Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An end-to-end workflow for multiplexed image processing and analysis

This article has been updated

Abstract

Multiplexed imaging enables the simultaneous spatial profiling of dozens of biological molecules in tissues at single-cell resolution. Extracting biologically relevant information, such as the spatial distribution of cell phenotypes from multiplexed tissue imaging data, involves a number of computational tasks, including image segmentation, feature extraction and spatially resolved single-cell analysis. Here, we present an end-to-end workflow for multiplexed tissue image processing and analysis that integrates previously developed computational tools to enable these tasks in a user-friendly and customizable fashion. For data quality assessment, we highlight the utility of napari-imc for interactively inspecting raw imaging data and the cytomapper R/Bioconductor package for image visualization in R. Raw data preprocessing, image segmentation and feature extraction are performed using the steinbock toolkit. We showcase two alternative approaches for segmenting cells on the basis of supervised pixel classification and pretrained deep learning models. The extracted single-cell data are then read, processed and analyzed in R. The protocol describes the use of community-established data containers, facilitating the application of R/Bioconductor packages for dimensionality reduction, single-cell visualization and phenotyping. We provide instructions for performing spatially resolved single-cell analysis, including community analysis, cellular neighborhood detection and cell–cell interaction testing using the imcRtools R/Bioconductor package. The workflow has been previously applied to imaging mass cytometry data, but can be easily adapted to other highly multiplexed imaging technologies. This protocol can be implemented by researchers with basic bioinformatics training, and the analysis of the provided dataset can be completed within 5–6 h. An extended version is available at https://bodenmillergroup.github.io/IMCDataAnalysis/.

Key points

  • The protocol describes the analysis of data generated by highly multiplexed tissue imaging approaches, such as imaging mass cytometry. The presented workflow includes steps for imaging data visualization, data preprocessing, image segmentation, single-cell feature extraction, reading data into R, spillover correction, quality control, cell phenotyping and spatially resolved single-cell analysis.

  • The software packages used include napari, steinbock, DeepCell/Mesmer, Ilastik, CellProfiler, cytomapper and imcRtools.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the multiplexed tissue image analysis workflow.
Fig. 2: Data output after image processing and representation in R.
Fig. 3: Screenshot of napari and napari-imc.
Fig. 4: Typical multiplexed image processing workflows using steinbock.
Fig. 5: Overview of the pixel classification-based segmentation pipeline.
Fig. 6: Spillover correction for single-cell data and multi-channel images.
Fig. 7: Visual assessment of segmentation quality.
Fig. 8: Cell area distribution.
Fig. 9: Visualization of the image area covered by cells per image.
Fig. 10: Visualization of differences in marker distributions between patients.
Fig. 11: Low dimensional representation of single cells.
Fig. 12: Cluster parameter sweep for optimal parameter estimation.
Fig. 13: Visualization of cluster-specific expression patterns.
Fig. 14: Cell phenotypes displayed on UMAP embedding.
Fig. 15: Mean marker expression heat maps.
Fig. 16: Input, interpretability and output of spatial analysis approaches.
Fig. 17: Spatial tumor communities.
Fig. 18: Cellular neighborhood detection.
Fig. 19: Spatial context detection.
Fig. 20: Spatial patch detection.
Fig. 21: Cell–cell interaction testing.

Similar content being viewed by others

Code availability

The steinbock toolkit is available at https://github.com/BodenmillerGroup/steinbock. The pixel classification-based pipeline is available at https://github.com/BodenmillerGroup/ImcSegmentationPipeline. The cytomapper R/Bioconductor package is available at https://bioconductor.org/packages/cytomapper. The imcRtools R/Bioconductor package is available at https://bioconductor.org/packages/imcRtools. The napari-imc napari plugin is available at https://github.com/BodenmillerGroup/napari-imc. The readimc Python package is available at https://github.com/BodenmillerGroup/readimc. An extensive workflow on processing and analyzing multiplexed imaging data can be accessed at https://bodenmillergroup.github.io/IMCDataAnalysis/. The script reproducing the analysis presented in this protocol is available at https://github.com/BodenmillerGroup/IMCDataAnalysis/tree/main/publication.

Change history

  • 18 October 2023

    In the HTML version of the article initially published, there were some formatting errors in the presentation of the code which have now been corrected.

References

  1. Lin, J.-R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).

    Article  PubMed  Google Scholar 

  3. Radtke, A. J. et al. IBEX: a versatile multiplex optical imaging approach for deep phenotyping and spatial analysis of cells in complex tissues. Proc. Natl Acad. Sci. USA 117, 33455–33465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 1080–1090 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Ali, H. R. et al. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nat. Cancer 1, 163–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 183, 838 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Jiang, S. et al. Combined protein and nucleic acid imaging reveals virus-dependent B cell and macrophage immunosuppression of tissue microenvironments. Immunity 55, 1118–1134.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rendeiro, A. F. et al. The spatial landscape of lung pathology during COVID-19 progression. Nature 593, 564–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mitamura, Y. et al. Cutaneous and systemic hyperinflammation drives maculopapular drug exanthema in severely ill COVID-19 patients. Allergy 77, 595–608 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Damond, N. et al. A map of human type 1 diabetes progression by imaging mass cytometry. Cell Metab. 29, 755–768.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferrian, S. et al. Multiplexed imaging reveals an IFN-γ-driven inflammatory state in nivolumab-associated gastritis. Cell Rep. Med. 2, 100419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amezquita, R. A. et al. Orchestrating single-cell analysis with Bioconductor. Nat. Methods 17, 137–145 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Schapiro, D. et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat. Methods 14, 873–876 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhate, S. S., Barlow, G. L., Schürch, C. M. & Nolan, G. P. Tissue schematics map the specialization of immune tissue motifs and their appropriation by tumors. Cell Syst. 13, 109–130.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. napari contributors. napari: a multi-dimensional image viewer for python. https://doi.org/10.5281/zenodo.3555620 (2019).

  21. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinforma. 22, 433 (2021).

    Article  Google Scholar 

  23. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Chevrier, S. et al. Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst. 6, 612–620.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eling, N., Damond, N., Hoch, T. & Bodenmiller, B. cytomapper: an R/bioconductor package for visualisation of highly multiplexed imaging data. Bioinformatics 36, 5706–5708 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  26. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schulz, D. et al. Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry. Cell Syst. 6, 531 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Righelli, D. et al. SpatialExperiment: infrastructure for spatially resolved transcriptomics data in R using Bioconductor. Bioinformatics 38, 3128–3131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bunis, D. G., Andrews, J., Fragiadakis, G. K., Burt, T. D. & Sirota, M. dittoSeq: universal user-friendly single-cell and bulk RNA sequencing visualization toolkit. Bioinformatics 36, 5535–5536 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  30. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan, Y. et al. Single-cell analysis of endometriosis reveals a coordinated transcriptional programme driving immunotolerance and angiogenesis across eutopic and ectopic tissues. Nat. Cell Biol. 24, 1306–1318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Canete, N. P. et al. spicyR: spatial analysis of in situ cytometry data in R. Bioinformatics 38, 3099–3105 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Siu, J. H. Y. et al. Two subsets of human marginal zone B cells resolved by global analysis of lymphoid tissues and blood. Sci. Immunol. 7, eabm9060 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Singh, N. et al. Development of a 2-dimensional atlas of the human kidney with imaging mass cytometry. JCI Insight 4, e129477 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lotsberg, M. L. et al. Intrinsic differences in spatiotemporal organization and stromal cell interactions between isogenic lung cancer cells of epithelial and mesenchymal phenotypes revealed by high-dimensional single-cell analysis of heterotypic 3D spheroid models. Front. Oncol. 12, 818437 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lohoff, T. et al. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat. Biotechnol. 40, 74–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Virshup, I., Rybakov, S., Theis, F. J., Angerer, P. & Alexander Wolf, F. anndata: annotated data. Preprint at bioRxiv https://doi.org/10.1101/2021.12.16.473007 (2021).

  38. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Stoltzfus, C. R. et al. CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues. Cell Rep. 31, 107523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Czech, E., Aksoy, B. A., Aksoy, P. & Hammerbacher, J. Cytokit: a single-cell analysis toolkit for high dimensional fluorescent microscopy imaging. BMC Bioinforma. 20, 448 (2019).

    Article  Google Scholar 

  42. Keller, M. S. et al. Vitessce: a framework for integrative visualization of multi-modal and spatially-resolved single-cell data. Preprint at OSF Preprints https://doi.org/10.31219/osf.io/y8thv (2021).

  43. van Maldegem, F. et al. Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nat. Commun. 12, 5906 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. MICCAI 2018, 265–273 (2018).

    Google Scholar 

  45. Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Somarakis, A., Van Unen, V., Koning, F., Lelieveldt, B. & Hollt, T. ImaCytE: visual exploration of cellular micro-environments for imaging mass cytometry data. IEEE Trans. Vis. Comput. Graph. 27, 98–110 (2021).

    Article  PubMed  Google Scholar 

  47. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171–178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McKinley, E. T. et al. MIRIAM: a machine and deep learning single‐cell segmentation and quantification pipeline for multi‐dimensional tissue images. Cytom. Part A 101, 521–528 (2022).

    Article  Google Scholar 

  51. Eng, J. et al. A framework for multiplex imaging optimization and reproducible analysis. Commun. Biol. 5, 438 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schapiro, D. et al. MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging. Nat. Methods 19, 311–315 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nirmal, A. J. et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 12, 1518–1541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hickey, J. W. et al. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging. Nat. Methods 19, 284–295 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Baker, E. A. G., Schapiro, D., Dumitrascu, B., Vickovic, S. & Regev, A. In silico tissue generation and power analysis for spatial omics. Nat. Methods 20, 424–431 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bost, P., Schulz, D., Engler, S., Wasserfall, C. & Bodenmiller, B. Optimizing multiplexed imaging experimental design through tissue spatial segregation estimation. Nat. Methods 20, 418–423 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5, 2122 (2016).

    PubMed  PubMed Central  Google Scholar 

  60. Hong, H., Liechti, R. & Morfouace, M. Yes, IMMUcan! Unraveling the human tumor microenvironment. Immunol. Oncol. Insights 02, 301–309 (2021).

    Article  Google Scholar 

  61. Catena, R., Montuenga, L. M. & Bodenmiller, B. Ruthenium counterstaining for imaging mass cytometry. J. Pathol. 244, 479–484 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Lu, P. et al. IMC-Denoise: a content aware denoising pipeline to enhance imaging mass cytometry. Nat. Commun. 14, 1601 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Muhlich, J. L. et al. Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR. Bioinformatics 38, 4613–4621 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 1661–1662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Selega, A. & Campbell, K. R. Multi-objective Bayesian optimization with heuristic objectives for biomedical and molecular data analysis workflows. Preprint at bioRxiv https://doi.org/10.1101/2022.06.08.495370 (2022).

  67. Baranski, A. et al. MAUI (MBI Analysis User Interface)—an image processing pipeline for multiplexed mass based imaging. PLoS Comput. Biol. 17, e1008887 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, J.-R., Fallahi-Sichani, M., Chen, J.-Y. & Sorger, P. K. Cyclic immunofluorescence (CycIF), a highly multiplexed method for single-cell imaging. Curr. Protoc. Chem. Biol. 8, 251–264 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Crowell H, Zanotelli V, Chevrier S, Robinson M. CATALYST: Cytometry dATa anALYSis Tools. https://github.com/HelenaLC/CATALYST (2023).

  70. Kuett, L. et al. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 3, 122–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Quintelier, K. et al. Analyzing high-dimensional cytometry data using FlowSOM. Nat. Protoc. 16, 3775–3801 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008).

    Article  Google Scholar 

  75. Patrick, E. et al. Spatial analysis for highly multiplexed imaging data to identify tissue microenvironments. Cytom. A https://doi.org/10.1002/cyto.a.24729 (2023).

  76. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Bodenmiller laboratory for helpful feedback and discussions, and the IMMUcan consortium for allowing us to use their data. Specifically, we would like to thank J.R. Fischer and T. Hoch for code contributions to the imcRtools package, as well as R. Casanova and N. Damond for testing the steinbock toolkit in Python code. We would further like to thank N. de Souza for critically commenting on the manuscript. Finally, we would like to express our appreciation of the larger bioimage analysis and open-source software communities for providing supportive feedback and packages critical to the development of the presented workflow. J.W. was funded by the CRUK IMAXT Grand Challenge and by two Chan Zuckerberg Initiative (CZI) napari Plugin Accelerator Grants (2021-239869(5022), 2021-239940(5022)). B.B. was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 framework, ERC-2019-CoG: 866074 – Precision Motifs, a SNF Project Grant, a Promedica foundation grant and the CRUK IMAXT Grand Challenge. N.E. was funded by the European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie Actions grant agreement no. 892225.

Author information

Authors and Affiliations

Authors

Contributions

J.W. developed readimc, napari-imc and the steinbock toolkit, and contributed to the pixel classification-based segmentation pipeline. V.R.T.Z. developed the pixel classification-based segmentation pipeline and contributed to the spillover correction and the interaction testing approaches. D.S. implemented the cellular neighborhood detection approach. L.M. wrote the spatial community and spatial context-related functions. M.D. generated the data and provided experimental information for the spillover correction approach. N.E. developed the cytomapper and imcRtools packages and contributed to the pixel classification-based segmentation pipeline. J.W., B.B. and N.E. conceived the study. J.W., B.B. and N.E. wrote the manuscript. All authors approve of the manuscript.

Corresponding authors

Correspondence to Bernd Bodenmiller or Nils Eling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Ellis Patrick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Hoch, T. et al. Sci. Immunol. 7, eabk1692 (2022): https://doi.org/10.1126/sciimmunol.abk1692

Jackson, H. W. et al. Nature 578, 615–620 (2020): https://doi.org/10.1038/s41586-019-1876-x

Damond, N. et al. Cell Metab. 29, 755–768.e5 (2019): https://doi.org/10.1016/j.cmet.2018.11.014

Ali, H. R. et al. Nat. Cancer 1, 163–175 (2020): https://doi.org/10.1038/s43018-020-0026-6

Schulz, D. et al. Cell Syst. 6, 531 (2018): https://doi.org/10.1016/j.cels.2017.12.001

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Windhager, J., Zanotelli, V.R.T., Schulz, D. et al. An end-to-end workflow for multiplexed image processing and analysis. Nat Protoc 18, 3565–3613 (2023). https://doi.org/10.1038/s41596-023-00881-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00881-0

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics