Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Deoxyfluorination of phenols for chemoselective 18F-labeling of peptides

Abstract

The challenge of forming C–18F bonds is often a bottleneck in the development of new 18F-labeled tracer molecules for noninvasive functional imaging studies using positron emission tomography (PET). Nucleophilic aromatic substitution is the most widely employed reaction to functionalize aromatic substrates with the radioactive fluorine-18 but its scope is restricted to arenes containing electron-withdrawing substituents. Furthermore, many protic functional groups are incompatible with basic fluoride anions. Peptide substrates, which are highly desirable targets for PET molecular imaging, are particularly challenging to label with fluorine-18 because they are densely functionalized and sensitive to high temperatures and basic conditions. To expand the utility of nucleophilic aromatic substitution with fluorine-18, we describe two complementary procedures for the radiodeoxyfluorination of bench-stable and easy-to-access phenols that ensure rapid access to densely functionalized electron-rich and electron-poor 18F–aryl fluorides. The first procedure details the synthesis of an 18F–synthon and its subsequent ligation to the cysteine residue of Arg–Gly–Asp–Cys in 10.5 h from commercially available starting materials (189-min radiosynthesis). The second procedure describes the incorporation of commercially available CpRu(Fmoc–tyrosine)OTf into a fully protected peptide Lys–Met–Glu–(CpRu–Tyr)–Leu via solid-phase peptide synthesis and subsequent ruthenium-mediated uronium deoxyfluorination with fluorine-18 followed by deprotection, accomplished within 7 d (116-min radiosynthesis). Both radiolabeling methods are highly chemoselective and have conveniently been automated using commercially available radiosynthesis equipment so that the procedures described can be employed for the synthesis of peptide-based PET probes for in vivo imaging studies according to as low as reasonably achievable (ALARA) principles.

Key points

  • The procedures detail the chemoselective radiolabeling of peptides with fluorine-18 on different amino acids in the peptide sequence via either metal-free uronium deoxyfluorination or ruthenium-assisted uronium deoxyfluorination.

  • The approach facilitates the radiosynthesis of original molecules for noninvasive functional imaging studies using positron emission tomography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radiolabeling strategies for peptides.
Fig. 2: Metal-free uronium deoxyfluorination with fluorine-18.
Fig. 3: The equilibrium constant for the conversion of uronium fluoride 4 to tetrahedral adduct 5 changes with the nature of the arene substituents.
Fig. 4: Ruthenium-mediated radiodeoxyfluorination of phenols.
Fig. 5: General scheme for 18F-deoxyfluorination of peptides.
Fig. 6: Uronium elution obviates the need for time-consuming dry down procedure.
Fig. 7: Reactions involved in metal-free radiodeoxyfluorination described in Procedure 1.
Fig. 8: General workflow for ruthenium-mediated radiodeoxyfluorination.
Fig. 9: Photographs of the ELIXYS radiochemical synthesis module setup.
Fig. 10: Labeled photograph of the ELIXYS module set up in the hot cell.
Fig. 11: Photographs of the general preparation of the ELIXYS radiosynthesizer.
Fig. 12: Photographs showing Steps 14, 15 and 17.
Fig. 13: Photographs showing Steps 18 and 21.
Fig. 14: Photographs showing Steps 25, 29 and 30.
Fig. 15: Photographs of the synthesis of the peptide precursor.
Fig. 16: Photographs of the synthesis of the peptide precursor.
Fig. 17: Synthesis of labeling precursor 13 from peptide 15.
Fig. 18: Schematic diagram of the ELIXYS radiosynthesizer setup used.
Fig. 19: Photographs of the 18F-deoxyfluorination on ELIXYS radiosynthesizer.

Similar content being viewed by others

Data availability

All data are available in the extended data section or the accompanying Supplementary Information.

References

  1. Phelps, M. E. PET: the merging of biology and imaging into molecular imaging. J. Nuc. Med. 41, 661–681 (2000).

    CAS  Google Scholar 

  2. Richter, S. & Wuest, F. 18F-labeled peptides: the future is bright. Molecules 19, 20536–20556 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Matthews, P. M., Rabiner, E. A., Passchier, J. & Gunn, R. N. Positron emission tomography molecular imaging for drug development. Br. J. Clin. Pharmacol. 73, 175–186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Langlois, B., Gilbert, L. & Forat, G. in The Roots of Organic Development 1st edn, Vol. 8 (eds Desmurs, J.-R. & Ratton, S.) 244–292 (Elsevier, 1996).

  5. Becaud, J. et al. Direct one-step18F-labeling of peptides via nucleophilic aromatic substitution. Bioconjug. Chem. 20, 2254–2261 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Jacobson, O. et al. Rapid and simple one-step F-18 labeling of peptides. Bioconjug. Chem. 22, 422–428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fani, M., Maecke, H. R. & Okarvi, S. M. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics 2, 481–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jackson, I. M., Scott, P. J. H. & Thompson, S. Clinical applications of radiolabeled peptides for PET. Semin. Nucl. Med. 47, 493–523 (2017).

    Article  PubMed  Google Scholar 

  9. Bouvet, V. et al. Targeting Prostate-Specific Membrane Antigen (PSMA) with F-18-labeled compounds: the influence of prosthetic groups on tumor uptake and clearance profile. Mol. Imaging Biol. 19, 923–932 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Pozzi, O. R., Sajaroff, E. O. & Edreira, M. M. Influence of prosthetic radioiodination on the chemical and biological behavior of chemotactic peptides labeled at high specific activity. Appl. Radiat. Isot. 64, 668–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Richter, S. et al. Rerouting the metabolic pathway of 18F-labeled peptides: the influence of prosthetic groups. Bioconjug. Chem. 26, 201–212 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Storch, D. et al. Evaluation of [99mTc/EDDA/HYNIC0]Octreotide derivatives compared with [111In-DOTA0,Tyr3, Thr8]Octreotide and [111In-DTPA0]Octreotide: does tumor or pancreas uptake correlate with the rate of internalization? J. Nucl. Med. 46, 1561–1569 (2005).

    CAS  PubMed  Google Scholar 

  13. Froidevaux, S. et al. Preclinical comparison in AR4–2J tumor-bearing mice of four radiolabeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-somatostatin analogs for tumor diagnosis and internal radiotherapy. Endocrinology 141, 3304–3312 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Maecke, H. R. & Reubi, J. C. Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J. Nucl. Med. 52, 841–844 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Perrin, D. M. [18F]-Organotrifluoroborates as radioprosthetic groups for PET imaging: from design principles to preclinical applications. Acc. Chem. Res. 49, 1333–1343 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Bernard-Gauthier, V. et al. From unorthodox to established: the current status of 18F-Trifluoroborate- and 18F-SiFA-based radiopharmaceuticals in PET nuclear imaging. Bioconjug. Chem. 27, 267–279 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Bernard-Gauthier, V. et al. Recent advances in 18F-radiochemistry: a focus on B-18F, Si-18F, Al-18F, and C-18F radiofluorination via spirocyclic iodonium ylides. J. Nucl. Med. 59, 568–572 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Narayanam, M. K., Toutov, A. A. & Murphy, J. M. Rapid one-step 18F-labeling of peptides via heteroaromatic silicon-fluoride acceptors. Org. Lett. 22, 804–808 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Scroggie, K. R., Perkins, M. V. & Chalker, J. M. Reaction of [18F]fluoride at heteroatoms and metals for imaging of peptides and proteins by positron emission tomography. Front. Chem. 9, 687678 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McBride, W. J. et al. A novel method of 18F-radiolabeling for PET. J. Nucl. Med. 50, 991–998 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Lang, L. et al. Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconjug. Chem. 22, 2415–2422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vaidyanathan, G. & Zalutsky, M. R. Synthesis of N-succinimidyl 4-[18F]fluorobenzoate, an agent for labeling proteins and peptides with 18F. Nat. Protoc. 1, 1655–1661 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Olberg, D. E. et al. One step radiosynthesis of 6-[18F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([18F]F-Py-TFP): a new prosthetic group for efficient labeling of biomolecules with fluorine-18. J. Med. Chem. 53, 1732–1740 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Haskali, M. B. et al. One-step radiosynthesis of 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NFP); improved preparation of radiolabeled peptides for PET imaging. J. Label. Compd. Radiopharm. 56, 726–730 (2013).

    Article  CAS  Google Scholar 

  25. Kuhnast, B., de Bruin, B., Hinnen, F., Tavitian, B. & Dollé, F. Design and synthesis of a new [18F]Fluoropyridine-based haloacetamide reagent for thelabeling of oligonucleotides: 2-Bromo-N-[3-(2-[18F]fluoropyridin-3-yloxy)propyl]acetamide. Bioconjug. Chem. 15, 617–627 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. von Guggenberg, E. et al. Automated synthesis of an 18F-labelled pyridine-based alkylating agent for high yield oligonucleotide conjugation. Appl. Radiat. Isot. 67, 1670–1675 (2009).

    Article  Google Scholar 

  27. Gao, Z., Gouverneur, V. & Davis, B. G. Enhanced aqueous Suzuki–Miyaura coupling allows site-specific polypeptide 18F-labeling. J. Am. Chem. Soc. 135, 13612–13615 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Way, J. D., Bergman, C. & Wuest, F. Sonogashira cross-coupling reaction with 4-[18F]fluoroiodobenzene for rapid 18F-labelling of peptides. Chem. Commun. 51, 3838–3841 (2015).

    Article  CAS  Google Scholar 

  29. Pretze, M., Pietzsch, D. & Mamat, C. Recent trends in bioorthogonal click-radiolabeling reactions using fluorine-18. Molecules 18, 8618–8665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meyer, J.-P., Adumeau, P., Lewis, J. S. & Zeglis, B. M. Click chemistry and radiochemistry: the first 10 years. Bioconjug. Chem. 27, 2791–2807 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schirrmacher, R. et al. Small prosthetic groups in 18F-radiochemistry: useful auxiliaries for the design of 18F-PET tracers. Semin. Nucl. Med. 47, 474–492 (2017).

    Article  PubMed  Google Scholar 

  32. Marik, J. & Sutcliffe, J. L. Click for PET: rapid preparation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett. 47, 6681–6684 (2006).

    Article  CAS  Google Scholar 

  33. Glaser, M. & Årstad, E. “Click labeling” with 2-[18F]fluoroethylazide for positron emission tomography. Bioconjug. Chem. 18, 989–993 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Z. et al. Tetrazine–trans-cyclooctene ligation for the rapid construction of 18F-labeled probes. Chem. Commun. 46, 8043–8045 (2010).

    Article  CAS  Google Scholar 

  35. Liu, H. et al. Ultrafast click chemistry with fluorosydnones. Angew. Chem. Int. Ed. 55, 12073–12077 (2016).

    Article  CAS  Google Scholar 

  36. Narayanam, M. K., Ma, G., Champagne, P. A., Houk, K. N. & Murphy, J. M. Synthesis of [18F]fluoroarenes by nucleophilic radiofluorination of N-arylsydnones. Angew. Chem. Int. Ed. 56, 13006–13010 (2017).

    Article  CAS  Google Scholar 

  37. Kiesewetter, D. O., Jacobson, O., Lang, L. & Chen, X. Automated radiochemical synthesis of [18F]FBEM: A thiol reactive synthon for radiofluorination of peptides and proteins. Appl. Radiat. Isot. 69, 410–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Ma, G., McDaniel, J. W. & Murphy, J. M. One-step synthesis of [18F]Fluoro-4-(vinylsulfonyl)benzene: a thiol reactive synthon for selective radiofluorination of peptides. Org. Lett. 23, 530–534 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Cai, W., Zhang, X., Wu, Y. & Chen, X. A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression. J. Nucl. Med. 47, 1172–1180 (2006).

    CAS  PubMed  Google Scholar 

  40. Kniess, T., Kuchar, M. & Pietzsch, J. Automated radiosynthesis of the thiol-reactive labeling agent N-[6-(4-[18F]fluorobenzylidene)aminooxyhexyl]maleimide ([18F]FBAM). Appl. Radiat. Isot. 69, 1226–1230 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, Z. et al. Facile preparation of a thiol-reactive 18F-labeling agent and synthesis of 18F-DEG-VS-NT for PET imaging of a neurotensin receptor-positive tumor. J. Nucl. Med. 55, 1178–1184 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Adumeau, P., Davydova, M. & Zeglis, B. M. Thiol-reactive bifunctional chelators for the creation of site-selectively modified radioimmunoconjugates with improved stability. Bioconjug. Chem. 29, 1364–1372 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McDaniel, J. W., Stauber, J. M., Doud, E. A., Spokoyny, A. M. & Murphy, J. M. An organometallic gold(III) reagent for 18F-labeling of unprotected peptides and sugars in aqueous media. Org. Lett. 24, 5132–5136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, W. et al. Site-selective 18F-fluorination of unactivated C–H bonds mediated by a manganese porphyrin. Chem. Sci. 9, 1168–1172 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Gray, E. E. et al. Nucleophilic (radio)fluorination of α-diazocarbonyl compounds enabled by copper-catalyzed H–F insertion. J. Am. Chem. Soc. 138, 10802–10805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yuan, Z. et al. Site-selective, late-stage C−H 18F-fluorination on unprotected peptides for positron emission tomography imaging. Angew. Chem. Int. Ed. 57, 12733–12736 (2018).

    Article  CAS  Google Scholar 

  47. Krzyczmonik, A., Keller, T., Kirjavainen, A. K., Forsback, S. & Solin, O. Vacuum ultraviolet photon-mediated production of [18F]F2. J. Label. Compd. Radiopharm. 60, 186–193 (2017).

    Article  CAS  Google Scholar 

  48. Kee, C. W. et al. 18F-trifluoromethanesulfinate enables direct C–H 18F-trifluoromethylation of native aromatic residues in peptides. J. Am. Chem. Soc. 142, 1180–1185 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Verhoog, S. et al. 18F-trifluoromethylation of unmodified peptides with 5-18F-(trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate. J. Am. Chem. Soc. 140, 1572–1575 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Hayashi, H., Sonoda, H., Fukumura, K. & Nagata, T. 2,2-Difluoro-1,3-dimethylimidazolidine (DFI). A new fluorinating agent. Chem. Commun. 15, 1618–1619 (2002).

    Article  Google Scholar 

  51. Tang, P., Wang, W. & Ritter, T. Deoxyfluorination of phenols. J. Am. Chem. Soc. 133, 11482–11484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Neumann, C. N., Hooker, J. M. & Ritter, T. Concerted nucleophilic aromatic substitution with 19F and 18F. Nature 534, 369–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beyzavi, H. et al. 18F-deoxyfluorination of phenols via Ru π-complexes. ACS Cent. Sci. 3, 944–948 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rickmeier, J. & Ritter, T. Site-specific deoxyfluorination of small peptides with [18F]fluoride. Angew. Chem. Int. Ed. 57, 14207–14211 (2018).

    Article  CAS  Google Scholar 

  55. Chakrabarti, M. C., Le, N., Paik, C. H., De Graff, W. G. & Carrasquillo, J. A. Prevention of radiolysis of monoclonal antibody during labeling. J. Nucl. Med. 37, 1384–1388 (1996).

    CAS  PubMed  Google Scholar 

  56. Liu, S., Ellars, C. E. & Edwards, D. S. Ascorbic acid: useful as a buffer agent and radiolytic stabilizer for metalloradiopharmaceuticals. Bioconjug. Chem. 14, 1052–1056 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, S. & Edwards, D. S. Stabilization of 90Y-Labeled DOTA-biomolecule conjugates using gentisic acid and ascorbic acid. Bioconjug. Chem. 12, 554–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Yuan, C. et al. Metal-free oxidation of aromatic carbon–hydrogen bonds through a reverse-rebound mechanism. Nature 499, 192–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Camelio, A. M. et al. Computational and experimental studies of phthaloyl peroxide-mediated hydroxylation of arenes yield a more reactive derivative, 4,5-dichlorophthaloyl peroxide. J. Org. Chem. 80, 8084–8095 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Börgel, J., Tanwar, L., Berger, F. & Ritter, T. Late-stage aromatic C–H oxygenation. J. Am. Chem. Soc. 140, 16026–16031 (2018).

    Article  PubMed  Google Scholar 

  61. Sang, R. et al. Site-selective C−H oxygenation via aryl sulfonium salts. Angew. Chem. Int. Ed. 58, 16161–16166 (2019).

    Article  CAS  Google Scholar 

  62. Mann, G. & Hartwig, J. F. Palladium alkoxides: potential intermediacy in catalytic amination, reductive elimination of ethers, and catalytic etheration. Comments on alcohol elimination from Ir(III). J. Am. Chem. Soc. 118, 13109–13110 (1996).

    Article  CAS  Google Scholar 

  63. Mann, G., Incarvito, C., Rheingold, A. L. & Hartwig, J. F. Palladium-catalyzed C−O coupling involving unactivated aryl halides. Sterically induced reductive elimination to form the C−O bond in diaryl ethers. J. Am. Chem. Soc. 121, 3224–3225 (1999).

    Article  CAS  Google Scholar 

  64. Anderson, K. W., Ikawa, T., Tundel, R. E. & Buchwald, S. L. The selective reaction of aryl halides with KOH: synthesis of phenols, aromatic ethers, and benzofurans. J. Am. Chem. Soc. 128, 10694–10695 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Willis, M. C. Palladium-catalyzed coupling of ammonia and hydroxide with aryl halides: the direct synthesis of primary anilines and phenols. Angew. Chem. Int. Ed. 46, 3402–3404 (2007).

    Article  CAS  Google Scholar 

  66. Sergeev, A. G. et al. Palladium-catalyzed hydroxylation of aryl halides under ambient conditions. Angew. Chem. Int. Ed. 48, 7595–7599 (2009).

    Article  CAS  Google Scholar 

  67. Schulz, T. et al. Practical imidazole-based phosphine ligands for selective palladium-catalyzed hydroxylation of aryl halides. Angew. Chem. Int. Ed. 48, 918–921 (2009).

    Article  CAS  Google Scholar 

  68. Lavery, C. B., Rotta-Loria, N. L., McDonald, R. & Stradiotto, M. Pd2dba3/Bippyphos: a robust catalyst system for the hydroxylation of aryl halides with broad substrate scope. Adv. Synth. Catal. 355, 981–987 (2013).

    Article  CAS  Google Scholar 

  69. Cheung, C. W. & Buchwald, S. L. Palladium-catalyzed hydroxylation of aryl and heteroaryl halides enabled by the use of a palladacycle precatalyst. J. Org. Chem. 79, 5351–5358 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fier, P. S. & Maloney, K. M. Synthesis of complex phenols enabled by a rationally designed hydroxide surrogate. Angew. Chem. Int. Ed. 56, 4478–4482 (2017).

    Article  CAS  Google Scholar 

  71. Ishiyama, T. et al. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 124, 390–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Larsen, M. A. & Hartwig, J. F. Iridium-catalyzed C–H borylation of heteroarenes: scope, regioselectivity, application to late-stage functionalization, and mechanism. J. Am. Chem. Soc. 136, 4287–4299 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Cheng, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C–H silylation of arenes with high steric regiocontrol. Science 343, 853–857 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Cheng, C. & Hartwig, J. F. Iridium-catalyzed silylation of aryl C–H bonds. J. Am. Chem. Soc. 137, 592–595 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Humpert, S. et al. Rapid 18F-labeling via Pd-catalyzed S-arylation in aqueous medium. Chem. Commun. 57, 3547–3550 (2021).

    Article  CAS  Google Scholar 

  76. Zhao, W., Lee, H. G., Buchwald, S. L. & Hooker, J. M. Direct 11CN-labeling of unprotected peptides via palladium-mediated sequential cross-coupling reactions. J. Am. Chem. Soc. 139, 7152–7155 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baguet, T. et al. Radiosynthesis, in vitro and preliminary in vivo evaluation of the novel glutamine derived PET tracers [18F]fluorophenylglutamine and [18F]fluorobiphenylglutamine. Nucl. Med. Biol. 86, 20–29 (2020).

    Article  PubMed  Google Scholar 

  78. Clemente, G. S. et al. [18F]Atorvastatin: synthesis of a potential molecular imaging tool for the assessment of statin-related mechanisms of action. EJNMMI Res. 10, 34 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Strebl, M. G. et al. HDAC6 brain mapping with [18F]bavarostat enabled by a Ru-mediated deoxyfluorination. ACS Cent. Sci. 3, 1006–1014 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Celen, S. et al. Translation of HDAC6 PET imaging using [18F]EKZ-001–cGMP production and measurement of HDAC6 target occupancy in nonhuman Primates. ACS Chem. Neurosci. 11, 1093–1101 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Lahdenpohja, S. et al. Ruthenium-mediated 18F-fluorination and preclinical evaluation of a new CB1 receptor imaging agent [18F]FPATPP. ACS Chem. Neurosci. 11, 2009–2018 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Vallabhajosula, S. Molecular Imaging: Radiopharmaceuticals for PET and SPECT (Springer, 2009).

  83. ICH Q3D implemented in the European Pharmacopoeia: revision of two general monographs with regard to elemental impurities. ECA Academy https://www.gmp-compliance.org/gmp-news/ich-q3d-implemented-in-the-european-pharmacopoeia-revision-of-two-general-monographs-with-regard-to-elemental-impurities (2016).

  84. International Council for Harmonisation. Quality Guidelines. ICH https://www.ich.org/page/quality-guidelines (2021).

  85. World Health Organization. Ionizing radiation and health effects. WHO https://www.who.int/news-room/fact-sheets/detail/ionizing-radiation-health-effects-and-protective-measures (2023).

  86. Centers for Disease Control and Prevention. ALARA—as low as reasonably achievable. CDC https://www.cdc.gov/nceh/radiation/alara.html#:~:text=ALARA%20stands%20for%20%E2%80%9Cas%20low,time%2C%20distance%2C%20and%20shielding (2022).

  87. Patgiri, A., Menzenski, M. Z., Mahon, A. B. & Arora, P. S. Solid-phase synthesis of short α-helices stabilized by the hydrogen bond surrogate approach. Nat. Protoc. 5, 1857–1865 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kuhnast, B., Hinnen, F., Boisgard, R., Tavitian, B. & Dollé, F. Fluorine-18 labelling of oligonucleotides: prosthetic labelling at the 5′-end using the N-(4-[18F]fluorobenzyl)-2-bromoacetamide reagent. J. Label. Compd. Radiopharm. 46, 1093–1103 (2003).

    Article  CAS  Google Scholar 

  89. Teare, H., Robins, E. G., Årstad, E., Luthra, S. K. & Gouverneur, V. Synthesis and reactivity of [18F]-N-fluorobenzenesulfonimide. Chem. Commun. 23, 2330–2332 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The research presented in Procedure 1 was supported by the Crump Institute for Molecular Imaging and the American Cancer Society (132467-RSG-18-149-01-CCE). Funding to support Procedure 2 of this work was provided by the Max-Planck-Institut für Kohlenforschung. We thank the UCLA Biomedical Cyclotron staff and Jeffrey Collins for providing [18F]fluoride for the studies in Procedure 1 and for helpful discussion. We thank F. Köhler for mass spectrometry analysis, M. Leutzsch and J. Lingnau for NMR spectroscopy analysis, C. Heidgen, N. Sauerborn and P. Münstermann for liquid chromatographic analysis, and R. Petzold for serving as the radiation safety officer supporting the work presented in Procedure 2 (all from Max-Planck-Institut für Kohlenforschung).

Author information

Authors and Affiliations

Authors

Contributions

C.N.N., T.R., J.M.M. and J.R. designed the conceptual approach to this work. R.H., G.M., J.W.M. and R.P. carried out the experimental work and analyzed the experimental data with input from J.M.M., C.N.N. and T.R. C.N.N., J.M.M., R.H. and T.R. wrote the manuscript. T.R., C.N.N. and J.M.M. directed the project.

Corresponding authors

Correspondence to Constanze N. Neumann, Jennifer M. Murphy or Tobias Ritter.

Ethics declarations

Competing interests

T.R. may benefit financially from PhenoFluor/PhenoFluorMix and [CpRu(Fmoc-tyrosine)]CF3CO2 sales. The other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Anna Kaarina Kirjavainen, Andre Luxen, Jan Marik and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Ma, G. et al. Org. Lett. 23, 530–534 (2021): https://doi.org/10.1021/acs.orglett.0c04054

Neumann, C. N. et al. Nature 534, 369–373 (2016): https://doi.org/10.1038/nature17667

Beyzavi, H. et al. ACS Cent. Sci. 3, 944–948 (2017): https://doi.org/10.1021/acscentsci.7b00195

Rickmeier, J. & Ritter, T. Angew. Chem. Int. Ed. 57, 14207–14211 (2018): https://doi.org/10.1002/anie.201807983

Extended data

Extended Data Fig. 1 Fluid diagram and cassette setup for the ELIXYS radiosynthesis module.

Disposable cassettes (represented by the gray rectangles) contain the necessary internal components (i.e., stopcock valves, transfer dip tubes, fluid connection ports, etc.) to conduct the radiosynthesis protocol; All cassettes are identical, but details are omitted from Cassette 2 for simplicity.

Extended Data Fig. 2 Analytical HPLC chromatograms obtained for 18F-11.

a, analytical HPLC chromatogram obtained for HPLC purified 18F-11. b, co-injection of the reaction mixture containing 18F-11 and an aliquot of reference standard on an analytical HPLC column; γ-trace (lower) and 254 nm UV trace (upper).

Extended Data Fig. 3 Prep HPLC trace of 15.

YMC Triat C-18 column, 5.0 μm, 150 × 4.6 mm, flow rate = 1.0 mL·min−1 by an isocratic elution with 25:75 (0.1% TFA in H2O:MeOH, v-v).

Extended Data Fig. 4 Prep HPLC trace of 13.

YMC Triat C-18 column, 5.0 μm, 150 × 4.6 mm, flow rate = 1.0 mL·min−1 by an isocratic elution with 30:70 (0.1% TFA in H2O:MeOH, v-v).

Extended Data Fig. 5 HPLC-trace of preparative HPLC purification of radiolabeled peptide 18F-14.

Hypersil Gold (250 ✕ 10 mm, 5 μm, flow rate = 4 mL min−1) column with an isocratic mixture of 15:85 (MeCN:water, 0.1% TFA, vol:vol) for 2 min, followed by a linear gradient to 45:55 (MeCN:water, 0.1% TFA, vol:vol) within 18 min.

Extended Data Fig. 6 Analytical HPLC chromatograms obtained for the 18F-labeled L-glutathione conjugate.

a, analytical HPLC chromatogram obtained for HPLC purified 18F-labeled L-glutathione conjugate. b, co-injection of the pure 18F-labeled L-glutathione conjugate and an aliquot of reference standard on an analytical HPLC column; γ-trace (lower) and 254 nm UV trace (upper).

Extended Data Fig. 7 Radiotrace of the reaction mixture obtained by manual synthesis (column 1).

Top: reaction mixture prior to the cleavage step. Bottom: reaction mixture after the cleavage step.

Extended Data Fig. 8 Comparison of HPLC radiotrace of H-Leu-Phe(4-[18F]F)-Glu-Met-Lys-NH2 obtained by manual synthesis with UV-trace (290 nm) of authentic reference (column 2).

Upper: radiotrace of 18F-14 obtained by manual synthesis (radiochemical purity = 96%), lower: UV-trace of authentic reference standard 19F-14 monitored at 290 nm, The spatial separation between the diode array detector and the radioactivity detector introduces a delay that results in an offset of ~0.5 minutes between corresponding peaks in the radiochromatogram and UV-chromatogram.

Extended Data Fig. 9 HPLC radiotrace of H-Leu-Phe(4-[18F]F)-Glu-Met-Lys-NH2 isolated from automated synthesis (column 2, gradient 1).

Radiotrace of 18F-14 obtained by automated radiosynthesis (radiochemical purity = 96%).

Supplementary information

Supplementary Information

Supplementary Tutorials 1−7.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, R., Ma, G., Rickmeier, J. et al. Deoxyfluorination of phenols for chemoselective 18F-labeling of peptides. Nat Protoc 18, 3614–3651 (2023). https://doi.org/10.1038/s41596-023-00890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00890-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing