Extended Data Fig. 2 Morphologies of the as-synthesized os-COFs.

a-c, OM, SEM, and TEM images of os-COFTP-Py. d-f, OM, SEM, and TEM images of os-COF300. Scale bars: a,d, 30 μm; b,e, 2 μm; f, 1 μm; c, 200 nm. Panels ac adapted from ref. 15, CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/). Panels df adapted with permission from ref. 16, American Chemical Society.

Extended Data Fig. 3 FT-IR spectra of the samples.

a, sc-COFTP-Py and os-COFTP-Py. b, sc-COF300 and os-COF300. c, sc-COF320 and os-COF320. d, sc-COFTPE and os-COFTPE. Panel a adapted from ref. 15, CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/). Panels bd adapted with permission from ref. 16, American Chemical Society.

Extended Data Fig. 4 N2 adsorption isotherms of the samples.

a, sc-COFTP-Py after purification in sc-CO2. b, os-COFTP-Py after purification in THF. This result clearly shows a type IV isotherm. Figure adapted from ref. 15, CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/).

Extended Data Fig. 5 13C solid-state NMR spectra.

os-COF300 (red curve) and sc-COF300 (black curve). Figure adapted with permission from ref. 16, American Chemical Society.

Extended Data Fig. 6 PXRD characterization of sc-COFs and os-COFs.

a,b, PXRD and the simulated patterns of COFTB-BA and COF5. Sc-COFs are grown for 5 min, and os-COFs are grown for 30 min or 3 days. b, PXRD and simulated patterns of COF320 and COFTPE. Sc-COFs are grown for 1 min, and os-COFs are grown for 30 min or 3 days. Panels a and b adapted from ref. 15, CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/). Panel c adapted with permission from ref. 16, American Chemical Society.

Extended Data Fig. 7 TEM images of sc-COFTB-BA.

a, TEM image of sc-COFTB-BA. b, Cross-section TEM image of sc-COFTB-BA. The inset is the FFT pattern obtained from the dashed square. Scale bars: a, 200 nm; b, 20 nm. Figure adapted from ref. 15, CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/).

Extended Data Fig. 8 TEM images of a sc-COFTP-Py single crystal.

a, TEM image and b, enlarged image collected from the dashed area in a. c-l, HR-TEM images collected from the dashed areas in b. Scale bars: a, 10 μm; b, 5 μm; cl, 50 nm. Figure adapted from ref. 15, CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/).

Extended Data Fig. 9 OM images and cross-polarized OM images of sc-COFs.

a, OM image of sc-COF300 crystals on Si/SiO2. b−d, Cross-polarized OM images of sc-COF300 when the wafer is rotated by angles of 0°, 45°, and 90°. e, OM image of sc-COF320 crystals on Si/SiO2. f−h, Cross-polarized OM images of sc-COF320 when the wafer is rotated by angles of 0°, 45°, and 90°. i, OM image of sc-COFTPE crystals on Si/SiO2. j−l, Cross-polarized OM images of sc-COFTPE when the wafer is rotated by angles of 0°, 45°, and 90°. Uniform polarized light extinction is observed over the entire length of the rods, indicating the single-crystalline nature of the samples. Scale bars, 10 μm. Figure adapted with permission from ref. 16, American Chemical Society.

Extended Data Fig. 10 Comparison with different polymerization methods.

a, Schematic of the COFTP-Py synthesis by supercritically solvothermal method and solvothermal method. b, Crystal size and growth rate in this protocol (sc-COFs and os-COFs) compared with the reported results. The red star indicates the best result in sc-CO2. Figure adapted from ref. 15, CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/).

Supplementary Information

Reporting Summary

Supplementary Video 1

Procedures to add the monomer dispersion into the reactor and to install the pressure transmitter and the thermocouple.

Supplementary Video 2

Procedures to open the reactor and take out the product from the reactor.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, X., Wang, Q. et al. Ultra-fast supercritically solvothermal polymerization for large single-crystalline covalent organic frameworks. Nat Protoc 19, 340–373 (2024). https://doi.org/10.1038/s41596-023-00915-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00915-7

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing